Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of effect of nickel transition layer on deposition of carbon atoms and graphene growth on cemented carbide surfaces

Yu Xin-Xiu Li Duo-Sheng Ye Yin Lang Wen-Chang Liu Jun-Hong Chen Jing-Song Yu Shuang-Shuang

Citation:

Molecular dynamics simulation of effect of nickel transition layer on deposition of carbon atoms and graphene growth on cemented carbide surfaces

Yu Xin-Xiu, Li Duo-Sheng, Ye Yin, Lang Wen-Chang, Liu Jun-Hong, Chen Jing-Song, Yu Shuang-Shuang
cstr: 32037.14.aps.73.20241170
PDF
HTML
Get Citation
  • WC-Co cemented carbide has excellent cutting performance, which is a potential tool material. But when it is used as cutting ultra-high strength and high hardness materials, the machining accuracy and service life of the tool are significantly reduced. Graphene is a potential coating material for cemented carbide cutting tools due to its excellent mechanical properties. In this work, molecular dynamics (MD) is used to simulate the deposition of nickel transition layer and high-temperature catalytic growth of graphene in cemented carbide. The Ni and C atomic deposition process and the high temperature annealing process are simulated, and a combination of potential functions is adopted to continuously simulate these two deposition processes. The effect of deposition temperature and the effect of incident energy on the growth of graphene are analyzed. The healing mechanism of nickel-based catalytic defective graphene under high-temperature annealing is explored in detail.The simulation results show that at the deposition temperature of 1100 K, the coverage of graphene is higher and the microstructure is flat. The higher temperature helps to provide enough kinetic energy for carbon atoms to overcome the potential energy barrier of nucleation, thereby promoting the migration and rearrangement of carbon atoms and reducing graphene growth defects. Too high a temperature will lead to continuous accumulation of carbon atoms on the deposited carbon rings, forming a multilayered reticulation and disordered structure, which will cause a low coverage rate of graphene. The increase of incident energy helps to reduce the vacancy defects in the film, but excessive energy leads to poor continuity of the film, agglomeration, the more obvious stacking effect of carbon atoms and the tendency of epitaxial growth. When the incident energy is 1 eV, the surface roughness of the film is lower, and more monolayer graphene can be grown. During annealing at 1100 K, the carbon film dissolves and nucleates simultaneously in the Ni transition layer, and the nickel transition layer catalyzes the repair of defective graphene. The graphene film becomes more uniform, and the number of hexagonal carbon rings increases. Appropriate high-temperature annealing can help to repair and reconstruct defective carbon rings and rearrange carbon chains into rings. Therefore, when the deposition temperature is 1100 K and the incident energy is 1 eV, graphene can be deposited and annealed to grow a high-quality graphene coatings. The simulation results provide the reference for preparing the cemented carbide graphene coated tools.
      Corresponding author: Li Duo-Sheng, duosheng.li@nchu.edu.cn ; Chen Jing-Song, cjslaser@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51562027, 12062016), the Key Research and Development Program Key Projects of Jiangxi Province, China (Grant No. 20201BBE51001), and the Key Research and Development Program of Jiangsu Province (Industrial Prospects and Key Core Technologies), China (Grant No. BE2021055).
    [1]

    储开宇 2011 机床与液压 39 117Google Scholar

    Chu K Y 2011 Machine Tools Hydraul. 39 117Google Scholar

    [2]

    Tian Q Q, Huang N, Yang B, Zhuang H, Wang C, Zhai Z F, Li J H, Jia X Y, Liu L S, Jiang X 2017 J. Mater. Sci. Technol. 33 1097Google Scholar

    [3]

    Bouzakis K D, Michailidis N, Skordaris G, Bouzakis E, Biermann D, M'Saoubi R 2012 CIRP Ann. 61 703Google Scholar

    [4]

    Bobzin K, Brögelmann T, Kalscheuer C, Naderi M 2016 Surf. Coat. Technol. 308 349Google Scholar

