Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene

Zhou Xiao-Feng Fang Hao-Yu Tang Chun-Mei

Citation:

Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene

Zhou Xiao-Feng, Fang Hao-Yu, Tang Chun-Mei
PDF
HTML
Get Citation
  • The growth of population and the limited supply of fossil fuels have forced the world to seek for new kinds of alternative energy sources which are abundant, renewable, efficient, secure and pollution-free. In this regard, hydrogen is generally considered as a potential candidate. However, it is a great challenge to find hydrogen storage materials with large hydrogen gravimetric density under ambient thermodynamic conditions. The most effective way to improve the hydrogen storage capacity is to decorate the pure nanomaterials with transition metals, alkaline metals, and alkaline earth metals. The generalized gradient approximation based on density functional theory is used to study the hydrogen storage capacity of the expanded sandwich structure graphene-2Li-graphene. It is calculated that the structure with the Li atom located above the face site of the hexagonal ring of the graphene has the maximum binding energy (1.19 eV), which is less than the experimental cohesive energy of bulk Li (1.63 eV). However, the calculated binding energy values of the Li atom to the upper and lower graphene layer are both 3.43 eV, which is much larger than the experimental cohesive energy value of bulk Li, so it can prevent the Li atoms from clustering between graphene layers. Each Li atom in the graphene-2Li-graphene structure can adsorb 3 H2 molecules at most. Thus, the hydrogen gravimetric density of graphene-2(Li-3H2)-graphene is 10.20 wt.%, which had far exceeded the gravimetric density of the target value of 5.5 wt.% by the year 2017 specified by the US Department of Energy. The average adsorption energy values of H2 adsorbed per Li are 0.37, 0.17, and 0.12 eV respectively for 1−3 H2 molecules, which are between the physical adsorption and chemical adsorption(0.1−0.8 eV), therefore, it can realize the reversible adsorption of hydrogen. Each Li atom can adsorb 3 H2 molecules at most by the electronic polarization interaction. The dynamic calculations and GFRF calculations show that the interlayer Li atom doped double-layer graphene has good reversible adsorption performance for hydrogen. This research can provide a good research idea for developing good hydrogen storage materials and theoretical basis for experimental worker. These findings can suggest a way to design hydrogen storage materials under the near-ambient conditions.
      Corresponding author: Zhou Xiao-Feng, xfzhouphy@263.net ; Tang Chun-Mei, tcmnj@163.com
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities,China (Grant Nos. 2016B01914,2018B19414), the Water Science Innovation Project of Jiangsu Province, China (Grant No. 2015087), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161501), and the Six Talent Peaks Project in Jiangsu Province, China (Grant No. 2015-XCL-010).
    [1]

    Schlapbach L, Zuttel A 2001 Nature 414 353Google Scholar

    [2]

    Chandrakumar K R S, Ghosh S K 2008 Nano Lett. 8 13Google Scholar

    [3]

    Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'keeffe M, Yaghi O M 2003 Science 300 1127Google Scholar

    [4]

    Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422Google Scholar

    [5]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [6]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582Google Scholar

    [7]

    Kim D, Lee S, Hwang Y, Yun K H, Chung Y C 2014 Int. J. Hydrogen Energy 39 13189Google Scholar

    [8]

    Xu B, Lei X L, Liu G, Wu M S, Ouyang C Y 2014 Int. J. Hydrogen Energy 39 17104Google Scholar

    [9]

    Seenithurai S, Pandyan R K, Kumar S V, Saranya C, Mahendran M 2014 Int. J. Hydrogen Energy 39 11016Google Scholar

    [10]

    Chen L, Zhang Y, Koratkar N, Jena P, Nayak S K 2008 Phys. Rev. B 77 033405

    [11]

    Mauron P, Gaboardi M, Remhof A, Bliersbach A, Sheptyakov D, Aramini M, Vlahopoulou G, Giglio F, Pontiroli D, Ricco M, Zuttel A 2013 J. Phys. Chem. C 117 22598Google Scholar

    [12]

    Lein M, Frunzke J, Frenking G 2003 Inorg. Chem. 42 2504Google Scholar

    [13]

    Youn I S, Kim D Y, Singh N J, Park S W, Youn J, Kim K S 2011 J. Chem. Theor. Comput. 8 99

    [14]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [15]

    Wilkinson G, Rosenblum M, Whiting M C, Woodward R B 1952 J. Am. Chem. Soc. 74 2125Google Scholar

    [16]

    Kubas G J 2001 Kluwer Academic (New York: Plenum Publishing)

    [17]

    Lein M, Frunzke J, Frenking G 2003 Inorg. Chem. 42 2504Google Scholar

    [18]

