Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional study of metal lithium atom adsorption on antimonene

Luan Xiao-Wei Sun Jian-Ping Wang Fan-Song Wei Hui-Lan Hu Yi-Fan

Citation:

Density functional study of metal lithium atom adsorption on antimonene

Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan
PDF
HTML
Get Citation
  • Since the discovery of graphene, researchers have been being increasingly attracted by the emerging of a bunch of two-dimensional (2D) materials, such as BN, MoS2 and black phosphorene. These materials possess outstanding physical and chemical properties, which could find great potential applications in nanoelectronics, energy conversion or storage, photocatalysts, etc. Recently, a theoretically predicted pucker layered material consisting of Sb atoms, antimonene, has been prepared, and is attracting the attention in the field of lithium ion batteries. In this paper, based on first-principle density functional theory, the adsorption characteristics of Li atoms on antimony are studied, including the most stable adsorption configuration, the adsorption density and the diffusion path of Li atom on antimonene. The results show that the most stable adsorption configuration of Li atom is in the valley site, i.e. the center of the three Sb atoms in the top layer and one Sb in the bottom layer. The adsorption energy is 1.69 eV and the adsorption distance is 2.81 Å. The band structure shows that antimony is an indirect band gap semiconductor with a band gap of 1.08 eV. After the absorption of Li atom, the Fermi level enters into the conduction band, which shows an electronic property similar to metal. The analysis of density of states shows that the p-electronic state of Sb atom and the p and s electronic state of Li atom possess distinct resonance peaks, showing hybrid bonding characteristics. With the increase of the number of Li atoms adsorbed, the lattice structure and electronic structure of antimonene change greatly. The nudged elastic band calculation shows that the diffusion barrier of Li atom on antimony surface is 0.07 eV, and a smaller barrier height is beneficial to the rapid charge-discharge process. To sum up, antimony has a good potential as an anode material for lithium ion batteries.
      Corresponding author: Sun Jian-Ping, sunjp@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372050).
    [1]

    Tarascon J M, Armand M 2001 Nature 414 6861

    [2]

    Li Y, Mi Y, Sun G 2015 J. Mater. Chem. 03 12

    [3]

    Geim A K 2009 Science 324 5934

    [4]

    Geim A K, Novoselov K S 2007 Nature Mat. 6 3Google Scholar

    [5]

    Yao Q, Huang C, Yuan Y 2015 J. Phys. Chem. C 119 12

    [6]

    Hussain A, Ullah S, Farhan M A 2017 J. Mater. Chem. 41 19

    [7]

    孙建平, 周科良, 梁晓东 2016 物理学报 65 018201

    Sun J P, Zhou K L, Liang X D 2016 Acta Phys. Sin. 65 018201

    [8]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301

    Sun J P, Miu Y M, Cao X C 2013 Acta Phys. Sin. 62 036301

    [9]

    高云雷, 赵东林, 白利忠, 张霁明, 孔莹 2012 中国科技论文 7 413

    Gao Y L, Zhao D L, Bai L Z, Zhang J M, Kong Y 2012 China Sciencepaper 7 413

    [10]

    朱晋潇, 刘晓东, 薛敏钊, 陈长鑫 2017 物理化学学报 33 2153Google Scholar

    Zhu J X, Liu X D, Xue M Z, Chen C X 2017 Acta Physico-Chimica Sinica 33 2153Google Scholar

    [11]

    Peng B, Xu Y L, Fokko M M 2017 Acta Physico-Chimica Sinica 33 2127

    [12]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 J. Nat. Nano 9 372Google Scholar

    [13]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2017 ACS Nano 8 4033

    [14]

    Yao Q, Huang C, Yuan Y 2015 J. Phys. Chem. C 119 12

    [15]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Com. 5 128

    [16]

    He Y, Xia F, Shao Z 2015 J. Phys. Chem. C. Lett. 6 23

    [17]