    [5]

    Konstantiniuk F, Tkadletz M, Kainz C, Czettl C, Schalk N 2021 Surf. Coat. Technol. 410 126959Google Scholar

    [6]

    Wei Q P, Yu Z M, Ashfold M N, Chen Z, Wang L, Ma L 2010 Surf. Coat. Technol. 205 158Google Scholar

    [7]

    吴张欣 2023 硕士学位论文 (上海: 华东理工大学)

    Wu Z X 2023 M.S. Thesis (Shanghai: East China University of Science and Technology

    [8]

    Kabir M S, Munroe P, Zhou Z, Xie Z 2017 Surf. Coat. Technol. 309 779Google Scholar

    [9]

    Contreras E, Galindez Y, Rodas M A, Bejarano G, Gómez M A 2017 Surf. Coat. Technol. 332 214Google Scholar

    [10]

    Suresh S 2001 Science 292 2447Google Scholar

    [11]

    Lu K 2014 Science 345 1455Google Scholar

    [12]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [13]

    林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qinghua Qin, 邹伟 2018 物理学报 67 246802Google Scholar

    Lin K X, Li D S, Ye Y, Jiang W G, Ye Z G 2018 Acta Phys. Sin. 67 246802Google Scholar

    [14]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 90Google Scholar

    [15]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [16]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [17]

    Zhang Z, Du Y, Huang S, Meng F, Chen L, Xie W, Chang K, Zhang C, Lu Y, Lin C, Li S, Parkin I P, Guo D 2020 Adv. Sci. 7 1903239Google Scholar

    [18]

    Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Li J 2016 Nature 539 541Google Scholar

    [19]

    Fan S Y, Chen Y N, Xiao S, Shi K J, Meng X Y, Lin S S, Su F H, Su Y F, Chu P K 2024 Carbon 216 118561Google Scholar

    [20]

    Min F L, Yu S B, Sheng W A N G, Yao Z H, Noudem J G, Liu S J, Zhang J F 2022 Trans. Nonferrous Met. Soc. China 32 1935Google Scholar

    [21]

    Garlow J A, Barrett L K, Wu L, Kisslinger K, Zhu Y, Pulecio J F 2016 Sci. Rep. 6 19804Google Scholar

    [22]

    Orofeo C M, Ago H, Hu B, Tsuji M 2011 Nano Res. 4 531Google Scholar

    [23]

    Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus M S, Schaefer J A, Kong J 2009 Nano Res. 2 509Google Scholar

    [24]

    Seo J H, Lee H W, Kim J K, Kim D G, Kang J W, Kang M S, Kim C S 2012 Curr. Appl. Phys. 12 S131Google Scholar

    [25]

    Li X S, Cai W W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [26]

    Li X, Li H, Lee K R, Wang A 2020 Appl. Surf. Sci. 529 147042Google Scholar

    [27]

    王泽, 李国禄, 王海斗, 徐滨士, 康嘉杰 材料导报 28 91

    Wang Z, Li G L, Wang H D, Xu B S, Kang J J 2014 Mater. Rev. 28 91

    [28]

    Kato T, Nagai T, Sasajima Y, Onuki J 2010 Mater. Trans. 51 664Google Scholar

    [29]

    丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫 2023 物理学报 72 068703Google Scholar

    Ding Y Z, Ye Y, Li D S, Xu F, Lang W C, Liu J H, Wen X 2023 Acta Phys. Sin. 72 068703Google Scholar

    [30]

    Backholm M, Foss M, Nordlund K 2013 Appl. Surf. Sci. 268 270Google Scholar

    [31]

    Shibuta Y, Elliott J A 2009 Chem. Phys. Lett. 472 200Google Scholar

    [32]

    Juslin N, Erhart P, Träskelin P, Nord J, Henriksson K O E, Nordlund K, Salonen E, Albe K 2005 J. Appl. Phys. 98 123520Google Scholar

    [33]

