-
High-entropy alloys have broad application prospects in aviation, aerospace, military and other fields due to their excellent mechanical properties. Temperature is an important external factor affecting the shock response of high-entropy alloys. In this paper, we investigate the effects of temperature on the shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys by using molecular dynamics method. The effects of temperature on the atomic volume and the radial distribution function of CoCrFeMnNi high-entropy alloy are studied. Then, the piston method is used to generate shock waves in the sample to study the shock response of CoCrFeMnNi high-entropy alloy. We observe the evolution of atomic-scale defects during the shock compression by the polyhedral template matching method. The results show that the shock pressure, the shock wave propagation velocity, and the rising of shock-induced temperature all decrease with the initial temperature increasing. For example, when piston velocity Up = 1.5 km/s, the shock pressure at an initial temperature of 1000 K decreases by 6.7% in comparison with that at 1 K. Moreover, the shock Hugoniot elastic limit decreases linearly with the increase of temperature. The Hugoniot Up-Us curve of CoCrFeMnNi HEA in the plastic stage can be linearly fitted by the formula Us = c0 + sUp, where c0 decreases with temperature increasing. As the shock intensity increases, the CoCrFeMnNi high-entropy alloy undergoes complex plastic deformation, including dislocation slip, phase transformation, deformation twinning, and shock-induced amorphization. At relatively high initial temperature, disordered clusters appear inside CoCrFeMnNi HEA, which together with the BCC (body-centered cubic) structure transformed from FCC (face-centered cubic) and disordered structure are significant dislocation nucleation sources. Compared with other elements, Mn element accounts for the largest proportion (25.4%) in disordered cluster. Owing to the large atomic volume and potential energy, large lattice distortion and local stress occur around the Mn-rich element, which makes a dominant contribution to shock-induced plastic deformation. At high temperatures, the contribution of Fe element to plastic deformation is as important as that of Mn element. The research results are conducive to understanding the shock-induced plasticity and deformation mechanisms of CoCrFeMnNi high-entropy alloys in depth.
-
Keywords:
- high-entropy alloys /
- shock response /
- molecular dynamics /
- temperature effects
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar
[2] Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375–377 213Google Scholar
[3] Li Z, Zhao S, Ritchie R O, Meyers M A 2019 Prog. Mater. Sci. 102 296Google Scholar
[4] Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar
[5] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar
[6] Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw P K 2021 Prog. Mater. Sci. 118 100777Google Scholar
[7] 王睿鑫, 唐宇, 李顺, 白书欣 2021 材料导报 35 17001Google Scholar
Wang R X, Tang Y, Li S, Bai S X 2021 Mater. Rep. 35 17001Google Scholar
[8] 李建国, 黄瑞瑞, 张倩, 李晓雁 2020 力学学报 52 333Google Scholar
Li J G, Huang R R, Zhang Q, Li X Y 2020 Chin. J. Theor. Appl. Mech. 52 333Google Scholar
[9] 陈海华, 张先锋, 刘闯, 林琨富, 熊玮, 谈梦婷 2021 爆炸与冲击 41 1Google Scholar
Chen H H, Zhang X F, Liu C, Lin K F, Xiong W 2021 Explo. Shock Waves 41 1Google Scholar
[10] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar
[11] Jiao Z M, Ma S G, Chu M Y, Yang H J, Wang Z H, Zhang Y, Qiao J W 2016 J. Mater. Eng. Perform. 25 451Google Scholar
[12] Kumar N, Ying Q, Nie X, Mishra R S, Tang Z, Liaw P K, Brennan R E, Doherty K J, Cho K C 2015 Mater. Des. 86 598Google Scholar
[13] Qiao Y, Chen Y, Cao F H, Wang H Y, Dai L H 2021 Int. J. Impact Eng. 158 104008Google Scholar
