Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of, electronic structure, elastic properties and hardness of Cr-doped CuZr2

WANG Kun XU Heyan ZHENG Xiong ZHANG Haifeng

Citation:

First-principles study of, electronic structure, elastic properties and hardness of Cr-doped CuZr2

WANG Kun, XU Heyan, ZHENG Xiong, ZHANG Haifeng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In recent years, the design and development of new high-performance alloys based on first principles have received extensive attention. However, there are few reports on the structural design and thermodynamic properties of Cu-Zr alloys at nanoscale. In this work, based on the crystal structure characteristics of CuZr2, 12 kinds of Cr-doped CuZr2 structures are designed and optimized by the method of Cr atom doping through the first-principle calculation based on the density functional theory, and 6 kinds of mechanically and dynamically stable doped structure models are found. By calculating the electronic structure, elastic properties and hardness of the CuZr2 and its dynamically stable Cr-doped structure, it is found that the studied objects have all energy bands that pass through the Fermi energy level and are metallic. The main contributors to the metallic properties of the CuZr2 are the p and d orbital electrons of Zr, while the main contributors to the metallic properties of the 6 dynamically stable Cr-doped CuZr2 structures are the p and d orbital electrons of Cr and Zr. Meanwhile, CuZr2 has symmetrically distributed spin electrons, which do not show magnetism externally. However, the doping of Cr atoms increases the elemental species of the matrix. In addition to the difference of spin electrons brought by the d-orbital electrons of Cr atoms, the doped Cr atoms destroy the symmetrical distribution of electrons with different spin directions in the p- and d-orbitals of Zr atoms in the matrix, so that the designed 6 dynamically stable Cr-doped CuZr2 structures exhibit ferromagnetic properties with magnetic moments ranging from 0.303 to 5.243μB. In addition, it is found that Cr atoms can improve the mechanical properties of CuZr2. When the Cr atom is used to replace the Zr atom in the matrix, the elastic modulus and hardness of the material can be improved, and when the Cr atom is used to replace the Cu atom in the matrix, the machining properties of the material can be improved due to the reduction of hardness. The datasets presented in this work, including the band structure, density of states, and phonon dispersion frequency, are available from https://www.doi.org/10.57760/sciencedb.j00213.00122.
  • 图 1  计算参数收敛性测试结果 (a) 截断能Ecut的测试结果; (b) k点网格的测试结果

    Figure 1.  Convergence test results of the calculation parameters: (a) Energy cutoff; (b) k-point mesh.

    图 2  设计的12种Cr掺杂CuZr2的晶体结构模型 (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr0.5Cr1.5; (e) Cu0.5Zr2Cr0.5; (f) Cu0.5Zr1.5Cr-1; (g) Cu0.5Zr1.5Cr-2; (h) Cu0.5ZrCr1.5-1; (i) Cu0.5ZrCr1.5-2; (j) Cu0.5ZrCr1.5-3; (k) Cu0.5Zr0.5Cr2-1; (l) Cu0.5Zr0.5Cr2-2

    Figure 2.  Structural models of 12 Cr-doped CuZr2: (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr0.5Cr1.5; (e) Cu0.5Zr2Cr0.5; (f) Cu0.5Zr1.5Cr-1; (g) Cu0.5Zr1.5Cr-2; (h) Cu0.5ZrCr1.5-1; (i) Cu0.5ZrCr1.5-2; (j) Cu0.5ZrCr1.5-3; (k) Cu0.5Zr0.5Cr2-1; (l) Cu0.5Zr0.5Cr2-2.

    图 3  DFPT方法计算得到的CuZr2的声子谱图

    Figure 3.  Phonon spectra of CuZr2 calculated by the DFPT method.

    图 4  DFPT方法计算得到的12种Cr掺杂CuZr2的声子谱图 (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr0.5Cr1.5; (e) Cu0.5Zr2Cr0.5; (f) Cu0.5Zr1.5Cr-1; (g) Cu0.5Zr1.5Cr-2; (h) Cu0.5ZrCr1.5-1; (i) Cu0.5ZrCr1.5-2; (j) Cu0.5ZrCr1.5-3; (k) Cu0.5Zr0.5Cr2-1; (l) Cu0.5Zr0.5Cr2-2

    Figure 4.  Phonon spectra of 12 Cr-doped CuZr2 calculated by the DFPT method: (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) CuZrCr-2; (d) CuZr0.5Cr1.5; (e) Cu0.5Zr2Cr0.5; (f) Cu0.5Zr1.5Cr-1; (g) Cu0.5Zr1.5Cr-2; (h) Cu0.5ZrCr1.5-1; (i) Cu0.5ZrCr1.5-2; (j) Cu0.5ZrCr1.5-3; (k) Cu0.5Zr0.5Cr2-1; (l) Cu0.5Zr0.5Cr2-2.