    Béland L K, Lu C, Osetskiy Y N, Samolyuk G D, Caro A, Wang L, Stoller R E 2016 J. Appl. Phys. 119 085901Google Scholar

    [34]

    Morse P M 1929 Phys. Rev. 34 57Google Scholar

    [35]

    冯艳, 段海明 2011 原子与分子物理学报 28 251Google Scholar

    Feng Y, Duan H M 2011 J. At. Mol. Phys. 28 251Google Scholar

    [36]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [37]

    Jones J E 1924 Proc. Roy. Soc. A 106 463

    [38]

    Cao Q, Chen Y J, Shao W, Ma X T, Zheng C, Cui Z, Liu Y, Yu B 2020 J. Mol. Liq. 319 114218Google Scholar

    [39]

    王涛 2010 硕士学位论文 (湘潭: 湘潭大学)

    Wang T 2010 M. S. Thesis ( Xiangtan: Xiangtan University

    [40]

    Mueller J E, Van Duin A C, Goddard III W A 2010 J. Phys. Chem. C 114 4939Google Scholar

    [41]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026Google Scholar

    [42]

    Pagon A M, Partridge J G, Hubbard P, Taylor M B, McCulloch D G, Doyle E D, Li G 2010 Surf. Coat. Technol. 204 3552Google Scholar

    [43]

    王璐, 高峻峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [44]

    戴达煌 2008 薄膜与涂层现代表面技术(长沙: 中南大学出版社) 第411页

    Dai D H 2008 Thin Films and Coatings Modern Surface Technology (Changsha: Central South University Press) p411

    [45]

    Chen S D, Bai Q S, Wang H F, Dou Y H, Guo W 2022 Physics E 144 115465Google Scholar

    [46]

    Chen S, Xiong W, Zhou Y S, Lu Y F, Zeng X C 2016 Nanoscale 8 9746Google Scholar

    [47]

    Rut’kov E V, Gall N R 2011 Equilibrium Nucleation, Growth, and Thermal Stability of Graphene on Solids (Russia St. Petersburg: inTech) pp209–292

  • 图 1  硬质合金表面沉积模型 (a) Ni原子; (b) C原子

    Figure 1.  Carbide surface deposition model: (a) Ni atoms; (b) C atoms.

    图 2  石墨烯高温退火的模拟模型

    Figure 2.  Simulation model for high temperature annealing of graphene.

    图 3  不同温度下石墨烯生长的俯视图和主视图 (a) 600 K时的俯视图; (b) 900 K时的俯视图; (c) 1100 K时的俯视图; (d) 1400 K时的俯视图; (e) 600 K时的主视图; (f) 900 K时的主视图; (g) 1100 K时的主视图; (i) 1400 K时的主视图

    Figure 3.  Top and main views of graphene growth at different temperatures: (a) Top view at 600 K; (b) top view at 900 K; (c) top view at 1100 K; (d) top view at 1400 K; (e) main view at 600 K; (f) main view at 900 K; (g) main view at 1100 K; (i) main view at 1400 K.

    图 4  不同温度下石墨烯表面的碳环数量和粗糙度

    Figure 4.  Number of carbon rings and roughness of graphene surface at different temperatures.

    图 5  不同入射能量下石墨烯生长的俯视图和主视图 (a) 0.1 eV时的俯视图; (b) 1 eV时的俯视图; (c) 5 eV时的俯视图; (d) 10 eV时的俯视图; (e) 0.1 eV时的主视图; (f) 1 eV时的主视图; (g) 5 eV时的主视图; (h) 10 eV时的主视图

    Figure 5.  Top and main views of graphene growth at different incident energies: (a) Top view at 0.1 eV; (b) top view at 1 eV; (c) top view at 5 eV; (d) top view at 10 eV; (e) main view at 0.1 eV; (f) main view at 1 eV; (g) main view at 5 eV; (h) main view at 10 eV.

