Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton

Duan Xiu-Ming Yi Zhi-Jun

Citation:

Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton

Duan Xiu-Ming, Yi Zhi-Jun
PDF
HTML
Get Citation
  • The calculations using GW method based on Green’s function show that two-dimensional monolayer InSe and InTe have desired electronic band gaps for absorbing visible light, high electron mobilities, and suitable electronic band structures for water splitting, and that the spin orbit coupling (SOC) leads to an indirect-to -direct band gap transition for monolayer InTe. On the basis of quasi-particle energy levels, the calculations via solving Bethe-Salpter equation (BSE) show that the exciton binding energy of isolated monolayer InSe and InTe are much higher than that of the dissociation energy of exciton at room temperature. On the other hand, two-dimensional semiconductors in laboratory are often supported by substrates for mechanical stability, and the atomic thickness values of two-dimensional semiconductors are also various in different experiments. These factors will change the dielectric environments of two-dimensional semiconductor, and the further calculations show that the exciton binding energy of InSe and InTe decrease with the increase of the thickness of InSe and InTe and also the thickness of their substrates, also revealing that the exciton binding energy can be accurately controlled by engineering the thickness of two-dimensional semiconductors and the substrates. Our results provide important theoretical basis for accurately controlling the binding energy of two-dimensional InSe and InTe.
      Corresponding author: Yi Zhi-Jun, 5216@cumt.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2019XKQYMS15).
    [1]

    Dai M, Gao C, Nie Q, Wang Q J, Lin, Y, F, Chu J, Li W 2022 Adv. Mater. Technol. 7 2200321Google Scholar

    [2]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V, Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [3]

    Li Z Y, Cheng H Y, Kung S H, Yao H C, Inbaraj C R P, Sankar R, Ou M N, Chen Y F, Lee C C, Lin K H 2023 Nanomaterials 13 750Google Scholar

    [4]

    Feng W, Zhou X, Tian W Q, Zheng W, Hu P 2015 Phys. Chem. Chem. Phys. 17 3653Google Scholar

    [5]

    Mudd G W, Svatek S A, Hague L, Makarovsky O, Kudrynskyi Z R, Mellor C J, Beton P H, Eaves L, Novoselov K S, Kovalyuk Z D, Vdovin E E, Marsden A J, Wilson N R, Patane A 2015 Adv. Mater. 27 3760Google Scholar

    [6]

    张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟 2020 物理学报 69 157302Google Scholar

    Zhang F, Jia L Q, Sun X T, Dai X Q, Huang Q X, Li W 2020 Acta Phys. Sin. 69 157302Google Scholar

    [7]

    Mudd G W, Svatek S A, Ren T, Patanè A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R, Dmitriev A I 2013 Adv. Mater. 25 5714Google Scholar

    [8]

    Henck H, Pierucci D, Zribi J, Bisti F, Papalazarou E, Girard J C, Chaste J., Bertran F, Fèvre P L, Sirotti F, Perfetti L, Giorgetti C, Shukla A, Rault J E, Ouerghi A 2019 Phys. Rev. Mater. 3 034004Google Scholar

    [9]

    Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R, Mohite A D, Ajayan P M 2014 ACS Nano 8 1263Google Scholar

    [10]

    Zhou J, Shi J, Zeng Q, Chen Y, Niu L, Liu F, Yu T, Suenaga Kazu, Liu X, Lin J, Liu Z 2018 2D Mater. 5 025019Google Scholar

    [11]

    Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F, Chen Y T, Gao Xuan P A 2015 Nano Lett. 156 3815Google Scholar

    [12]

    Lauth J, Gorris F E S, Khoshkhoo M S, Chassé T, Friedrich W, Lebedeva V, Meyer A, Klinke C, Kornowski A, Scheele M, Weller H 2016 Chem. Mater. 28 1728Google Scholar

    [13]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [14]

    Pal S, Bose D N 1996 Solid State Commun. 97 725Google Scholar

    [15]