    Haldar S, Mukherjee S, Ahmed F 2017 J. Hyd. Ene. 42 36

    [18]

    Wang G, Pandey R, Karna S P 2015 ACS Appl. Mat. Int. 6 21

    [19]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Ang. Chem. Int. Edi. 54 3112Google Scholar

    [20]

    Ji J P, Song X F, Liu J Z, Yan Z, Huo C X , Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F, Zeng H B 2016 Nat. Com. 6 133

    [21]

    Ares P, Aguilar-Galindo F, Rodriguez-San-Miguel D, Aldave D A, Diaz-Tendero S, Alcami M, Martin F, Gomez-Herrero J, Zamora F 2016 Adv. Mat. 28 30

    [22]

    Gibaja C, Rodriguez-San-Miguel D, Ares P 2016 Ang. Chem. 55 46

    [23]

    Üzengi Aktürk O, Aktürk E, Ciraci S 2016 Phys. Rev. 93 3

    [24]

    Zhao M W, Zhang X M, Li L Y 2015 Sci. Rep. 5 161

    [25]

    Zhou Y G, Lin X D 2018 Appl. Sur. Sci. 458 572Google Scholar

    [26]

    Xie M, Zhang S, Cai B 2016 RSC Adv. 6 18Google Scholar

  • 图 1  本征锑烯 (a) 俯视图; (b) 侧视图; (c) 能带图; (d) 态密度图

    Figure 1.  Pristine antimonene: (a) The top view; (b) the side view; (c) the band structure; (d) the density of states.

    图 2  (a)和(c)分别为谷位吸附结构初始构型的俯视图和侧视图; (b)和(d)分别为其优化构型的俯视图和侧视图

    Figure 2.  The antimonene structure of Li adsorbed on vacancy site: (a) The top view before optimization; (b) the top view after optimization; (c) the side view before optimization; (d) the side view after optimization.

    图 3  (a) 和 (c) 分别为顶位吸附结构初始构型的俯视图和侧视图; (b) 和 (d) 分别为其优化构型的俯视图和侧视图

    Figure 3.  The antimonene structure of Li adsorbed on top site: (a) The top view before optimization; (b) the top view after optimization; (c) the side view before optimization; (d) the side view after optimization.

    图 4  谷位吸附构型 (a)能带图; (b)总态密度; (c) Sb分波态密度; (d) Li分波态密度

    Figure 4.  The band structure and density of Li adsorbed antimonene: (a) The band structure; (b) the total density of states; (c) the partial density of states of Sb atom; (d) the partial density of states view of Li atom.

    图 5  顶位吸附结构态密度图 (a)总态密度; (b) Sb分波态密度; (c) Li分波态密度

    Figure 5.  The density of states of the Li adsorbed structure: (a) The total density of states; (b) the partial density of states of Sb atom; (c) the partial density of states view of Li atom.

    图 6  谷位差分电荷密度

    Figure 6.  The differential charge density of the Li adsorbed structure.

    图 7  (a)和(c)分别为锑烯吸附3个Li原子结构初始构型的俯视图和侧视图; (b)和(d)分别为其优化构型的俯视图和侧视图

    Figure 7.  The configurations of antimonene adsorbing three lithium atoms: (a) The top view before optimization; (b) the top view after optimization; (c) the side view before optimization; (d) the side view after optimization.

    图 8  (a)和(c)分别为锑烯吸附九个Li原子结构初始构型的俯视图和侧视图; (b)和(d)分别为其优化构型的俯视图和侧视图

    Figure 8.  The configurations of antimonene adsorbing nine lithium atoms: (a) The top view before optimization; (b) the top view after optimization; (c) the side view before optimization; (d) the side view after optimization.

    图 9  锑烯吸附三个Li原子态密度图 (a) 吸附结构的总态密度图; (b) Sb原子的分波态密度; (c) Li原子的分波态密度

    Figure 9.  The density of states of antimonene adsorbing three lithium atoms: (a) The total density of states of the structure; (b) the partial density of states of Sb atom; (c) the partial density of states view of Li atom.