    Youn I S, Kim D Y, Singh N J, Park S W, Youn J, Kim K S 2011 J. Chem. Theory Comput. 8 99

    [19]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582Google Scholar

    [20]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [21]

    Zhang Q Y, Tang C M, Zhu W H, Cheng C 2018 J. Phys. Chem. C 122 22838Google Scholar

    [22]

    Chang L T, Wei C, Xiao H T 2006 Chin. Phys. 15 2718Google Scholar

    [23]

    Zhao J Y, Zhao F Q, Xu S Y, Ju X H 2013 J. Phys. Chem. A 117 2213Google Scholar

    [24]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [25]

    Ma L, Zhang J M, Xu K W 2014 Appl. Surf. Sci. 292 921Google Scholar

    [26]

    Gao Y, Wu X, Zeng X C 2014 J. Mater. Chem. A 2 5910Google Scholar

    [27]

    Park J, Burova S, Rodgers A S, Lin M C 1999 J. Phys. Chem. A 103 9036Google Scholar

    [28]

    Abad E, Dappe Y J, Martínez J I, Flores F, Ortega J 2011 J. Chem. Phys. 134 044701Google Scholar

    [29]

    Pliva J, Johns J W C, Goodman L 1991 J. Mol. Spectrosc. 148 427Google Scholar

    [30]

    Toyoda K, Nakano Y, Hamada I, Lee K, Yanagisawa S, Morikawa Y 2009 Surf. Sci. 603 2912Google Scholar

    [31]

    Wang X B, Tang C M, Zhu W H, Zhou X F, Zhou Q H, Cheng C 2018 J. Phys. Chem. C 122 9654Google Scholar

    [32]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [33]

    Wu G, Wang J, Zhang X, Zhu L 2009 J. Phys. Chem. C 113 7052Google Scholar

    [34]

    汪志诚 2013 热力学·统计物理 (第五版) (北京: 高等教育出版社)

    Wang Z C 2013 Thermodynamics·Statistical Physics (5th Ed.) (Beijing: Higher Education Press) (in Chinese)

  • 图 1  (a)苯环中3种不等价位置; (b) Li原子位于苯环面心位上方的优化结构; (c) C6H6-Li-C6H6势能面扫描曲线和最稳定的C6H6-Li-C6H6三明治结构

    Figure 1.  (a) Three unequal positions in benzene ring; (b) the optimized structure of the benzene ring with the Li atom located above the face site of the hexagonal ring; (c) potential energy surface scanning curve of C6H6-Li-C6H6 and the most stable sandwich structure of C6H6-Li-C6H6.

    图 2  (a) 单层石墨烯的2 × 3晶胞中Li原子的6个位置; 2个Li原子分别位于(b) ①④组合; (c) ①⑤组合; (d) ①③组合; (e) ①⑥组合; 3个Li原子分别位于(f) ①④⑤组合; (g) ①②⑥组合; (h) 2个Li原子掺杂的最稳定双层石墨烯结构graphene-2Li-graphene

    Figure 2.  (a) 6 positions of the Li atom in the 2 × 3 unit cell of monolayer graphene; two Li atoms are located at (b) ①④ combination; (c) ①⑤ combination, (d) ①③ combination; (e) ①⑥ composition; three Li atoms are located in (f) ①④⑤ combination; (g) ①②⑥ combination; (h) the most stable graphene-2Li-graphene double-layer graphene structure doped by two Li atoms.

    图 3  graphene-2Li-graphene 的2 × 3晶胞中每个Li原子分别吸附1—4个H2分子的结构图

    Figure 3.  The structural of the 2 × 3 unit cell of graphene-2Li-graphene with each Li atom adsorbed by 1−4 H2 molecules.

    图 4  不同结构中Li原子或H2分子的态密度图 (a)单独的Li原子; (b) graphene-2Li-graphene中Li原子; (c) graphene-2(Li-H2)-graphene中Li原子; (d) graphene-2(Li-3H2)-graphene中Li原子; (e) 单独的H2分子; (f) graphene-2Li-graphene中graphene; (g) graphene-2(Li-H2)-graphene中H2分子; (h) graphene-2(Li-3H2)-graphene中H2分子

    Figure 4.  The PDOS of Li atom or H2 molecules: (a) Isolated Li atom; (b) the Li atom in graphene-2Li-graphene; (c) the Li atom in graphene-2(Li-H2)-graphene; (d) the Li atom in graphene-2(Li-3H2)-graphene; (e) isolated H2 molecules; (f) the graphene in graphene-2Li-graphene; (g) the H2 molecules in graphene-2(Li-H2)-graphene; (h) the H2 molecules in graphene-2(Li-3H2)-graphene.