    图 5  CuZr2晶体的电子结构 (a) 能带结构; (b) 态密度

    Figure 5.  Electronic structure of CuZr2 crystal: (a) Energy band structure; (b) density of states.

    图 6  动力学稳定的Cu-Zr-Cr掺杂体系的能带结构 (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) Cu0.5Zr2Cr0.5; (d) Cu0.5Zr1.5Cr-1; (e) Cu0.5ZrCr1.5-1; (f) Cu0.5Zr0.5Cr2-1

    Figure 6.  Band structure of dynamically stabilized Cu-Zr-Cr doped structures: (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) Cu0.5Zr2Cr0.5; (d) Cu0.5Zr1.5Cr-1; (e) Cu0.5ZrCr1.5-1; (f) Cu0.5Zr0.5Cr2-1.

    图 7  动力学稳定的Cu-Zr-Cr掺杂体系的态密度 (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) Cu0.5Zr2Cr0.5; (d) Cu0.5Zr1.5Cr-1; (e) Cu0.5ZrCr1.5-1; (f) Cu0.5Zr0.5Cr2-1

    Figure 7.  Density of states of dynamically stabilized Cu-Zr-Cr doped structures: (a) CuZr1.5Cr0.5; (b) CuZrCr-1; (c) Cu0.5Zr2Cr0.5; (d) Cu0.5Zr1.5Cr-1; (e) Cu0.5ZrCr1.5-1; (f) Cu0.5Zr0.5Cr2-1.

    图 8  计算得到的7种材料的德拜温度及维氏硬度

    Figure 8.  Calculation results of Debye temperature and Vickers hardness of 7 materials.

    表 1  CuZr2的晶体结构信息

    Table 1.  Crystal structure information of CuZr2 alloy.

    CuZr2 空间群 Tetragonal-I4/mmm
    晶格常数 实验值
    a = b = 3.2204 Å; c = 11.1832 Å
    α = β = γ = 90°
    原子数 Cu 2
    Zr 4
    Wyckoff
    占位
    x y z
    Cu(2a) 0 0 0
    Zr(4e) 0 0 0.346
    DownLoad: CSV

    表 2  CuZr2及其设计的12种Cr掺杂结构的晶格信息

    Table 2.  Lattice information of CuZr2 and its designed 12 Cr-doped structures.

    化合物空间群晶格常数
    CuZr2Tetragonal-I4/mmma = b = 3.233 Å; c = 11.207 Å
    CuZr2[50]Tetragonal-I4/mmma = b = 3.236 Å; c = 11.204 Å
    CuZr1.5Cr0.5Tetragonal-P4mma = b = 3.215 Å; c = 10.408 Å
    CuZrCr-1Tetragonal-P4/mmma = b = 3.178 Å; c = 9.715 Å
    CuZrCr-2Tetragonal-P4/nmma = b = 2.981 Å; c = 10.504 Å
    CuZr0.5Cr1.5Tetragonal-P4mma = b = 2.932 Å; c = 9.601 Å
    Cu0.5Zr2Cr0.5Tetragonal-P4mmma = b = 3.261 Å; c = 10.931 Å
    Cu0.5Zr1.5Cr-1Tetragonal-P4mma = b = 3.279 Å; c = 9.951 Å
    Cu0.5Zr1.5Cr-2Tetragonal-P4mma = b = 3.021 Å; c = 11.243 Å
    Cu0.5ZrCr1.5-1Tetragonal-P4mmma = b = 3.244 Å; c = 9.084 Å
    Cu0.5ZrCr1.5-2Tetragonal-P4mma = b = 3.039 Å; c = 10.117 Å
    Cu0.5ZrCr1.5-3Tetragonal-P4mma = b = 2.906 Å; c = 10.901 Å
    Cu0.5Zr0.5Cr2-1Tetragonal-P4mma = b = 2.901 Å; c = 9.558 Å
    Cu0.5Zr0.5Cr2-2Tetragonal-P4mma = b = 3.051 Å; c = 8.697 Å
    DownLoad: CSV

    表 3  CuZr2及其设计的6种动力学稳定的Cu-Zr-Cr掺杂结构的弹性常数Cij、弹性模量E, BG(单位: GPa)、泊松比υ以及各向异性因子AU

    Table 3.  Elastic constants Cij, elastic modulus E, B and G (unit: GPa), Poisson’s ratio υ and elastic anisotropy factor AU of CuZr2 and its designed six dynamically stabilized Cu-Zr-Cr doped structures.