    图 6  不同入射能量下石墨烯表面的碳环数量和粗糙度

    Figure 6.  Number of carbon rings and roughness of graphene surface at different incident energies.

    图 7  不同时间下的石墨烯沉积过程 (a) 20 ps; (b) 80 ps; (c) 100 ps; (d) 121 ps; (e) 160 ps; (f) 230 ps; (g) 300 ps; (h) 380 ps; (i) 450 ps

    Figure 7.  Graphene deposition process at different times: (a) 20 ps; (b) 80 ps; (c) 100 ps; (d) 121 ps; (e) 160 ps; (f) 230 ps; (g) 300 ps; (h) 380 ps; (i) 450 ps.

    图 8  在沉积温度1100 K、入射能量1 eV条件下, 不同沉积时间的C-C径向分布函数

    Figure 8.  C-C radial distribution function corresponding to different deposition times at deposition temperature 1100 K and incident energy 1 eV.

    图 9  石墨烯薄膜高温退火形貌图 (a), (b) 300 K, 0 ps; (c) 1100 K, 12 ps; (d) 1100 K, 800 ps

    Figure 9.  High temperature annealing topography of graphene film: (a), (b) 300 K, 0 ps; (c) 1100 K, 12 ps; (d) 1100 K, 800 ps.

    图 10  不同时间的石墨烯涂层高温退火模拟的主视图和俯视图 (a), (b), (c), (d), (i), (j), (k), (l) 主视图; (e), (f), (g), (h), (m), (n), (o), (p) 俯视图

    Figure 10.  Main and top views of high-temperature annealing simulations of graphene coatings at different times: (a), (b), (c), (d), (i), (j), (k), (l) Main view; (e), (f), (g), (h), (m), (n), (o), (p) top view.

    图 11  1100 K退火条件下, 体系中原子的MSD随时间的变化 (a) Ni原子; (b) C原子

    Figure 11.  MSD of atoms in the system as a function of time at 1100 K annealing conditions: (a) Ni atoms; (b) C atoms.

    表 1  WC与Co原子之间的Morse势函数参数[35]

    Table 1.  Parameters of Morse potential function between WC and Co atoms[35].

    Atom pair$ {D}_{{\mathrm{e}}} $/eV$ \alpha $/Å–1$ {r}_{0} $/Å
    W-Co0.09825.140.0872
    C-Co0.111419.7250.1743
    DownLoad: CSV

    表 2  WC与过渡层Ni、过渡层Ni和基底硬质合金各元素及沉积碳原子之间的L-J参数

    Table 2.  L-J parameters between WC and transition layer Ni, transition layer Ni and base carbide and each element of deposited carbon atoms.

    Atom pair$ \varepsilon $/eV$ \sigma $/Å
    W-Ni0.074492.4180
    C-Ni0.04872.9645
    W-C0.00733.1411
    C-C0.00503.8510
    Co-C0.00173.3257
    Ni-C0.04872.9645
    DownLoad: CSV
  • [1]

    储开宇 2011 机床与液压 39 117Google Scholar

    Chu K Y 2011 Machine Tools Hydraul. 39 117Google Scholar

    [2]

    Tian Q Q, Huang N, Yang B, Zhuang H, Wang C, Zhai Z F, Li J H, Jia X Y, Liu L S, Jiang X 2017 J. Mater. Sci. Technol. 33 1097Google Scholar

    [3]

    Bouzakis K D, Michailidis N, Skordaris G, Bouzakis E, Biermann D, M'Saoubi R 2012 CIRP Ann. 61 703Google Scholar

    [4]

    Bobzin K, Brögelmann T, Kalscheuer C, Naderi M 2016 Surf. Coat. Technol. 308 349Google Scholar

    [5]

    Konstantiniuk F, Tkadletz M, Kainz C, Czettl C, Schalk N 2021 Surf. Coat. Technol. 410 126959Google Scholar

    [6]

    Wei Q P, Yu Z M, Ashfold M N, Chen Z, Wang L, Ma L 2010 Surf. Coat. Technol. 205 158Google Scholar

