Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design, fabrication, and high-temperature dielectric energy storage performance of thermoplastic polyimide/aluminum oxide sandwich-structured flexible dielectric films

Zhuo Jun-Tian Lin Ming-Hao Zhang Qi-Yan Huang Shuang-Wu

Citation:

Design, fabrication, and high-temperature dielectric energy storage performance of thermoplastic polyimide/aluminum oxide sandwich-structured flexible dielectric films

Zhuo Jun-Tian, Lin Ming-Hao, Zhang Qi-Yan, Huang Shuang-Wu
PDF
HTML
Get Citation
  • Dielectric capacitors are essential components in advanced electronic and power systems due to their high power densities, fast charge-discharge rates, low losses, and excellent cycling stabilities. Polymer dielectrics, such as biaxially oriented polypropylene (BOPP), are preferred dielectric materials for high-voltage capacitors because of their high breakdown strength, flexibility, and easy processing. However, their relatively low thermal stability limits their applications in high-temperature environments, such as in electric vehicles and photovoltaic power generation systems. In this study, sandwich-structured dielectric films are prepared by using physical vapor deposition (PVD) to deposit aluminum oxide (Al2O3) layers onto thermoplastic polyimide (TPI) films to achieve high capacitive energy storage at high temperatures. The TPI films are chosen for their high glass transition temperature (Tg), while Al2O3 layers are deposited to enhance the Schottky barrier, thereby suppressing electrode charge injection, reducing leakage current, and improving breakdown strength at high temperatures. Various characterization techniques are employed to assess the microstructure, dielectric properties, and energy storage performance of the prepared Al2O3/TPI/Al2O3 sandwich-structured films. The results demonstrate that the Al2O3 coating exhibits excellent interfacial adhesion with TPI films, successfully inhibiting charge injection and thereby reducing leakage current. For instance, at 150 °C and 250 MV/m, the leakage current density of TPI film is 3.19×10–7 A/cm², whereas for Al2O3/TPI/Al2O3 sandwich-structured film, its leakage current density is 2.77×10–8 A/cm², a decrease of one order of magnitude. The suppression of charge injection and reduction of leakage current contribute to outstanding discharge energy density (Ud) and charge-discharge efficiency (η) at high temperatures. Specifically, at high temperatures of 150 and 200 °C, the Ud reaches 4.06 and 2.72 J/cm³, respectively, with η > 90%, i.e. increasing 98.0% and 349.4% compared with those of pure TPI films. Furthermore, the PVD process used for fabricating these sandwich-structured films is highly compatible with existing methods of producing metal electrodes in capacitors, offering significant advantages in production efficiency and cost control. This study suggests that the Al2O3/TPI/Al2O3 sandwich-structured films, prepared by using the PVD process and exhibiting exceptional high-temperature capacitive energy storage performance, are highly promising for applications in environments with high temperatures and high electric fields.
      Corresponding author: Zhang Qi-Yan, zhangqy15@tsinghua.org.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 52203096) and the Shenzhen Science and Technology Innovation Program, China (Grant Nos. RCBS20221008093110036, ZDSYS20220527171402005).
    [1]

    查俊伟, 查磊军, 郑明胜 2023 物理学报 72 018401Google Scholar

    Zha J W, Zha L J, Zheng M S 2023 Acta Phys. Sin. 72 018401Google Scholar

    [2]

    Zhang M, Lan S, Yang B B, Pan H, Liu Y Q, Zhang Q H, Qi J L, Chen D, Su H, Yi D, Yang Y Y, Wei R, Cai H D, Han H J, Gu L, Nan C W, Lin Y H 2024 Science 384 185Google Scholar

    [3]

    Luo H, Wang F, Guo R, Zhang D, He G H, Chen S, Wang Q 2022 Adv. Sci. 9 2202438Google Scholar

    [4]

    Chen J, Pei Z T, Chai B, Jiang P K, Ma L, Zhu L, Huang X Y 2023 Adv. Mater. 2308670Google Scholar

    [5]

    Ho J, Jow T R 2012 IEEE Trans. Dielect. Electr. Insul. 19 990Google Scholar

    [6]

    Zhang Q, Chen X, Zhang B, Zhang T, Lu W, Chen Z, Liu Z, Kim S H, Donovan B, Warzoha R J, Gomez E D, Bernholc J, Zhang Q M 2021 Matter 4 2448Google Scholar

    [7]