    Zólyomi V, Drummond N D, Falko V I 2014 Phys. Rev. B 89 205416Google Scholar

    [16]

    Jain M, Chelikowsky J R, Louie S, G, 2011 Phys. Rev. Lett. 107 216806Google Scholar

    [17]

    Ma H, Feng J, Jin F, Wei M, Liu C, Ma Y 2018 Nanoscale 10 15624Google Scholar

    [18]

    Yi Z, Wu M, Pang Y, Jia R, Xu R R 2021 Appl. Surf. Sci. 567 150842Google Scholar

    [19]

    Klots A R, Newaz A K M, Wang B, Prasai D, Krzyzanowska H, Lin Junhao, Caudel D, Ghimire N J, Yan J, Ivanov B L, Velizhanin K A, Burger A, Mandrus D G, Tolk N H, Pantelides S T, Bolotin K I 2014 Sci. Rep. 4 6608Google Scholar

    [20]

    Thygesen K S 2017 2D Mater. 4 022004Google Scholar

    [21]

    Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021 Light-Sci. Appl. 10 72Google Scholar

    [22]

    Qiu, D. Y. Jornada F da H, Louie S G 2013 Phys. Rev. Lett. 111 216805Google Scholar

    [23]

    Komsa, H P, Krasheninnikov A V 2012 Phys. Rev. B 86 241201(RGoogle Scholar

    [24]

    Shi H L, Pan H, Zhang Y W, Yakobson B I 2013 Phys. Rev. B 87 155304Google Scholar

    [25]

    Qiu D Y, Felipe H da J, Louie, S G 2017 Nano Lett. 17 4706Google Scholar

    [26]

    Raja A, Chaves A, Yu J, Arefe G, Hill Heather M, Rigosi Albert F, Berkelbach Timothy C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus Louis E, Heinz Tony F, Reichman David R, Chernikov A 2017 Nat. Commun. 8 15251Google Scholar

    [27]

    Ugeda Miguel M, Bradley Aaron J, Shi S F, Jornada Felipe H da, Zhang Y, Qiu Diana Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie Steven G, Crommie Michael F 2014 Nat. Mater. 13 1091Google Scholar

    [28]

    Enkovaara J, Rostgaard C, Mortensen J J, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen H A, Kristoffersen H H, Kuisma M, Larsen A H, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses P G, Ojanen J, Olsen T, Petzold V, Romero N A, Stausholm-Møller J, Strange M, Tritsaris G A, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen G K H, Nieminen R M, Nørskov J K, Puska M, Rantala T T, Schiøtz J, Thygesen K S, Jacobsen K W 2010 J. Phys. Condens. Mater. 22 253202Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Babaie-Kafaki S, Aminifard Z 2019 Numer. Algorithms 82 1345Google Scholar

    [32]

    Hüser F, Olsen T, Thygesen K S 2013 Phys. Rev. B 87 235132Google Scholar

    [33]

    Yan J, Mortensen J J, Jacobsen K W, Thygesen K S 2011 Phys. Rev. B 83 245122Google Scholar

    [34]

    Yi Z, Ma Y, Zheng Y, Duan Y, Li H 2019 Adv. Mater. Interfaces 6 1801175Google Scholar

    [35]

    Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119Google Scholar

    [36]

    Smail-Beigi S 2006 Phys. Rev. B 73 233103Google Scholar

    [37]

    Rasmussen F A, Schmidt P S, Winther K T, Thygesen K S 2016 Phys. Rev. B 94 155406Google Scholar

    [38]

    Olsen T 2016 Phys. Rev. B 94 235106Google Scholar

    [39]

    Tiago M L, Ismail-Beigi S, Louie S G 2004 Phys. Rev. B 69 125212Google Scholar

    [40]

    Klimeš J, Kaltak M, Kresse G 2014 Phys. Rev. B 90 075125Google Scholar

    [41]