    图 5  graphene-2(Li-3H2)-graphene在77和300 K下5 ps之后的动力学结构图

    Figure 5.  The structures of graphene-2(Li-3H2)-graphene at 77 and 300 K after 5 ps dynamic times.

    表 1  扩展三明治结构graphene-2(Li-nH2)-graphene[G-2(Li-nH2)-G)](n = 1—4)中的H2分子的Ead, Er, Li和H的平均bader电荷(QLiQH), 双层石墨烯的层间距(DG-G)

    Table 1.  The Ead and Er of H2 molecules average bader charge of Li and H (QLi and QH), interlayer distance of double-layer graphene (DG-G) in the expanded sandwich structure graphene-2(Li-nH2)-graphene[G-2(Li-nH2)-G)](n = 1—4).

    G-2Li-GG-2(Li-H2)-GG-2(Li-2H2)-GG-2(Li-3H2)-GG-2(Li-4H2)-G
    Ead/eV0.370.170.120.06
    Er/eV0.190.190.10–0.08
    QLi/e0.990.620.310.020.01
    QH/e0.200.180.160.12
    DG-G3.693.844.404.904.93
    DownLoad: CSV
  • [1]

    Schlapbach L, Zuttel A 2001 Nature 414 353Google Scholar

    [2]

    Chandrakumar K R S, Ghosh S K 2008 Nano Lett. 8 13Google Scholar

    [3]

    Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O'keeffe M, Yaghi O M 2003 Science 300 1127Google Scholar

    [4]

    Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422Google Scholar

    [5]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [6]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582Google Scholar

    [7]

    Kim D, Lee S, Hwang Y, Yun K H, Chung Y C 2014 Int. J. Hydrogen Energy 39 13189Google Scholar

    [8]

    Xu B, Lei X L, Liu G, Wu M S, Ouyang C Y 2014 Int. J. Hydrogen Energy 39 17104Google Scholar

    [9]

    Seenithurai S, Pandyan R K, Kumar S V, Saranya C, Mahendran M 2014 Int. J. Hydrogen Energy 39 11016Google Scholar

    [10]

    Chen L, Zhang Y, Koratkar N, Jena P, Nayak S K 2008 Phys. Rev. B 77 033405

    [11]

    Mauron P, Gaboardi M, Remhof A, Bliersbach A, Sheptyakov D, Aramini M, Vlahopoulou G, Giglio F, Pontiroli D, Ricco M, Zuttel A 2013 J. Phys. Chem. C 117 22598Google Scholar

    [12]

    Lein M, Frunzke J, Frenking G 2003 Inorg. Chem. 42 2504Google Scholar

    [13]

    Youn I S, Kim D Y, Singh N J, Park S W, Youn J, Kim K S 2011 J. Chem. Theor. Comput. 8 99

    [14]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [15]

    Wilkinson G, Rosenblum M, Whiting M C, Woodward R B 1952 J. Am. Chem. Soc. 74 2125Google Scholar

    [16]

    Kubas G J 2001 Kluwer Academic (New York: Plenum Publishing)

    [17]

    Lein M, Frunzke J, Frenking G 2003 Inorg. Chem. 42 2504Google Scholar

    [18]

    Youn I S, Kim D Y, Singh N J, Park S W, Youn J, Kim K S 2011 J. Chem. Theory Comput. 8 99

    [19]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582Google Scholar

    [20]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [21]

    Zhang Q Y, Tang C M, Zhu W H, Cheng C 2018 J. Phys. Chem. C 122 22838Google Scholar

    [22]

    Chang L T, Wei C, Xiao H T 2006 Chin. Phys. 15 2718Google Scholar

    [23]

    Zhao J Y, Zhao F Q, Xu S Y, Ju X H 2013 J. Phys. Chem. A 117 2213Google Scholar

    [24]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [25]

    Ma L, Zhang J M, Xu K W 2014 Appl. Surf. Sci. 292 921Google Scholar

    [26]

    Gao Y, Wu X, Zeng X C 2014 J. Mater. Chem. A 2 5910Google Scholar

    [27]

    Park J, Burova S, Rodgers A S, Lin M C 1999 J. Phys. Chem. A 103 9036Google Scholar

    [28]

    Abad E, Dappe Y J, Martínez J I, Flores F, Ortega J 2011 J. Chem. Phys. 134 044701Google Scholar

    [29]

    Pliva J, Johns J W C, Goodman L 1991 J. Mol. Spectrosc. 148 427Google Scholar

    [30]

    Toyoda K, Nakano Y, Hamada I, Lee K, Yanagisawa S, Morikawa Y 2009 Surf. Sci. 603 2912Google Scholar