    Li Q, Yao F Z, Liu Y, Zhang G, Wang H, Wang Q 2018 Annu. Rev. Mater. Res. 48 219Google Scholar

    [8]

    Ho J S, Greenbaum S G 2018 ACS Appl. Mater. Interfaces 10 29189Google Scholar

    [9]

    Zhang Q, Chen X, Zhang T, Zhang Q M 2019 Nano Energy 64 103916Google Scholar

    [10]

    Zhang Q, Li D, Zhong Y, Hu Y, Huang S, Dong S, Zhang Q 2024 Energy Environ. Sci. In PressGoogle Scholar

    [11]

    Wang R, Zhu Y, Fu J, Yang M, Ran Z, Li J, Li M, Hu J, He J, Li Q 2023 Nat. Commun. 14 2406Google Scholar

    [12]

    Zhang T, Chen X, Thakur Y, Lu B, Zhang Q, Runt J, Zhang Q M 2020 Sci. Adv. 6 eaax6622Google Scholar

    [13]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 物理学报 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [14]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar

    [15]

    Pei J, Yin L, Zhong S, Dang Z 2023 Adv. Mater. 35 2203623Google Scholar

    [16]

    Wu F, Xie A, Jiang L, Mukherjee S, Gao H, Shi J, Wu J, Shang H, Sheng Z, Guo R, Wu L, Liu J, Suss M E, Terzis A, Li W, Zeng H 2023 Adv. Funct. Mater. 33 2212861Google Scholar

    [17]

    Min D, Ji M, Li P, Gao Z, Liu W, Li S, Liu J 2021 IEEE Trans. Dielectr. Electr. Insul. 28 2011Google Scholar

    [18]

    Li H, Ai D, Ren L, Yao B, Han Z, Shen Z, Wang J, Chen L, Wang Q 2019 Adv. Mater. 31 1900875Google Scholar

    [19]

    Li Q, Cheng S 2020 IEEE Electr. Insul. Mag. 36 7Google Scholar

    [20]

    Rui G C, Bernholc J, Zhang S H, Zhang Q M 2024 Adv. Mater. 2311739Google Scholar

    [21]

    Yuan C, Zhou Y, Zhu Y, Liang J, Wang S, Peng S, Li Y, Cheng S, Yang M, Hu J, Zhang B, Zeng R, He J, Li Q 2020 Nat. Commun. 11 3919Google Scholar

    [22]

    Zhou Y, Zhu Y, Xu W, Wang Q 2023 Adv. Energy Mater. 13 2203961Google Scholar

    [23]

    Li Z, Zhang Y, Pan Z, Fan X, Li P, Chen W, Liu J, Li W 2024 ACS Appl. Mater. Interfaces 16 10756Google Scholar

    [24]

    Ai D, Li H, Zhou Y, Ren L, Han Z, Yao B, Zhou W, Zhao L, Xu J, Wang Q 2020 Adv. Energy Mater. 10 1903881Google Scholar

    [25]

    Tan D Q 2020 Adv. Funct. Mater. 30 1808567Google Scholar

    [26]

    Zhang T, Sun H, Yin C, Jung Y H, Min S, Zhang Y, Zhang C, Chen Q, Lee K J, Chi Q 2023 Prog. Mater. Sci. 140 101207Google Scholar

    [27]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [28]

    Li H, Chang B S, Kim H, Xie Z, Lainé A, Ma L, Xu T, Yang C, Kwon J, Shelton S W, Klivansky L M, Altoé V, Gao B, Schwartzberg A M, Peng Z, Ritchie R O, Xu T, Salmeron M, Ruiz R, Sharpless K B, Wu P, Liu Y 2023 Joule 7 95Google Scholar

    [29]

    Cheng S, Zhou Y, Hu J, He J, Li Q 2020 IEEE Trans. Dielectr. Electr. Insul. 27 498Google Scholar

    [30]

    Cheng S, Zhou Y, Li Y S, Yuan C, Yang M C, Fu J, Hu J, He J L 2021 Energy Storage Mater. 42 445Google Scholar

    [31]

    Wu X, Song G, Zhang X, Lin X, Ivry Y, Tan D Q 2022 Chem. Eng. J. 450 137940Google Scholar

    [32]

    Azizi A, Gadinski M R, Li Q, AlSaud M A, Wang J, Wang Y, Wang B, Liu F, Chen L, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar

    [33]

    李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟 2024 物理学报 73 027702Google Scholar