    C11C12C13C33C44C66EBGνAU
    Cu2Zr4177.8466.0390.74145.6963.5330.98120.58110.6745.730.3180.654
    Cu2Zr4[50]16974911506632121111460.319
    CuZr1.5Cr0.5169.4671.0699.28131.7058.5540.31109.35112.1140.880.3371.086
    CuZrCr-1170.1379.3987.12154.6459.3454.67129.90111.3249.750.3060.207
    Cu0.5Zr2Cr0.5161.4682.8283.20129.2245.5830.0099.19104.9636.940.3430.239
    Cu0.5Zr1.5Cr-1156.4281.4082.94143.6444.4547.59108.49105.6040.820.3290.105
    Cu0.5ZrCr1.5-1169.53115.2867.77143.1243.5289.44123.36107.2947.140.3080.860
    Cu0.5Zr0.5Cr2-1284.53116.96112.07227.277.4829.1577.29163.2327.200.4214.800
    DownLoad: CSV

    表 4  计算得到的CuZr2及其Cr掺杂结构的声速、德拜温度及维氏硬度

    Table 4.  Calculated sound velocity, Debye temperature and Vickers hardness of CuZr2 and its Cr-doped structures.

    M
    /(g·mol–1)
    ρ
    /(g·cm–3)
    nνl
    /(m·s–1)
    νt
    /(m·s–1)
    νm
    /(m·s–1)
    θD
    /K
    Hv
    /GPa
    Cu2Zr4491.986.9764960.792560.542866.83316.985.044
    CuZr1.5Cr0.5452.766.9964883.102418.772714.89308.804.042
    CuZrCr-1413.547.0065038.352666.232980.21349.555.853
    Cu0.5Zr2Cr0.5480.436.8664740.052319.932605.71288.853.614
    Cu0.5Zr1.5Cr-1441.216.8564833.712441.412737.16311.944.316
    Cu0.5ZrCr1.5-1401.996.9864936.622598.512905.58343.765.527
    Cu0.5Zr0.5Cr2-1362.777.4965161.511905.762163.55271.141.243
    DownLoad: CSV
  • [1]

    Park J, Ahn M, Yu G, Kim J, Kim S, Shin C 2024 Mater. Today Commun. 38 107821Google Scholar

    [2]

    Zhao Y, Pang T, He J, Tao X, Chen H, Ouyang Y, Du Y 2018 Calphad 61 92Google Scholar

    [3]

    Wang T, Cullinan T E, Napolitano R E 2014 Acta Mater. 62 188Google Scholar

    [4]

    Nishiyama N, Amiya K, Inoue A 2007 J. Non-Cryst. Solids 353 3615Google Scholar

    [5]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [6]

    余健, 赵峰, 杨惠雅, 刘嘉斌, 马吉恩, 方攸同 2023 浙江大学学报-科学A 24 206Google Scholar

    Yu J, Zhao F, Yang H, Liu J, Ma J, Fang Y 2023 J. Zhejiang Univ. -Sci. A 24 206Google Scholar

    [7]

    Zeng K J, Hämäläinen M 1995 J. Alloys Compd. 220 53Google Scholar

    [8]

    Liu Q, Zhang X, Ge Y, Wang J, Cui J Z 2006 Metall. Mater. Trans. A 37 3233Google Scholar

    [9]

    Wu G, Dong K, Xu Z, Xiao S, Wei W, Chen H, Li J, Huang Z, Li J, Gao G, Kang G, Tu C, Huang X 2022 Railway Eng. Sci. 30 437Google Scholar

    [10]

    Zeng K J, Hämäläinen M, Lukas H L 1994 J. Phase Equilib. 15 577Google Scholar

    [11]

    Zinkle S J 2016 Phys. Scr. T 167 014004

    [12]

    Preston S D, Bretherton I, Forty C B A 2003 Fusion Eng. Des. 66-68 441Google Scholar

    [13]

    Taubin M L, Solntseva E S, Chesnokov D A 2017 Int. J. Hydrogen Energy 42 24541Google Scholar