    Haastrup S, Strange Mikke, Pandey M, Deilmann T, Schmidt Per S, Hinsche Nicki F, Gjerding Morten N, Torelli D, Larsen Peter M, Riis-Jensen Anders C 2018 2D Mater. 5 042002Google Scholar

    [42]

    Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601Google Scholar

    [43]

    隋国民, 严桂俊, 杨光, 张宝, 冯亚青 2022 物理学报 71 208801Google Scholar

    Sui G M, Yan G J, Yang G, Zhang B, Feng Y Q 2022 Acta Phys. Sin. 71 208801Google Scholar

    [44]

    Andersen K, Latini S, Thygesen K S 2015 Nano Lett. 15 4616Google Scholar

    [45]

    Pandey T, Parker David S, Lindsay L 2017 Nanotechnology 28 455706Google Scholar

    [46]

    Pang Y, Wu M, Zhang J, Yi Z 2021 J. Phys. Chem. C 125 3027Google Scholar

  • 图 1  (a) 孤立单层InX (X = Se/Te) 几何结构; (b) InX原胞的第一布里渊区以及高对称位置K点分布

    Figure 1.  (a) Geometric structure of isolated monolayer InX (X = Se/Te); (b) the first Brillouin zone and high-symmetry K point distributions of primitive unit cell for InX.

    图 2  孤立单层InSe (a), (b) 和InTe (c), (d) 的能带结构(左)和原子投影分态密度(右)

    Figure 2.  The band structures (left) and atom projected density of states (right) of isolated monolayer InSe (a), (b) and InTe (c), (d).

    图 3  (a) 基于PBE和GW方法得到的孤立单层InSe和InTe带边能级排列示意图; (b) 准粒子能级, 光学带隙以及激子结合能示意图

    Figure 3.  (a) The band edge alignments of isolated monolayer InSe and InTe based on PBE and GW method; (b) quasi-particle energy level, optical band gap and schematic diagram of exciton binding energy.

    图 4  单层InSe (a), (b) 和 单层InTe (c), (d)分别沿xz方向的光学吸收谱

    Figure 4.  The absorption spectrum of monolayer InSe (a), (b) and monolayer InTe (c), (d) along x and z polarization directions.

    图 5  InSe (a)和InTe (b)的激子结合能随自身原子层数量的变化关系

    Figure 5.  The relationship diagrams of exciton binding energies of InSe and InTe with the variation of their self-atomic layer numbers.

    图 6  单层InSe/InTe和环境之间的结构示意图

    Figure 6.  The structural diagram between monolayer InSe/InTe and environment.

    图 7  单层InSe (a) 和InTe (b) 的激子结合能随h-BN原子层数量的变化关系

    Figure 7.  The relationship diagrams of exciton binding energies of monolayer InSe and InTe with the variation of number of h-BN atomic layers.

    图 B1  InSe和InTe沿a (图中方向1)和b (图中方向2)两个方向导带边和价带边抛物线拟合

    Figure B1.  Fitted results of conduction band edge and valence band edge of InSe and InTe along both a (direction 1 in the figure) and b (direction 2 in the figure).

    表 1  InSe和InTe导带和价带带边电子和空穴的有效质量

    Table 1.  The effective masses of electrons and holes of conduction and valence band edges for InSe and InTe.

    n (InSe/InTe)15102030
    Eb (InSe)/eV0.4190.3500.3420.3380.337
    Eb (InTe)/eV0.2940.2440.2370.2350.234
    DownLoad: CSV

    表 2  不同原子层厚度InSe以及InTe放置在50个原子层厚度h-BN衬底上时的激子结合能

    Table 2.  The exciton binding energies for different atomic thicknesses of InSe and InTe on h-BN substrate with 50 atomic layer thickness.

    n (InSe/InTe)15102030
    Eb (InSe)/eV0.4190.3500.3420.3380.337
    Eb (InTe)/eV0.2940.2440.2370.2350.234
    DownLoad: CSV
  • [1]