    Li Y F, Xue W Q, Li Y C, Zhan Y H, Xie Q, Li Y K, Zha J W 2024 Acta Phys. Sin. 73 027702Google Scholar

    [34]

    Pan L, Wang F, He Y, Du G 2022 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE) Chongqing, China , 2022-09-25, 2022 pp1–4

    [35]

    Li J, Ren G K, Chen J, Chen X, Wu W, Liu Y, Chen X, Song J, Lin Y H, Shi Y 2022 JOM 74 3069Google Scholar

    [36]

    Bao Z, Du X, Ding S, Chen J, Dai Z, Liu C, Wang Y, Yin Y, Li X 2022 ACS Appl. Energy Mater. 5 3119Google Scholar

    [37]

    Dissado L, Fothergill J, Wolfe S, Hill R 1984 IEEE Trans. Electr. Insul. EI-19 227Google Scholar

  • 图 1  (a) 三明治结构电介质薄膜的结构示意图; (b) Al2O3/TPI/Al2O3三明治结构薄膜的实物图; (c) TPI沉积氧化铝镀层前后的DSC升温曲线; 不同镀层厚度Al2O3/TPI/Al2O3薄膜的SEM图 (d) 100 nm; (e) 200 nm; (f) 300 nm; (g) Al2O3/TPI/ Al2O3薄膜的表面SEM照片及EDS分析图片; (h) Al2O3/TPI/ Al2O3薄膜表面AFM三维照片; (i) 纯TPI薄膜表面AFM三维照片

    Figure 1.  (a) Schematic diagram of the sandwich-structured dielectric films; (b) photograph of TPI coated with aluminum oxide layer; (c) DSC heating curves of TPI films before and after Al2O3 deposition; scanning electron microscope (SEM) images of TPI films with Al2O3 coating layers of (d) 100, (e) 200, and (f) 300 nm thickness; (g) SEM images and EDS analysis of the Al2O3/TPI/Al2O3 films; 3D AFM images of the surface of (h) the Al2O3/TPI/Al2O3 films and (i) pristine TPI films.

    图 2  (a) 常温和(b) 200 ℃温度下TPI及其三明治结构薄膜的介电常数与介电损耗随频率的变化; (c) 10 kHz下样品的介电常数和介电损耗随Al2O3镀层厚度的变化; (d) TPI及其三明治结构薄膜在10 kHz下介电常数与介电损耗随温度的变化图

    Figure 2.  Dielectric constant and dielectric loss of TPI and its sandwich-structured films as a function of frequency at (a) Room temperature and (b) 200 ℃; (c) dielectric constant and dielectric loss at 10 kHz as a function of Al2O3 coating thickness; (d) dielectric constant and dielectric loss of TPI and its sandwich-structured films as a function of temperature at 10 kHz.

    图 3  (a) 150和(b) 200 ℃下TPI薄膜在沉积Al2O3镀层前后漏电流密度随电场强度的变化; (c) 不同温度下TPI薄膜沉积Al2O3前后的电导率对比; (d) 密度泛函理论计算得到的TPI与Al2O3能带示意图; (e) 电极Au与电介质TPI界面处能带结构图; (f) 电极Au与镀层Al2O3界面处能带结构图

    Figure 3.  Leakage current density of TPI films before and after Al2O3 deposition at (a) 150 and (b) 200 ℃; (c) comparation of electrical conductivity for TPI films before and after Al2O3 deposition at 150 and 200 ℃; (d) energy band diagram of TPI and Al2O3 obtained from density functional theory (DFT) calculations; (e) energy band structure at the interface between the Au electrode and the TPI dielectric; (f) energy band structure at the interface between the Au electrode and the Al2O3 coating.

    图 4  (a) 150和 (b) 200 ℃下TPI和TPI-200 nm Al2O3薄膜的韦伯分布击穿强度; (c) 不同温度下TPI和TPI-200 nm Al2O3薄膜击穿强度的对比

    Figure 4.  Weibull distribution of breakdown strength for TPI and TPI-200 nm Al2O3 films at (a) 150 and 200 ℃; (c) comparation of the weibull breakdown strength for TPI and TPI-200 nm Al2O3 films at different temperatures.