    [14]

    Solntceva E S, Taubin M L, Bochkov N A, Solntsev V A, Yaskolko A A 2016 Int. J. Hydrogen Energy 41 7206Google Scholar

    [15]

    Higashino S, Miyashita D, Ishimoto T, Miyoshi E, Nakano T, Tane M 2025 Addit. Manuf. 102 104720

    [16]

    Lu Y, Xie G, Wang D, Zhang S, Zheng W, Shen J, Lou L, Zhang J 2018 Mater. Sci. Eng. , A 720 69Google Scholar

    [17]

    路甬祥, 白春礼, 施尔畏, 方新, 李志刚 2009 中国至2050年先进材料科技发展路线图 (北京: 科学出版社) 第79页

    Lu Y X, Bai C L, Shi E W, Fang X, Li Z G 2009 China's Advanced Materials Science and Technology Development Roadmap to 2050 (Beijing: Science Press) p79

    [18]

    Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloys Compd. 509 2885Google Scholar

    [19]

    Zhang D, Wang J, Dong K, Hao A 2018 Comput. Mater. Sci. 155 410Google Scholar

    [20]

    Wei X, Chen Z, Kong L, Wu J, Zhang H 2022 Materials 15 5990Google Scholar

    [21]

    Zhang W H, Halet J-F, Mori T 2023 J. Mater. Chem. A 11 24228Google Scholar

    [22]

    Caliskan S, Almessiere M A, Baykal A, Slimani Y 2023 Comput. Mater. Sci. 226 112243Google Scholar

    [23]

    Cheng Z, Peng Z, Zhong B, Liu H, Lu Z, Zhu S, Liu J 2023 Intermetallics 160 107918Google Scholar

    [24]

    Han Y, Chen J, Lin M, Zhang K, Lu H 2023 Vacuum 214 112239Google Scholar

    [25]

    Li Y, Li J, Wu W, Gong J, Song X, Wang Y, Chen Z 2023 Vacuum 215 112269Google Scholar

    [26]

    Lu Z Q, Wang F, Liu Y H 2021 Sci. Rep. 11 12720Google Scholar

    [27]

    Rao Z Y, Tung P Y, Xie R W, Wei Y, Zhang H B, Ferrari A, Klaver T P C, Körmann F, Sukumar P T, Kwiatkowski da Silva A, Chen Y, Li Z M, Ponge D, Neugebauer J, Gutfleisch O, Bauer S, Raabe D 2022 Science 378 78Google Scholar

    [28]

    Das S, Chattopadhyaya S, Bhattacharjee R 2021 Mater. Today: Proc. 46 6324Google Scholar

    [29]

    Wu F, Chen H, Qiao J, Hou Y, Yan R, Yang Z 2023 Eur. Phys. J. B 96 93Google Scholar

    [30]

    Hamad B 2018 J. Electron. Mater. 47 4047Google Scholar

    [31]

    Yamaguchi K, Song Y C, Yoshida T, Itagaki K 2008 J. Alloys Compd. 452 73Google Scholar

    [32]

    Ding C, Liu Q, Sun Q, Feng L 2024 IEEJ Trans. Electr. Electron. Eng. 19 1916Google Scholar

    [33]

    Banu S L, Veerapandy V, Fjellvåg H, Vajeeston P 2023 ACS Omega 8 13799Google Scholar

    [34]

    Okamoto H 2008 J. Phase Equilib. Diffus. 29 204Google Scholar

    [35]

    Okamoto H 1997 J. Phase Equilib. 18 220Google Scholar

    [36]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [37]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [39]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [40]

    BLÖCHL P E 1994 Phys. Rev. B 50 17953Google Scholar

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [42]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299Google Scholar

    [43]

    Savrasov S Y 1996 Phys. Rev. B 54 16470Google Scholar

    [44]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [45]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [46]

    Allmann R, Hinek R 2007 Acta Crystallogr. Sect. A: Found. Crystallogr. 63 412Google Scholar

    [47]

    Zagorac D, Müller H, Ruehl S, Zagorac J, Rehme S 2019 J. Appl. Crystallogr. 52 918Google Scholar

    [48]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [49]

    Arias D, Abriata J P 1990 J. Phase Equilib. 11 452Google Scholar

    [50]

    Du J, Wen B, Melnik R, Kawazoe Y 2014 J. Alloys Compd. 588 96Google Scholar

    [51]

    Choudhury N, Chaplot S L 2006 Phys. Rev. B 73 094304Google Scholar

    [52]