    图 10  锑烯吸附九个Li原子态密度图 (a) 吸附体系的总态密度图; (b) 体系中Sb原子的分波态密度; (c) 体系中Li原子的分波态密度

    Figure 10.  The density of states of antimonene adsorbing nine lithium atoms: (a) The total density of states of the structure ; (b) the partial density of states of Sb atom; (c) the partial density of states view of Li atom.

    图 11  Li原子扩散迁移路径 (a) 俯视图; (b) 侧视图

    Figure 11.  The Li diffusion path on antimonene: (a) The top view; (b) the side view.

    图 12  Li原子扩散迁移势垒

    Figure 12.  The diffusion energy barrier of Li atom.

    表 1  锑烯吸附Li原子的两种结构的特性

    Table 1.  Properties of two Li adsorbed antimonene configurations.

    Ead/eV Sb—Li/Å Barder(Sb)/Δq Barder(Li)/Δq
    顶位 1.67 2.83 0.31 −1.00
    谷位 1.69 2.81 0.32 −0.99
    注: Ead表示吸附能, Sb—Li表示在吸附后的Sb—Li键长.
    DownLoad: CSV
  • [1]

    Tarascon J M, Armand M 2001 Nature 414 6861

    [2]

    Li Y, Mi Y, Sun G 2015 J. Mater. Chem. 03 12

    [3]

    Geim A K 2009 Science 324 5934

    [4]

    Geim A K, Novoselov K S 2007 Nature Mat. 6 3Google Scholar

    [5]

    Yao Q, Huang C, Yuan Y 2015 J. Phys. Chem. C 119 12

    [6]

    Hussain A, Ullah S, Farhan M A 2017 J. Mater. Chem. 41 19

    [7]

    孙建平, 周科良, 梁晓东 2016 物理学报 65 018201

    Sun J P, Zhou K L, Liang X D 2016 Acta Phys. Sin. 65 018201

    [8]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301

    Sun J P, Miu Y M, Cao X C 2013 Acta Phys. Sin. 62 036301

    [9]

    高云雷, 赵东林, 白利忠, 张霁明, 孔莹 2012 中国科技论文 7 413

    Gao Y L, Zhao D L, Bai L Z, Zhang J M, Kong Y 2012 China Sciencepaper 7 413

    [10]

    朱晋潇, 刘晓东, 薛敏钊, 陈长鑫 2017 物理化学学报 33 2153Google Scholar

    Zhu J X, Liu X D, Xue M Z, Chen C X 2017 Acta Physico-Chimica Sinica 33 2153Google Scholar

    [11]

    Peng B, Xu Y L, Fokko M M 2017 Acta Physico-Chimica Sinica 33 2127

    [12]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 J. Nat. Nano 9 372Google Scholar

    [13]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2017 ACS Nano 8 4033

    [14]

    Yao Q, Huang C, Yuan Y 2015 J. Phys. Chem. C 119 12

    [15]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Com. 5 128

    [16]

    He Y, Xia F, Shao Z 2015 J. Phys. Chem. C. Lett. 6 23

    [17]

    Haldar S, Mukherjee S, Ahmed F 2017 J. Hyd. Ene. 42 36

    [18]

    Wang G, Pandey R, Karna S P 2015 ACS Appl. Mat. Int. 6 21

    [19]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Ang. Chem. Int. Edi. 54 3112Google Scholar

    [20]

    Ji J P, Song X F, Liu J Z, Yan Z, Huo C X , Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F, Zeng H B 2016 Nat. Com. 6 133

    [21]

    Ares P, Aguilar-Galindo F, Rodriguez-San-Miguel D, Aldave D A, Diaz-Tendero S, Alcami M, Martin F, Gomez-Herrero J, Zamora F 2016 Adv. Mat. 28 30