    图 5  (a) 纯TPI薄膜和(b) TPI-200 nm Al2O3薄膜在温度为150 ℃时的电位移-电场强度(D-E)曲线; (c) 纯TPI薄膜和(d) TPI-200 nm Al2O3薄膜在温度为200 ℃时的D-E曲线

    Figure 5.  D-E loops of (a) pristine TPI and (b) TPI-200 nm Al2O3 films at 150 ℃; D-E loops of (c) pristine TPI and (d) TPI-200 nm Al2O3 films at 200 ℃.

    图 6  (a) 150 ℃ 和(b) 200 ℃温度下放电能量密度(Ue)和充放电效率随电场强度的变化曲线; (c) 不同温度下TPI-200 nm Al2O3和TPI电介质薄膜在90%效率时的放电能量密度对比; (d) 不同温度下TPI-200 nm Al2O3和TPI电介质薄膜在电场强度350 MV/m下能量密度损失的对比

    Figure 6.  Discharge energy density (Ue) and charge-discharge efficiency (η) at different electric fields at (a) 150 ℃ and (b) 200 ℃; (c) comparation of the discharge energy density at 90% efficiency for TPI-200 nm Al2O3 and TPI films at 150 and 200 ℃; (d) comparation of energy density loss at 350 MV/m for TPI-200 nm Al2O3 and TPI films at 150 and 200 ℃.

  • [1]

    查俊伟, 查磊军, 郑明胜 2023 物理学报 72 018401Google Scholar

    Zha J W, Zha L J, Zheng M S 2023 Acta Phys. Sin. 72 018401Google Scholar

    [2]

    Zhang M, Lan S, Yang B B, Pan H, Liu Y Q, Zhang Q H, Qi J L, Chen D, Su H, Yi D, Yang Y Y, Wei R, Cai H D, Han H J, Gu L, Nan C W, Lin Y H 2024 Science 384 185Google Scholar

    [3]

    Luo H, Wang F, Guo R, Zhang D, He G H, Chen S, Wang Q 2022 Adv. Sci. 9 2202438Google Scholar

    [4]

    Chen J, Pei Z T, Chai B, Jiang P K, Ma L, Zhu L, Huang X Y 2023 Adv. Mater. 2308670Google Scholar

    [5]

    Ho J, Jow T R 2012 IEEE Trans. Dielect. Electr. Insul. 19 990Google Scholar

    [6]

    Zhang Q, Chen X, Zhang B, Zhang T, Lu W, Chen Z, Liu Z, Kim S H, Donovan B, Warzoha R J, Gomez E D, Bernholc J, Zhang Q M 2021 Matter 4 2448Google Scholar

    [7]

    Li Q, Yao F Z, Liu Y, Zhang G, Wang H, Wang Q 2018 Annu. Rev. Mater. Res. 48 219Google Scholar

    [8]

    Ho J S, Greenbaum S G 2018 ACS Appl. Mater. Interfaces 10 29189Google Scholar

    [9]

    Zhang Q, Chen X, Zhang T, Zhang Q M 2019 Nano Energy 64 103916Google Scholar

    [10]

    Zhang Q, Li D, Zhong Y, Hu Y, Huang S, Dong S, Zhang Q 2024 Energy Environ. Sci. In PressGoogle Scholar

    [11]

    Wang R, Zhu Y, Fu J, Yang M, Ran Z, Li J, Li M, Hu J, He J, Li Q 2023 Nat. Commun. 14 2406Google Scholar

    [12]

    Zhang T, Chen X, Thakur Y, Lu B, Zhang Q, Runt J, Zhang Q M 2020 Sci. Adv. 6 eaax6622Google Scholar

    [13]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 物理学报 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [14]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar

    [15]

    Pei J, Yin L, Zhong S, Dang Z 2023 Adv. Mater. 35 2203623Google Scholar

    [16]

    Wu F, Xie A, Jiang L, Mukherjee S, Gao H, Shi J, Wu J, Shang H, Sheng Z, Guo R, Wu L, Liu J, Suss M E, Terzis A, Li W, Zeng H 2023 Adv. Funct. Mater. 33 2212861Google Scholar

    [17]

    Min D, Ji M, Li P, Gao Z, Liu W, Li S, Liu J 2021 IEEE Trans. Dielectr. Electr. Insul. 28 2011Google Scholar

    [18]

    Li H, Ai D, Ren L, Yao B, Han Z, Shen Z, Wang J, Chen L, Wang Q 2019 Adv. Mater. 31 1900875Google Scholar

    [19]

    Li Q, Cheng S 2020 IEEE Electr. Insul. Mag. 36 7Google Scholar

    [20]