    [31]

    Wang X B, Tang C M, Zhu W H, Zhou X F, Zhou Q H, Cheng C 2018 J. Phys. Chem. C 122 9654Google Scholar

    [32]

    Kealy T J, Pauson P L 1951 Nature 168 1039

    [33]

    Wu G, Wang J, Zhang X, Zhu L 2009 J. Phys. Chem. C 113 7052Google Scholar

    [34]

    汪志诚 2013 热力学·统计物理 (第五版) (北京: 高等教育出版社)

    Wang Z C 2013 Thermodynamics·Statistical Physics (5th Ed.) (Beijing: Higher Education Press) (in Chinese)

  • [1] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] Zhang Ying, Liu Chun-Sheng. Theoretical study of optical and electronic properties of silicether/graphether heterostructure. Acta Physica Sinica, 2021, 70(12): 123102. doi: 10.7498/aps.70.20202193
    [3] Ma Li-Juan, Han Ting, Gao Sheng-Qi, Jia Jian-Feng, Wu Hai-Shun. Effect of monovacancy on stability and hydrogen storage property of Sc/Ti/V-decorated graphene. Acta Physica Sinica, 2021, 70(21): 218802. doi: 10.7498/aps.70.20210727
    [4] Yuan Li-Hua, Gong Ji-Jun, Wang Dao-Bin, Zhang Cai-Rong, Zhang Mei-Ling, Su Jun-Yan, Kang Long. Hydrogen storage capacity of alkali metal atoms decorated porous graphene. Acta Physica Sinica, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [5] Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan. Density functional study of metal lithium atom adsorption on antimonene. Acta Physica Sinica, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [6] Yin Yue-Hong, Xu Hong-Ping. Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field. Acta Physica Sinica, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [7] Cui Shu-Wen, Li Lu, Wei Lian-Jia, Qian Ping. Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene. Acta Physica Sinica, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [8] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [9] Qi Peng-Tang, Chen Hong-Shan. Hydrogen storage properties of Li-decorated C24 clusters. Acta Physica Sinica, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [10] Zhang Yi-Jie, Tang Chun-Mei, Gao Feng-Zhi, Wang Cheng-Jie. Adsorption of H2O by the Li decorated C6Li molecule. Acta Physica Sinica, 2014, 63(14): 147401. doi: 10.7498/aps.63.147401
    [11] Zhao Yin-Chang, Dai Zhen-Hong, Sui Peng-Fei, Zhang Xiao-Ling. Study of the high hydrogen storage capacity on 2D Li+BC3 complex. Acta Physica Sinica, 2013, 62(13): 137301. doi: 10.7498/aps.62.137301
    [12] Ruan Wen, Xie An-Dong, Yu Xiao-Guang, Wu Dong-Lan. Geometric structure and electronic characteristics of NaBn (n=19) clusters. Acta Physica Sinica, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [13] Wang Jian-Jun, Wang Fei, Yuan Peng-Fei, Sun Qiang, Jia Yu. First-principles study of nanoscale friction between graphenes. Acta Physica Sinica, 2012, 61(10): 106801. doi: 10.7498/aps.61.106801
    [14] Zhang Xiu-Rong, Li Yang, Yang Xing. Theoretical study on structural and electronic properties of WnNim(n+m=8) clusters. Acta Physica Sinica, 2011, 60(10): 103601. doi: 10.7498/aps.60.103601
    [15] Gao Hong, Zhu Wei-Hua, Tang Chun-Mei, Geng Fang-Fang, Yao Chang-Da, Xu Yun-Ling, Deng Kai-Ming. Density functional calculation on the geometric structure and electronic properties of the endohedral fullerene N2@C60. Acta Physica Sinica, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [16] Liu Li-Ren, Lei Xue-Ling, Chen Hang, Zhu Heng-Jiang. Geometry and electronic properties of Bn(n=2—15) clusters. Acta Physica Sinica, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [17] Liu Xiu-Ying, Wang Chao-Yang, Tang Yong-Jian, Sun Wei-Guo, Wu Wei-Dong, Zhang Hou-Qiong, Liu Miao, Yuan Lei, Xu Jia-Jing. Comparative theoretical study of hydrogen storage in single-walled boron-nitride and carbon nanotubes. Acta Physica Sinica, 2009, 58(2): 1126-1131. doi: 10.7498/aps.58.1126
    [18] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [19] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Pu Zhong-Sheng. Density functional theory study of the structures and properties of (Li3N)n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [20] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
Metrics
  • Abstract views:  8041
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2018
  • Accepted Date:  28 December 2018
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回