-
We numerically solved the time-dependent Schrödinger equation (TDSE) for a hydrogen atom interacting with intense near-infrared laser fields to investigate the mechanism of below-threshold high-harmonic generation (HHG). The primary focus was on understanding the spectral features, particularly resonant structures, arising in the fifth harmonic region under specific driving conditions. Our simulations utilized a laser wavelength of 608 nm. At this wavelength, hydrogen atoms can resonantly absorb five photons, promoting electrons from the ground state |1s⟩ to the excited state |2p⟩. Concurrently, atoms can absorb additional photons leading to ionization. Crucially, due to the AC Stark shift induced by the intense laser field (laser dressing), certain laser-dressed continuum states |c⟩ become energetically degenerate with the laser-dressed |2p⟩ state. High-harmonic radiation at the fifth harmonic frequency can then be emitted via two distinct quantum paths: (1) Bound-bound recombination: Direct recombination from the laser-dressed |2p⟩ state back to the ground state |1s⟩. (2) Continuum-bound recombination: Recombination from the laser-dressed continuum states |c⟩ (reached via ionization) back to |1s⟩. Both pathways emit photons of identical energy corresponding to the fifth harmonic. Our key finding is the pronounced quantum interference between these two recombination channels. This interference manifests spectrally as a characteristic asymmetric Fano lineshape in the intensity profile of the fifth harmonic. Furthermore, we demonstrate that the shape of this Fano resonance exhibits a strong and controllable dependence on the intensity of the driving laser field. This study provides clear evidence that Fano quantum interference, typically associated with multi-electron correlations or autoionizing states in complex systems, can emerge in the fundamental single-electron hydrogen atom system under intense laser fields. The interference arises directly from the coherent superposition of the bound-bound and continuum-bound recombination pathways enabled by laser-induced degeneracy. Importantly, the spectral profile of the Fano resonance can be actively manipulated by tuning the laser intensity, highlighting a novel avenue for coherent control of harmonic emission in simple atomic systems.
-
Keywords:
- Hydrogen atom /
- Intense laser field /
- Below-threshold high-harmonic generation /
- Fano resonance
-
[1] Fano U 1961 Phys. Rev. 124 1866.
[2] Kobayashi K, Aikawa H, Katsumoto S, Iye Y 2002 Phys. Rev. Lett. 88 256806.
[3] Wang Y, Liao L, Hu T, Luo S, Wu L, Wang J, Zhang Z, Xie W, Sun L, Kavokin A V, Shen X, Chen Z 2017 Phys. Rev. Lett. 118 063602.
[4] Karmakar S, Kumar D, Varshney R K, Chowdhury D R 2020 Opt. Lett. 45 3386.
[5] Ott C, Aufleger L, Ding T, Rebholz M, Magunia A, Hartmann M, Stooß V, Wachs D, Birk P, Borisova G D, Meyer K, Rupprecht P, da Costa Castanheira C, Moshammer R, Attar A R, Gaumnitz T, Loh Z H, Düsterer S, Treusch R, Ullrich J, Jiang Y, Meyer M, Lambropoulos P, Pfeifer T 2019 Phys. Rev. Lett. 123 163201.
[6] Fasshauer E, Madsen L B 2020 Phys. Rev. A 101 043414.
[7] Wickenhauser M, Burgdörfer J, Krausz F, Drescher M 2005 Phys. Rev. Lett. 94 023002.
[8] Themelis S I, Lambropoulos P, Meyer M 2004 Journal of Physics B: Atomic, Molecular and Optical Physics 37 4281.
[9] Tong X M, Lin C D 2005 Phys. Rev. A 71 033406.
[10] Zhao Z X, Lin C D 2005 Phys. Rev. A 71 060702.
[11] Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U, Chang Z 2010 Phys. Rev. Lett. 105 143002.
[12] Kaldun A, Ott C, Blättermann A, Laux M, Meyer K, Ding T, Fischer A, Pfeifer T 2014 Phys. Rev. Lett. 112 103001.
[13] Kaldun A, Blättermann A, Stooß V, Donsa S, Wei H, Pazourek R, Nagele S, Ott C, Lin C D, Burgdörfer J, Pfeifer T 2016 Science 354 738.
[14] Peng P, Marceau C, Hervé M, Corkum P B, Naumov A Y, Villeneuve D M 2019 Nature Communications 10 5269.
[15] Veit S, Paul B, Alexander B, Maximilian H, D B G, Christian O, Thomas P 2020 Phys. Rev. Res. 2 032041.
[16] Harkema N, Cariker C, Lindroth E, Argenti L, Sandhu A 2021 Phys. Rev. Lett. 127 023202.
[17] Peng P, Yonghao M, Marianna L, Mathew B, Xiaoyan D, Yu N A, B C P, M V D 2022 Nature Photonics 16 4551.
[18] Serov V V, Kheifets A S 2024 Phys. Rev. A 110 043107.
[19] Han M, Liang H, Ji J B, Sum L C, Ueda K, Rost J M, Wörner H J 2025 Ultrafast Science 5 0091.
[20] Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117.
[21] Soifer H, Botheron P, Shafir D, Diner A, Raz O, Bruner B D, Mairesse Y, Pons B, Dudovich N 2010 Phys. Rev. Lett. 105 143904.
[22] C Y D, R S T, Jun Y, L T J, James H, B G M, J S K 2009 Nature Physics 5 815820.
[23] Hostetter J A, Tate J L, Schafer K J, Gaarde M B 2010 Phys. Rev. A 82 023401.
[24] Xiong W H, Geng J W, Tang J Y, Peng L Y, Gong Q 2014 Phys. Rev. Lett. 112 233001.
[25] Xiong W H, Jin J Z, Peng L Y, Gong Q 2017 Phys. Rev. A 96 023418.
[26] Camp S, Schafer K J, Gaarde M B 2015 Phys. Rev. A 92 013404.
[27] Peng-Cheng L, Yae-Lin S, Cecil L, Shih-I C 2015 Nature Communications 6 7178.
[28] Chu W C, Travers J C, Russell P S J 2016 New Journal of Physics 18 023018.
[29] Beaulieu S, Camp S, Descamps D, Comby A, Wanie V, Petit S, Légaré F, Schafer K J, Gaarde M B, Catoire F, Mairesse Y 2016 Phys. Rev. Lett. 117 203001.
[30] Du L L, Wang G L, Li P C, Zhou X X, Zhao Z X 2018 Phys. Rev. A 97 023404.
[31] Guo Q L, Li P C, Zhou X X, Chu S I 2018 Optics Communications 410 262.
[32] Wang B, Zhang Y, Lan P, Zhai C, Li M, Zhu X, Chen J, Lu P, Lin C D 2021 Phys. Rev. A 103 053119.
[33] Jun P T, C L J 1986 The Journal of Chemical Physics 85 5870.
[34] Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347.
[35] Sundaram B, Milonni P W 1990 Phys. Rev. A 41 6571.
[36] Figueira de Morisson Faria C, Dörr M, Sandner W 1998 Phys. Rev. A 58 2990.
[37] Figueira de Morisson Faria C, Rotter I 2002 Phys. Rev. A 66 013402.
[38] Bickel W S, Goodman A S 1966 Phys. Rev. 148 1.
[39] Bo L, Rujiang L, Jiahui F, Qun W, Kuang Z, Wan C, Zhefei W, Ruyu M 2016 Scientific Reports 6 31884.
[40] Iizawa M, Kosugi S, Koike F, Azuma Y 2021 Physica Scripta 96 055401.
Metrics
- Abstract views: 44
- PDF Downloads: 3
- Cited By: 0