[14] Jiang Z J, He J Y, Wang H Y, Zhang H S, Lu Z P, Dai L H 2016 Mater. Res. Lett. 4 226Google Scholar
[15] Liu X F, Tian Z L, Zhang X F, Chen H H, Liu T W, Chen Y, Wang Y J, Dai L H 2020 Acta Mater. 186 257Google Scholar
[16] Chen H, Zhang X, Xiong W, Liu C, Wei H, Wang H, Dai L 2020 Chin. J. Theor. Appl. Mech. 52 1443Google Scholar
[17] Zhang Z, Zhang H, Tang Y, Zhu L, Ye Y, Li S, Bai S 2017 Mater. Des. 133 435Google Scholar
[18] Zhang T W, Jiao Z M, Wang Z H, Qiao J W 2017 Scr. Mater. 136 15Google Scholar
[19] Wen P, Tao G, Spearot D E, Phillpot S R 2022 J. Appl. Phys. 131 051101Google Scholar
[20] Zhao L, Zong H, Ding X, Lookman T 2021 Acta Mater. 209 116801Google Scholar
[21] Xie Z, Jian W R, Xu S, Beyerlein I J, Zhang X, Wang Z, Yao X 2021 Acta Mater. 221 117380Google Scholar
[22] Jian W R, Xie Z, Xu S, Yao X, Beyerlein I J 2022 Scr. Mater. 209 114379Google Scholar
[23] Thürmer D, Gunkelmann N 2022 J. Appl. Phys. 131 065902Google Scholar
[24] Thürmer D, Zhao S, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M, Gunkelmann N 2022 J. Alloys Compd. 895 162567Google Scholar
[25] Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S, Yuan D 2022 Int. J. Mech. Sci. 226 107373Google Scholar
[26] Singh S K, Parashar A 2022 Comput. Mater. Sci. 209 111402Google Scholar
[27] Huang S, Li W, Lu S, Tian F, Shen J, Holmström E, Vitos L 2015 Scr. Mater. 108 44Google Scholar
[28] Fu J X, Cao C M, Tong W, Hao Y X, Peng L M 2017 Mater. Sci. Eng. , A 690 418Google Scholar
[29] Kawamura M, Asakura M, Okamoto N L, Kishida K, Inui H, George E P 2021 Acta Mater. 203 116454Google Scholar
[30] Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George E P 2015 J. Alloys Compd. 623 348Google Scholar
[31] Laplanche G, Gadaud P, Bärsch C, Demtröder K, Reinhart C, Schreuer J, George E P 2018 J. Alloys Compd. 746 244Google Scholar
[32] Haglund A, Koehler M, Catoor D, George E P, Keppens V 2015 Intermetallics 58 62Google Scholar
[33] Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 npj Comput. Mater. 4 1Google Scholar
[34] Fang Q, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast. 114 161Google Scholar
[35] Alabd Alhafez I, Ruestes C J, Bringa E M, Urbassek H M 2019 J. Alloys Compd. 803 618Google Scholar
[36] Goede A, Preissner R, Frömmel C 1997 J. Comput. Chem. 18 1113Google Scholar
[37] Holian B L, Lomdahl P S 1998 Science 280 2085Google Scholar
[38] Hahn E N, Germann T C, Ravelo R, Hammerberg J E, Meyers M A 2017 Acta Mater. 126 313Google Scholar
[39] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in 't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171Google Scholar
[40] Larsen P M, Schmidt S, Schiotz J 2016 Modell. Simul. Mater. Sci. Eng. 24 055007Google Scholar
[41] Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 15012Google Scholar
[42] Luo G, Huang S, Hu J, Zhu Y, Wang J, Yang G, Zhang R, Sun Y, Zhang J, Shen Q 2022 AIP Adv. 12 055123Google Scholar
[43] Tian X, Cui J, Ma K, Xiang M 2020 Int. J. Heat Mass Transfer 158 120013Google Scholar
[44] Wang Y, Zeng X, Yang X, Xu T 2022 Comput. Mater. Sci. 201 110870Google Scholar
[45] Wen P, Demaske B, Spearot D E, Phillpot S R, Tao G 2021 J. Appl. Phys. 129 165103Google Scholar
[46] Sharma S M, Turneaure S J, Winey J M, Gupta Y M 2020 Phys. Rev. B 102 020103Google Scholar
-
图 9 典型Up时不同初始温度下的结构含量随时间的变化 (a) Up = 0.65 km/s, T = 1 K; (b) Up = 1.0 km/s, T = 1 K; (c) Up = 1.5 km/s, T = 1 K; (d) Up = 0.65 km/s, T = 1000 K; (e) Up = 1.0 km/s, T = 1000 K; (f) Up = 1.5 km/s, T = 1000 K
Figure 9. Atomic fraction of FCC, BCC, HCP and disordered structures as a function of the shocked time at different initial temperatures for typical Up: (a) Up = 0.65 km/s, T = 1 K; (b) Up = 1.0 km/s, T = 1 K; (c) Up = 1.5 km/s, T = 1 K; (d) Up = 0.65 km/s, T = 1000 K; (e) Up = 1.0 km/s, T = 1000 K; (f) Up = 1.5 km/s, T = 1000 K.