    Rui G C, Bernholc J, Zhang S H, Zhang Q M 2024 Adv. Mater. 2311739Google Scholar

    [21]

    Yuan C, Zhou Y, Zhu Y, Liang J, Wang S, Peng S, Li Y, Cheng S, Yang M, Hu J, Zhang B, Zeng R, He J, Li Q 2020 Nat. Commun. 11 3919Google Scholar

    [22]

    Zhou Y, Zhu Y, Xu W, Wang Q 2023 Adv. Energy Mater. 13 2203961Google Scholar

    [23]

    Li Z, Zhang Y, Pan Z, Fan X, Li P, Chen W, Liu J, Li W 2024 ACS Appl. Mater. Interfaces 16 10756Google Scholar

    [24]

    Ai D, Li H, Zhou Y, Ren L, Han Z, Yao B, Zhou W, Zhao L, Xu J, Wang Q 2020 Adv. Energy Mater. 10 1903881Google Scholar

    [25]

    Tan D Q 2020 Adv. Funct. Mater. 30 1808567Google Scholar

    [26]

    Zhang T, Sun H, Yin C, Jung Y H, Min S, Zhang Y, Zhang C, Chen Q, Lee K J, Chi Q 2023 Prog. Mater. Sci. 140 101207Google Scholar

    [27]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [28]

    Li H, Chang B S, Kim H, Xie Z, Lainé A, Ma L, Xu T, Yang C, Kwon J, Shelton S W, Klivansky L M, Altoé V, Gao B, Schwartzberg A M, Peng Z, Ritchie R O, Xu T, Salmeron M, Ruiz R, Sharpless K B, Wu P, Liu Y 2023 Joule 7 95Google Scholar

    [29]

    Cheng S, Zhou Y, Hu J, He J, Li Q 2020 IEEE Trans. Dielectr. Electr. Insul. 27 498Google Scholar

    [30]

    Cheng S, Zhou Y, Li Y S, Yuan C, Yang M C, Fu J, Hu J, He J L 2021 Energy Storage Mater. 42 445Google Scholar

    [31]

    Wu X, Song G, Zhang X, Lin X, Ivry Y, Tan D Q 2022 Chem. Eng. J. 450 137940Google Scholar

    [32]

    Azizi A, Gadinski M R, Li Q, AlSaud M A, Wang J, Wang Y, Wang B, Liu F, Chen L, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar

    [33]

    李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟 2024 物理学报 73 027702Google Scholar

    Li Y F, Xue W Q, Li Y C, Zhan Y H, Xie Q, Li Y K, Zha J W 2024 Acta Phys. Sin. 73 027702Google Scholar

    [34]

    Pan L, Wang F, He Y, Du G 2022 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE) Chongqing, China , 2022-09-25, 2022 pp1–4

    [35]

    Li J, Ren G K, Chen J, Chen X, Wu W, Liu Y, Chen X, Song J, Lin Y H, Shi Y 2022 JOM 74 3069Google Scholar

    [36]

    Bao Z, Du X, Ding S, Chen J, Dai Z, Liu C, Wang Y, Yin Y, Li X 2022 ACS Appl. Energy Mater. 5 3119Google Scholar

    [37]

    Dissado L, Fothergill J, Wolfe S, Hill R 1984 IEEE Trans. Electr. Insul. EI-19 227Google Scholar

