-
High-entropy alloy (HEA) microfibers exhibit promising prospects in microscale high-tech applications owing to their exceptional mechanical properties and stability. However, the strength-plasticity tradeoff largely hinders their further industrial applications. Heat treatment can optimize the mechanical properties of HEA microfibers. However, it should be noticed that conventional heat treatment (CHT) faces challenges in precisely regulating microstructures within short durations while being prone to grain coarsening that compromises performance. This study employs an electric current treatment (ECT) technique to finely modulate the properties of cold-drawn CoCrFeNi high-entropy alloy microfibers at the microscale (~70 μm diameter), systematically investigating the effects of thermal and athermal effects during ECT on microstructure and mechanical properties via electron back scatter diffraction, transmission electron microscopy, and synchrotron radiation. A recrystallization, nucleation, and growth model for HEA microfibers is established. Compared to CHT, the synergistic effects of electron wind force and Joule heating during ECT significantly accelerate recrystallization kinetics, yielding finer and more homogeneous grains with a great decrease in dislocation density, and finally lead to better mechanical properties. The ECT-processed HEA microfibers achieve a yield strength ranging from 400 to 2033 MPa and a tensile elongation reaching 53%, which are markedly higher than those of CHT samples. This work demonstrates that ECT is effective for optimizing the microstructure and properties of HEA microfibers. Meanwhile, the results obtained here can provide both a theoretical foundation and technical guidance for the fabrication of high-performance metallic microfibers.
-
Keywords:
- High-entropy alloy /
- Microfibers /
- Electric current treatment /
- Microstructure /
- Mechanical properties
-
[1] Chen J X, Xu B, Dai L H, Chen Y 2024 Chin. Sci. Bull. 69 3154 (in Chinese) [陈金玺, 徐彬, 戴兰宏, 陈艳 2024 科学通报 69 3154]
[2] Gao Y K, Zhao J, Zhou J J, Zhou J 2025 Acta Phys. Sinica 74 199 (in Chinese) [高裕昆, 赵洁, 周晶晶, 周静 2025 物理学报 74 199]
[3] Zhang Y, Wu K, Shen S, Zhang Q, Cao W, Liu S 2023 J. Micromech. Microeng. 33 025002
[4] You J M, Kim H, Kim J, Kwon D-S 2021 IEEE Rob. Autom. Lett. 6 7357
[5] Abbas M, Eom H S, Byun J Y, Shin D, Kim S H 2023 J. Cleaner Prod. 418 138044
[6] Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471
[7] Sohrabi M J, Kalhor A, Mirzadeh H, Rodak K, Kim H S 2024 Prog. Mater Sci. 144 101295
[8] Tong Y, Chen D, Han B, Wang J, Feng R, Yang T, Zhao C, Zhao Y L, Guo W, Shimizu Y, Liu C T, Liaw P K, Inoue K, Nagai Y, Hu A, Kai J J 2019 Acta Mater. 165 228
[9] Wang K Y, Cheng Z J, Liu C Y, Yu H P, Ning Z L, Ramasamy P, Eckert J, Sun J F, Huang Y J, Zhang Y M, Ngan A H W 2025 Int. J. Plast. 189 104321