    [7]

    吴张欣 2023 硕士学位论文 (上海: 华东理工大学)

    Wu Z X 2023 M.S. Thesis (Shanghai: East China University of Science and Technology

    [8]

    Kabir M S, Munroe P, Zhou Z, Xie Z 2017 Surf. Coat. Technol. 309 779Google Scholar

    [9]

    Contreras E, Galindez Y, Rodas M A, Bejarano G, Gómez M A 2017 Surf. Coat. Technol. 332 214Google Scholar

    [10]

    Suresh S 2001 Science 292 2447Google Scholar

    [11]

    Lu K 2014 Science 345 1455Google Scholar

    [12]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [13]

    林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qinghua Qin, 邹伟 2018 物理学报 67 246802Google Scholar

    Lin K X, Li D S, Ye Y, Jiang W G, Ye Z G 2018 Acta Phys. Sin. 67 246802Google Scholar

    [14]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 90Google Scholar

    [15]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [16]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [17]

    Zhang Z, Du Y, Huang S, Meng F, Chen L, Xie W, Chang K, Zhang C, Lu Y, Lin C, Li S, Parkin I P, Guo D 2020 Adv. Sci. 7 1903239Google Scholar

    [18]

    Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Li J 2016 Nature 539 541Google Scholar

    [19]

    Fan S Y, Chen Y N, Xiao S, Shi K J, Meng X Y, Lin S S, Su F H, Su Y F, Chu P K 2024 Carbon 216 118561Google Scholar

    [20]

    Min F L, Yu S B, Sheng W A N G, Yao Z H, Noudem J G, Liu S J, Zhang J F 2022 Trans. Nonferrous Met. Soc. China 32 1935Google Scholar

    [21]

    Garlow J A, Barrett L K, Wu L, Kisslinger K, Zhu Y, Pulecio J F 2016 Sci. Rep. 6 19804Google Scholar

    [22]

    Orofeo C M, Ago H, Hu B, Tsuji M 2011 Nano Res. 4 531Google Scholar

    [23]

    Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus M S, Schaefer J A, Kong J 2009 Nano Res. 2 509Google Scholar

    [24]

    Seo J H, Lee H W, Kim J K, Kim D G, Kang J W, Kang M S, Kim C S 2012 Curr. Appl. Phys. 12 S131Google Scholar

    [25]

    Li X S, Cai W W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [26]

    Li X, Li H, Lee K R, Wang A 2020 Appl. Surf. Sci. 529 147042Google Scholar

    [27]

    王泽, 李国禄, 王海斗, 徐滨士, 康嘉杰 材料导报 28 91

    Wang Z, Li G L, Wang H D, Xu B S, Kang J J 2014 Mater. Rev. 28 91

    [28]

    Kato T, Nagai T, Sasajima Y, Onuki J 2010 Mater. Trans. 51 664Google Scholar

    [29]

    丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫 2023 物理学报 72 068703Google Scholar

    Ding Y Z, Ye Y, Li D S, Xu F, Lang W C, Liu J H, Wen X 2023 Acta Phys. Sin. 72 068703Google Scholar

    [30]

    Backholm M, Foss M, Nordlund K 2013 Appl. Surf. Sci. 268 270Google Scholar

    [31]

    Shibuta Y, Elliott J A 2009 Chem. Phys. Lett. 472 200Google Scholar

    [32]

    Juslin N, Erhart P, Träskelin P, Nord J, Henriksson K O E, Nordlund K, Salonen E, Albe K 2005 J. Appl. Phys. 98 123520Google Scholar

    [33]

    Béland L K, Lu C, Osetskiy Y N, Samolyuk G D, Caro A, Wang L, Stoller R E 2016 J. Appl. Phys. 119 085901Google Scholar

    [34]

    Morse P M 1929 Phys. Rev. 34 57Google Scholar

    [35]