  • [1] Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei. Research progress of flexible energy storage dielectric materials with sandwiched structure. Acta Physica Sinica, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] Yu Xin-Xiu, Li Duo-Sheng, Ye Yin, Lang Wen-Chang, Liu Jun-Hong, Chen Jing-Song, Yu Shuang-Shuang. Molecular dynamics simulation of the effect of nickel transition layer on the deposition of carbon atoms and graphene growth on cemented carbide surfaces. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.73.20241170
    [3] Chen Yu-Peng, Shi Lu-Lin, Wang Yu-Yu, Cheng Rui, Yang Jie, Chen Liang-Wen, Fan Wei-Li, Dong Jun-Yu. Internal structural changes in crystals induced by GeV heavy ion beam irradiation of LiF. Acta Physica Sinica, 2024, 73(15): 156401. doi: 10.7498/aps.73.20240717
    [4] Wang Jing-Li, Zhang Jian-Zhe, Chen He-Ming. Design and simulation of polarization-insensitive ring resonator based on subwavelength grating and sandwiched structure. Acta Physica Sinica, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [5] Dong Jiu-Feng, Deng Xing-Lei, Niu Yu-Juan, Pan Zi-Zhao, Wang Hong. Research progress of polymer based dielectrics for high-temperature capacitor energy storage. Acta Physica Sinica, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [6] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [7] Zhou Xiao-Feng, Fang Hao-Yu, Tang Chun-Mei. Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene. Acta Physica Sinica, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [8] Zhu Qi, Yuan Xie-Tao, Zhu Yi-Hao, Zhang Xiao-Hua, Yang Zhao-Hui. Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays. Acta Physica Sinica, 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [9] Bi Xue-Song, Zhu Liang, Yang Fu-Long. Mechanism of current injection in the process of wire electrical explosion. Acta Physica Sinica, 2012, 61(7): 078105. doi: 10.7498/aps.61.078105
    [10] Han Yu-Yan, Cao Liang, Xu Fa-Qiang, Chen Tie-Xin, Zheng Zhi-Yuan, Wan Li, Liu Ling-Yun. Preparation and investigation of the formation mechanism of organic single crystal nanostructures of PTCDA. Acta Physica Sinica, 2012, 61(7): 078103. doi: 10.7498/aps.61.078103
    [11] Zhang Cai-Xia, Guo Hong, Yang Zhi, Luo You-Hua. The magnetic and quantum transport properties of sandwich-structured Tan(B3N3H6)n+1 clusters. Acta Physica Sinica, 2012, 61(19): 193601. doi: 10.7498/aps.61.193601
    [12] Fu Fei-Ya, Chen Wei, Zhou Wen-Jun, Liu An-Jin, Xing Ming-Xin, Wang Yu-Fei, Zheng Wan-Hua. Electromagnetic resonance in nanosandwich photonic metamaterial. Acta Physica Sinica, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
    [13] He Li, Qiao Wen-Tao, Zhang Li-Wei, Xu Jing-Ping. Electromagnetic tunneling properties of sandwich structure containing single negative material. Acta Physica Sinica, 2010, 59(11): 7863-7868. doi: 10.7498/aps.59.7863
    [14] Li Sheng-Tao, Cheng Peng-Fei, Li Jian-Ying. Thermal stimulated current in sandwiched Al2O3 single crystal samples. Acta Physica Sinica, 2008, 57(12): 7783-7788. doi: 10.7498/aps.57.7783
    [15] Zhu Li, Yang Wen-Ge, Xu Ling-Ling, Chen Ding-An, Wang Wen, Cui Yi-Ping. Mechanism and characteristics of the new organic nonlinear optical material urea L-malic acid film. Acta Physica Sinica, 2007, 56(1): 569-573. doi: 10.7498/aps.56.569
    [16] Liu Jiang-Tao, Zhou Yun-Song, Wang Ai-Ling, Jiang Hong-Wei, Zheng Wu. Theoretical study on the giant magnetoimpedance in coaxial-cable wire and sandwi ched film. Acta Physica Sinica, 2003, 52(11): 2859-2864. doi: 10.7498/aps.52.2859
    [17] Li Ling, Li Bo-Zang. The energy density in a one-dimensional cavity with two moving boundaries. Acta Physica Sinica, 2003, 52(11): 2762-2767. doi: 10.7498/aps.52.2762
    [18] TANG LI-JIA, CAI XI-JIE, LIN ZUN-QI. CONTROL OF PULSE SHAPE IN “SHENGGUANG II” MAIN AMPLIFERS. Acta Physica Sinica, 2001, 50(6): 1075-1079. doi: 10.7498/aps.50.1075
    [19] Li Tie, Shen Hong-Lie, Shen Qin-Wo, Zou Shi-Chang. Study on Giant Magnetoresistance of Co/Cu/Co Sandwich on Different Buffer Layers. Acta Physica Sinica, 1999, 48(13): 28-34. doi: 10.7498/aps.48.28
    [20] DONG ZHENG-CHAO. QUANTUM ANALYTICAL THEORY FOR GIANT MAGNETORESISTANCE IN A MAGNETIC SANDWICH STRUCTURE. Acta Physica Sinica, 1997, 46(9): 1801-1807. doi: 10.7498/aps.46.1801
Metrics
  • Abstract views:  1406
  • PDF Downloads:  54
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2024
  • Accepted Date:  16 July 2024
  • Available Online:  08 August 2024
  • Published Online:  05 September 2024

/

返回文章
返回