    [22]

    Gibaja C, Rodriguez-San-Miguel D, Ares P 2016 Ang. Chem. 55 46

    [23]

    Üzengi Aktürk O, Aktürk E, Ciraci S 2016 Phys. Rev. 93 3

    [24]

    Zhao M W, Zhang X M, Li L Y 2015 Sci. Rep. 5 161

    [25]

    Zhou Y G, Lin X D 2018 Appl. Sur. Sci. 458 572Google Scholar

    [26]

    Xie M, Zhang S, Cai B 2016 RSC Adv. 6 18Google Scholar

  • [1] Xu Si-Yuan, Zhang Zhao-Fu, Wang Jun, Liu Xue-Fei, Guo Yu-Zheng. First-principles calculation of intrinsic point defects and doping performance of MoSi2N4. Acta Physica Sinica, 2024, 73(8): 086801. doi: 10.7498/aps.73.20231931
    [2] Gao Jin-Wei, Chen Lu, Li Xu-Hong, Shi Jun-Qin, Cao Teng-Fei, Fan Xiao-Li. Intrinsic multiferroic semiconductors with magnetoelastic coupling: two-dimensional MoTeX (X = F, Cl, Br, I) monolayers. Acta Physica Sinica, 2024, 73(19): 197501. doi: 10.7498/aps.73.20240829
    [3] Li Xin-Yue, Gao Guo-Xiang, Gao Qiang, Liu Chun-Sheng, Ye Xiao-Juan. Theoretical study of two-dimensional BeB2 monolayer as anode material for magnesium ion batteries. Acta Physica Sinica, 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [4] Duan Xiu-Ming, Yi Zhi-Jun. Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton. Acta Physica Sinica, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [5] Chen Si-Yu, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical research of two-dimensional germanether in sodium-ion battery. Acta Physica Sinica, 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [6] Liu Tian-Yao, Liu Can, Liu Kai-Hui. Atomic-scale manufacture of metre-sized two-dimensional single crystals by interfacial modulation. Acta Physica Sinica, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [7] Zhu Yu-Jie, Jiang Tao, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties. Acta Physica Sinica, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [8] Shi Bin, Yuan Li, Tang Tian-Yu, Lu Li-Min, Zhao Xian-Hao, Wei Xiao-Nan, Tang Yan-Lin. Spectral analysis and density functional theory study of tert-butylhydroquinone. Acta Physica Sinica, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [9] Chen Xu-Fan, Yang Qiang, Hu Xiao-Hui. Tunable electronic and magnetic properties of transition-metal atoms doped CrBr3 monolayer. Acta Physica Sinica, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [10] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [11] Cui Shu-Wen, Li Lu, Wei Lian-Jia, Qian Ping. Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene. Acta Physica Sinica, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [12] Shi Ruo-Yu, Wang Lin-Feng, Gao Lei, Song Ai-Sheng, Liu Yan-Min, Hu Yuan-Zhong, Ma Tian-Bao. Quantitative calculation of atomic-scale frictional behavior of two-dimensional material based on sliding potential energy surface. Acta Physica Sinica, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [13] Zhang Feng-Chun, Li Chun-Fu, Zhang Cong-Lei, Ran Zeng-Ling. Surface absorptions of H2S, HS and S on Fe(111) investigated by density functional theory. Acta Physica Sinica, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [14] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [15] Yuan Jian-Mei, Hao Wen-Ping, Li Shun-Hui, Mao Yu-Liang. Density functional study on the adsorption of C atoms on Ni (111) surface. Acta Physica Sinica, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [16] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [17] Meng Da-Qiao, Luo Wen-Hua, Li Gan, Chen Hu-Chi. Density functional study of CO2 adsorption on Pu(100) surface. Acta Physica Sinica, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [18] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [19] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [20] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
Metrics
  • Abstract views:  10991
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2018
  • Accepted Date:  23 November 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回