-
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar
[2] Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375–377 213Google Scholar
[3] Li Z, Zhao S, Ritchie R O, Meyers M A 2019 Prog. Mater. Sci. 102 296Google Scholar
[4] Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar
[5] Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar
[6] Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw P K 2021 Prog. Mater. Sci. 118 100777Google Scholar
[7] 王睿鑫, 唐宇, 李顺, 白书欣 2021 材料导报 35 17001Google Scholar
Wang R X, Tang Y, Li S, Bai S X 2021 Mater. Rep. 35 17001Google Scholar
[8] 李建国, 黄瑞瑞, 张倩, 李晓雁 2020 力学学报 52 333Google Scholar
Li J G, Huang R R, Zhang Q, Li X Y 2020 Chin. J. Theor. Appl. Mech. 52 333Google Scholar
[9] 陈海华, 张先锋, 刘闯, 林琨富, 熊玮, 谈梦婷 2021 爆炸与冲击 41 1Google Scholar
Chen H H, Zhang X F, Liu C, Lin K F, Xiong W 2021 Explo. Shock Waves 41 1Google Scholar
[10] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar
[11] Jiao Z M, Ma S G, Chu M Y, Yang H J, Wang Z H, Zhang Y, Qiao J W 2016 J. Mater. Eng. Perform. 25 451Google Scholar
[12] Kumar N, Ying Q, Nie X, Mishra R S, Tang Z, Liaw P K, Brennan R E, Doherty K J, Cho K C 2015 Mater. Des. 86 598Google Scholar
[13] Qiao Y, Chen Y, Cao F H, Wang H Y, Dai L H 2021 Int. J. Impact Eng. 158 104008Google Scholar
[14] Jiang Z J, He J Y, Wang H Y, Zhang H S, Lu Z P, Dai L H 2016 Mater. Res. Lett. 4 226Google Scholar
[15] Liu X F, Tian Z L, Zhang X F, Chen H H, Liu T W, Chen Y, Wang Y J, Dai L H 2020 Acta Mater. 186 257Google Scholar
[16] Chen H, Zhang X, Xiong W, Liu C, Wei H, Wang H, Dai L 2020 Chin. J. Theor. Appl. Mech. 52 1443Google Scholar
[17] Zhang Z, Zhang H, Tang Y, Zhu L, Ye Y, Li S, Bai S 2017 Mater. Des. 133 435Google Scholar
[18] Zhang T W, Jiao Z M, Wang Z H, Qiao J W 2017 Scr. Mater. 136 15Google Scholar
[19] Wen P, Tao G, Spearot D E, Phillpot S R 2022 J. Appl. Phys. 131 051101Google Scholar
[20] Zhao L, Zong H, Ding X, Lookman T 2021 Acta Mater. 209 116801Google Scholar
[21] Xie Z, Jian W R, Xu S, Beyerlein I J, Zhang X, Wang Z, Yao X 2021 Acta Mater. 221 117380Google Scholar
[22] Jian W R, Xie Z, Xu S, Yao X, Beyerlein I J 2022 Scr. Mater. 209 114379Google Scholar
[23] Thürmer D, Gunkelmann N 2022 J. Appl. Phys. 131 065902Google Scholar
[24] Thürmer D, Zhao S, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M, Gunkelmann N 2022 J. Alloys Compd. 895 162567Google Scholar
[25] Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S, Yuan D 2022 Int. J. Mech. Sci. 226 107373Google Scholar
[26] Singh S K, Parashar A 2022 Comput. Mater. Sci. 209 111402Google Scholar
[27] Huang S, Li W, Lu S, Tian F, Shen J, Holmström E, Vitos L 2015 Scr. Mater. 108 44Google Scholar
[28] Fu J X, Cao C M, Tong W, Hao Y X, Peng L M 2017 Mater. Sci. Eng. , A 690 418Google Scholar
[29] Kawamura M, Asakura M, Okamoto N L, Kishida K, Inui H, George E P 2021 Acta Mater. 203 116454Google Scholar
[30] Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George E P 2015 J. Alloys Compd. 623 348Google Scholar
[31] Laplanche G, Gadaud P, Bärsch C, Demtröder K, Reinhart C, Schreuer J, George E P 2018 J. Alloys Compd. 746 244Google Scholar
[32] Haglund A, Koehler M, Catoor D, George E P, Keppens V 2015 Intermetallics 58 62Google Scholar
[33] Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 npj Comput. Mater. 4 1Google Scholar
[34] Fang Q, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast. 114 161Google Scholar
[35] Alabd Alhafez I, Ruestes C J, Bringa E M, Urbassek H M 2019 J. Alloys Compd. 803 618Google Scholar
[36] Goede A, Preissner R, Frömmel C 1997 J. Comput. Chem. 18 1113Google Scholar
[37] Holian B L, Lomdahl P S 1998 Science 280 2085Google Scholar
[38] Hahn E N, Germann T C, Ravelo R, Hammerberg J E, Meyers M A 2017 Acta Mater. 126 313Google Scholar
[39] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in 't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171Google Scholar
[40] Larsen P M, Schmidt S, Schiotz J 2016 Modell. Simul. Mater. Sci. Eng. 24 055007Google Scholar
[41] Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 15012Google Scholar
[42] Luo G, Huang S, Hu J, Zhu Y, Wang J, Yang G, Zhang R, Sun Y, Zhang J, Shen Q 2022 AIP Adv. 12 055123Google Scholar
[43] Tian X, Cui J, Ma K, Xiang M 2020 Int. J. Heat Mass Transfer 158 120013Google Scholar
[44] Wang Y, Zeng X, Yang X, Xu T 2022 Comput. Mater. Sci. 201 110870Google Scholar
[45] Wen P, Demaske B, Spearot D E, Phillpot S R, Tao G 2021 J. Appl. Phys. 129 165103Google Scholar
[46] Sharma S M, Turneaure S J, Winey J M, Gupta Y M 2020 Phys. Rev. B 102 020103Google Scholar
Catalog
Metrics
- Abstract views: 5383
- PDF Downloads: 125
- Cited By: 0