[10] Wang K Y, Cheng Z J, Ning Z L, Yu H P, Ramasamy P, Eckert J, Sun J F, Ngan A H W, Huang Y J. 2025 Rare Metals 44 1332
[11] Li D, Li C, Feng T, Zhang Y, Sha G, Lewandowski J J, Liaw P K, Zhang Y 2017 Acta Mater. 123 285
[12] Ma X, Chen J, Wang X, Xu Y, Xue Y 2019 J. Alloys Compd. 795 45
[13] Liu J P, Chen J X, Liu T W, Li C, Chen Y, Dai L H 2020 Scr. Mater. 181 19
[14] Chen J X, Chen Y, Liu J P, Liu T W, Dai L H 2021 Scr. Mater. 199 113897
[15] Gao X Y, Liu J, Fu W J, Huang Y J, Ning Z L, Zhang Z, Sun J F, Chen W 2023 Mater. Des. 233 112250
[16] Zhou S, Dai C, Hou H, Lu Y, Liaw P K, Zhang Y 2023 Scr. Mater 226 115234
[17] Deng L, Li R, Luo J, Li S, Xie X, Wu S, Zhang W, Liaw P K, Korznikova E A, Zhang Y 2024 Int. J. Plast. 175 103929
[18] Liu X, Wu Y, Zheng B, Bai R, Gao L, Dong Z, Song C, Yu Y, Gao P, Hui X 2024 Small 20 2403371
[19] Yan K, Sun J, Bai J, Liu H, Huang X, Jin Z, Wu Y 2019 Mater. Sci. Eng., A 739 513
[20] Bo L, Gao X Y, Song W J, Ning Z L, Sun J F, Ngan A H W, Huang Y J 2025 Int. J. Plast. 188 104307
[21] Kustra P, Milenin A, Byrska-Wójcik D, Grydin O, Schaper M 2017 J. Mater. Process. Technol. 247 234
[22] Lu Z C, Jiang F C, Hou H L, Liu Y, Cheng Y J, Guo C H 2015 J. Plast. Eng. 22 117 (in Chinese) [陆子川, 姜风春, 侯红亮, 刘郢, 程玉洁, 果春焕 2015 塑性工程学报 22 117]
[23] Jeong K, Jin S W, Kang S G, Park J W, Jeong H J, Hong S T, Cho S H, Kim M J, Han H N 2022 Acta Mater. 232 117925
[24] Wu Z, Xu X, Zhao Y, Yan X, Zhou Y, Wei L, Yu Y 2023 Mater. Sci. Eng., A 863 144536
[25] Li M, Shen Y, Luo K, An Q, Gao P, Xiao P, Zou Y 2023 Nat. Mater. 22 958
[26] Gao X, Liu J, Bo L, Chen W, Sun J, Ning Z, Ngan W, Huang Y 2024 Acta Mater. 277 120203
[27] Liu Y, Ren J, Guan S, Li C, Zhang Y, Muskeri S, Liu Z, Yu D, Chen Y, An K, Cao Y, Liu W, Zhu Y, Chen W, Mukherjee S, Zhu T, Chen W 2023 Acta Mater. 250 118884
[28] HajyAkbary F, Sietsma J, Bottger A J, Santofimia M J 2015 Mater. Sci. Eng., A 639 208
[29] Li Y Z, Huang M X 2020 Acta Metall. Sinica 56 487 (in Chinese) [李亦庄, 黄明欣 2020 金属学报 56 487]
[30] Yang B, Motz C, Rester M, Dehm G 2012 Philos. Mag. 92 3243
[31] Peng S Y, Tian Y Z, Ni Z Y, Lu S, Li S 2024 Int. J. Plast. 182 104129
[32] Liu M, Gong W, Zheng R, Li J, Zhang Z, Gao S, Ma C, Tsuji N 2022 Acta Mater. 226 117629
[33] Ben D D, Yang H J, Dong Y A, Tian Y Z, Sun S J, Meng L X, Duan Q Q, Zhang P, Zhang Z F 2023 Mater. Charact. 195 112557
[34] Qin R S, Zhou B L 1997 Chin. J. Mater. Res. 69 (in Chinese) [秦荣山, 周本濂 1997 材料研究学报 69]
[35] Zhang W, Sui M L, Zhou Y Z, Zhong Y, Li D X 2002 Adv. Eng. Mater. 4 697
[36] Liu Y, Fan J, Zhang H, Jin W, Dong H, Xu B 2015 J. Alloys Compd. 622 229
[37] Zhang X, Li H, Shao G, Gao J, Zhan M 2022 J. Alloys Compd. 898 162762
[38] Li X, Zhu Q, Hong Y, Zheng H, Wang J, Wang J, Zhang Z 2022 Nat. Commun. 13 6503
[39] Cao W D, Sprecher A F, Conrad H 1989 J. Phys. Sci. Instrum. E 22 1026
Metrics
- Abstract views: 50
- PDF Downloads: 1
- Cited By: 0