    Dai M, Gao C, Nie Q, Wang Q J, Lin, Y, F, Chu J, Li W 2022 Adv. Mater. Technol. 7 2200321Google Scholar

    [2]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V, Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [3]

    Li Z Y, Cheng H Y, Kung S H, Yao H C, Inbaraj C R P, Sankar R, Ou M N, Chen Y F, Lee C C, Lin K H 2023 Nanomaterials 13 750Google Scholar

    [4]

    Feng W, Zhou X, Tian W Q, Zheng W, Hu P 2015 Phys. Chem. Chem. Phys. 17 3653Google Scholar

    [5]

    Mudd G W, Svatek S A, Hague L, Makarovsky O, Kudrynskyi Z R, Mellor C J, Beton P H, Eaves L, Novoselov K S, Kovalyuk Z D, Vdovin E E, Marsden A J, Wilson N R, Patane A 2015 Adv. Mater. 27 3760Google Scholar

    [6]

    张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟 2020 物理学报 69 157302Google Scholar

    Zhang F, Jia L Q, Sun X T, Dai X Q, Huang Q X, Li W 2020 Acta Phys. Sin. 69 157302Google Scholar

    [7]

    Mudd G W, Svatek S A, Ren T, Patanè A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R, Dmitriev A I 2013 Adv. Mater. 25 5714Google Scholar

    [8]

    Henck H, Pierucci D, Zribi J, Bisti F, Papalazarou E, Girard J C, Chaste J., Bertran F, Fèvre P L, Sirotti F, Perfetti L, Giorgetti C, Shukla A, Rault J E, Ouerghi A 2019 Phys. Rev. Mater. 3 034004Google Scholar

    [9]

    Lei S, Ge L, Najmaei S, George A, Kappera R, Lou J, Chhowalla M, Yamaguchi H, Gupta G, Vajtai R, Mohite A D, Ajayan P M 2014 ACS Nano 8 1263Google Scholar

    [10]

    Zhou J, Shi J, Zeng Q, Chen Y, Niu L, Liu F, Yu T, Suenaga Kazu, Liu X, Lin J, Liu Z 2018 2D Mater. 5 025019Google Scholar

    [11]

    Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F, Chen Y T, Gao Xuan P A 2015 Nano Lett. 156 3815Google Scholar

    [12]

    Lauth J, Gorris F E S, Khoshkhoo M S, Chassé T, Friedrich W, Lebedeva V, Meyer A, Klinke C, Kornowski A, Scheele M, Weller H 2016 Chem. Mater. 28 1728Google Scholar

    [13]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [14]

    Pal S, Bose D N 1996 Solid State Commun. 97 725Google Scholar

    [15]

    Zólyomi V, Drummond N D, Falko V I 2014 Phys. Rev. B 89 205416Google Scholar

    [16]

    Jain M, Chelikowsky J R, Louie S, G, 2011 Phys. Rev. Lett. 107 216806Google Scholar

    [17]

    Ma H, Feng J, Jin F, Wei M, Liu C, Ma Y 2018 Nanoscale 10 15624Google Scholar

    [18]

    Yi Z, Wu M, Pang Y, Jia R, Xu R R 2021 Appl. Surf. Sci. 567 150842Google Scholar

    [19]

    Klots A R, Newaz A K M, Wang B, Prasai D, Krzyzanowska H, Lin Junhao, Caudel D, Ghimire N J, Yan J, Ivanov B L, Velizhanin K A, Burger A, Mandrus D G, Tolk N H, Pantelides S T, Bolotin K I 2014 Sci. Rep. 4 6608Google Scholar

    [20]

    Thygesen K S 2017 2D Mater. 4 022004Google Scholar

    [21]

    Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021 Light-Sci. Appl. 10 72Google Scholar

    [22]

    Qiu, D. Y. Jornada F da H, Louie S G 2013 Phys. Rev. Lett. 111 216805Google Scholar

    [23]