    冯艳, 段海明 2011 原子与分子物理学报 28 251Google Scholar

    Feng Y, Duan H M 2011 J. At. Mol. Phys. 28 251Google Scholar

    [36]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [37]

    Jones J E 1924 Proc. Roy. Soc. A 106 463

    [38]

    Cao Q, Chen Y J, Shao W, Ma X T, Zheng C, Cui Z, Liu Y, Yu B 2020 J. Mol. Liq. 319 114218Google Scholar

    [39]

    王涛 2010 硕士学位论文 (湘潭: 湘潭大学)

    Wang T 2010 M. S. Thesis ( Xiangtan: Xiangtan University

    [40]

    Mueller J E, Van Duin A C, Goddard III W A 2010 J. Phys. Chem. C 114 4939Google Scholar

    [41]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026Google Scholar

    [42]

    Pagon A M, Partridge J G, Hubbard P, Taylor M B, McCulloch D G, Doyle E D, Li G 2010 Surf. Coat. Technol. 204 3552Google Scholar

    [43]

    王璐, 高峻峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [44]

    戴达煌 2008 薄膜与涂层现代表面技术(长沙: 中南大学出版社) 第411页

    Dai D H 2008 Thin Films and Coatings Modern Surface Technology (Changsha: Central South University Press) p411

    [45]

    Chen S D, Bai Q S, Wang H F, Dou Y H, Guo W 2022 Physics E 144 115465Google Scholar

    [46]

    Chen S, Xiong W, Zhou Y S, Lu Y F, Zeng X C 2016 Nanoscale 8 9746Google Scholar

    [47]

    Rut’kov E V, Gall N R 2011 Equilibrium Nucleation, Growth, and Thermal Stability of Graphene on Solids (Russia St. Petersburg: inTech) pp209–292

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] Zhuo Jun-Tian, Lin Ming-Hao, Zhang Qi-Yan, Huang Shuang-Wu. Design, fabrication, and high-temperature dielectric energy storage performance of thermoplastic polyimide/aluminum oxide sandwich-structured flexible dielectric films. Acta Physica Sinica, 2024, 73(17): 177701. doi: 10.7498/aps.73.20240838
    [3] Ding Ye-Zhang, Ye Yin, Li Duo-Sheng, Xu Feng, Lang Wen-Chang, Liu Jun-Hong, Wen Xin. Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides. Acta Physica Sinica, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [4] Ming Zhi-Fei, Song Hai-Yang, An Min-Rong. Mechanical behavior of graphene magnesium matrix composites based on molecular dynamics simulation. Acta Physica Sinica, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [5] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [6] Chen Shan-Deng, Bai Qing-Shun, Dou Yu-Hao, Guo Wan-Min, Wang Hong-Fei, Du Yun-Long. Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary. Acta Physica Sinica, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [7] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Zhang Ting-Ting, Liu Yang, Hu Zhen-Yang, Tang Xiao-Jie. Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Acta Physica Sinica, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [8] Wang Yan-Qing, Li Jia-Hao, Peng Yong, Zhao You-Hong, Bai Li-Chun. Current-carrying friction behavior of graphene with intervention of interfacial current. Acta Physica Sinica, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [9] Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo. Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [10] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [11] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [12] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [13] Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure. Acta Physica Sinica, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [14] Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Characteristics of interaction between single-layer graphene on copper substrate and groove. Acta Physica Sinica, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [15] Han Tong-Wei, Li Pan-Pan. Investigation on the large tensile deformation and mechanical behaviors of graphene kirigami. Acta Physica Sinica, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [16] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [17] Xu Zhi-Cheng, Zhong Wei-Rong. Transient kinetics of graphene bombarded by fullerene. Acta Physica Sinica, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [18] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [19] Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [20] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
Metrics
  • Abstract views:  415
  • PDF Downloads:  27
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2024
  • Accepted Date:  26 October 2024
  • Available Online:  06 November 2024
  • Published Online:  05 December 2024

/

返回文章
返回