    Srinivasu K, Modak B, Ghanty T K 2018 J. Nucl. Mater. 510 360Google Scholar

    [53]

    Noordhoek M J, Besmann T M, Andersson D, Middleburgh S C, Chernatynskiy A 2016 J. Nucl. Mater. 479 216Google Scholar

    [54]

    王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹 2022 物理学报 71 227102Google Scholar

    Wang K, Qiao Y J, Zhang X H, Wang X D, Zheng T, Bai C Y, Zhang Y M, Du S Y 2022 Acta Phys. Sin. 71 227102Google Scholar

    [55]

    Wang K, Qiao Y, Zhang X, Wang X, Zhang Y, Wang P, Du S 2021 Eur. Phys. J. Plus 136 409Google Scholar

    [56]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504Google Scholar

    [57]

    蔡军, 陈国良, 方正知 1995 物理学报 44 977Google Scholar

    Cai J, Chen G L, Fang Z Z 1995 Acta Phys. Sin. 44 977Google Scholar

    [58]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [59]

    Xu J, Qiu N, Huang Q, Du S 2020 J. Nucl. Mater. 540 152358Google Scholar

    [60]

    Abrahams S C, Hsu F S L 1975 J. Chem. Phys. 63 1162Google Scholar

    [61]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909Google Scholar

    [62]

    Teter D M 1998 MRS Bull. 23 22

    [63]

    Šimůnek A 2009 Phys. Rev. B 80 060103

    [64]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275Google Scholar

    [65]

    Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mater 33 93Google Scholar

    [66]

    Rahman M A, Mousumi K, Ali M L, Khatun R, Rahman M Z, Sahriar Hasan S, Hasan W, Rasheduzzaman M, Hasan M Z 2023 Results Phys. 44 106141Google Scholar

    [67]

    Zhang L, Jiao F, Qin W Q, Wei Q 2023 ACS Omega 8 43644Google Scholar

    [68]

    Barsoum M W, Radovic M 2011 Ann. Rev. Mater. Res. 41 195Google Scholar

  • [1] WAN Yuwei, WANG Rui, ZHOU Wenquan, WANG Yiping, CAI Yanan, WANG Chang. First-principles study of NH3 adsorption on Ag- and Cu doped graphene oxide. Acta Physica Sinica, doi: 10.7498/aps.74.20241737
    [2] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, doi: 10.7498/aps.70.20202043
    [3] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, doi: 10.7498/aps.70.20201287
    [4] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, doi: 10.7498/aps.67.20172290
    [5] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, doi: 10.7498/aps.67.20172356
    [6] Yan Shun-Tao, Jiang Zhen-Yi. First principles study of the effect of Cu doping on the martensitic transformation of TiNi alloy. Acta Physica Sinica, doi: 10.7498/aps.66.130501
    [7] Tao Peng-Cheng, Huang Yan, Zhou Xiao-Hao, Chen Xiao-Shuang, Lu Wei. First principles investigation of the tuning in metal-MoS2 interface induced by doping. Acta Physica Sinica, doi: 10.7498/aps.66.118201
    [8] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, doi: 10.7498/aps.65.077101
    [9] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, doi: 10.7498/aps.65.056801
    [10] Wang Qing-Bao, Zhang Zhong, Xu Xi-Jin, Lü Ying-Bao, Zhang Qin. Theoretical and experimental studies on N, Fe, La co-doped anatase TiO2 band adjustment. Acta Physica Sinica, doi: 10.7498/aps.64.017101
    [11] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, doi: 10.7498/aps.64.087101
    [12] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, doi: 10.7498/aps.64.207101
    [13] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, doi: 10.7498/aps.63.163101
    [14] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, doi: 10.7498/aps.62.047101
    [15] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, doi: 10.7498/aps.62.187102
    [16] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, doi: 10.7498/aps.62.037103
    [17] Xu Jin-Rong, Wang Ying, Zhu Xing-Feng, Li Ping, Zhang Li. First-principles study of N-doped and N-V co-doped anatase TiO2. Acta Physica Sinica, doi: 10.7498/aps.61.207103
    [18] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, doi: 10.7498/aps.58.1901
    [19] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, doi: 10.7498/aps.58.5624
    [20] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, doi: 10.7498/aps.56.1585
Metrics
  • Abstract views:  394
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2025
  • Accepted Date:  21 April 2025
  • Available Online:  29 April 2025

/

返回文章
返回