    Komsa, H P, Krasheninnikov A V 2012 Phys. Rev. B 86 241201(RGoogle Scholar

    [24]

    Shi H L, Pan H, Zhang Y W, Yakobson B I 2013 Phys. Rev. B 87 155304Google Scholar

    [25]

    Qiu D Y, Felipe H da J, Louie, S G 2017 Nano Lett. 17 4706Google Scholar

    [26]

    Raja A, Chaves A, Yu J, Arefe G, Hill Heather M, Rigosi Albert F, Berkelbach Timothy C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus Louis E, Heinz Tony F, Reichman David R, Chernikov A 2017 Nat. Commun. 8 15251Google Scholar

    [27]

    Ugeda Miguel M, Bradley Aaron J, Shi S F, Jornada Felipe H da, Zhang Y, Qiu Diana Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie Steven G, Crommie Michael F 2014 Nat. Mater. 13 1091Google Scholar

    [28]

    Enkovaara J, Rostgaard C, Mortensen J J, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen H A, Kristoffersen H H, Kuisma M, Larsen A H, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses P G, Ojanen J, Olsen T, Petzold V, Romero N A, Stausholm-Møller J, Strange M, Tritsaris G A, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen G K H, Nieminen R M, Nørskov J K, Puska M, Rantala T T, Schiøtz J, Thygesen K S, Jacobsen K W 2010 J. Phys. Condens. Mater. 22 253202Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Babaie-Kafaki S, Aminifard Z 2019 Numer. Algorithms 82 1345Google Scholar

    [32]

    Hüser F, Olsen T, Thygesen K S 2013 Phys. Rev. B 87 235132Google Scholar

    [33]

    Yan J, Mortensen J J, Jacobsen K W, Thygesen K S 2011 Phys. Rev. B 83 245122Google Scholar

    [34]

    Yi Z, Ma Y, Zheng Y, Duan Y, Li H 2019 Adv. Mater. Interfaces 6 1801175Google Scholar

    [35]

    Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119Google Scholar

    [36]

    Smail-Beigi S 2006 Phys. Rev. B 73 233103Google Scholar

    [37]

    Rasmussen F A, Schmidt P S, Winther K T, Thygesen K S 2016 Phys. Rev. B 94 155406Google Scholar

    [38]

    Olsen T 2016 Phys. Rev. B 94 235106Google Scholar

    [39]

    Tiago M L, Ismail-Beigi S, Louie S G 2004 Phys. Rev. B 69 125212Google Scholar

    [40]

    Klimeš J, Kaltak M, Kresse G 2014 Phys. Rev. B 90 075125Google Scholar

    [41]

    Haastrup S, Strange Mikke, Pandey M, Deilmann T, Schmidt Per S, Hinsche Nicki F, Gjerding Morten N, Torelli D, Larsen Peter M, Riis-Jensen Anders C 2018 2D Mater. 5 042002Google Scholar

    [42]

    Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601Google Scholar

    [43]

    隋国民, 严桂俊, 杨光, 张宝, 冯亚青 2022 物理学报 71 208801Google Scholar

    Sui G M, Yan G J, Yang G, Zhang B, Feng Y Q 2022 Acta Phys. Sin. 71 208801Google Scholar

    [44]

    Andersen K, Latini S, Thygesen K S 2015 Nano Lett. 15 4616Google Scholar

    [45]

    Pandey T, Parker David S, Lindsay L 2017 Nanotechnology 28 455706Google Scholar

    [46]

    Pang Y, Wu M, Zhang J, Yi Z 2021 J. Phys. Chem. C 125 3027Google Scholar

  • [1] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] Wu Ze-Fei, Huang Mei-Zhen, Wang Ning. Nonlinear Hall effects in two-dimensional moiré superlattices. Acta Physica Sinica, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [3] Chen Xiao-Juan, Xu Kang, Zhang Xiu, Liu Hai-Yun, Xiong Qi-Hua. Research progress of bulk photovoltaic effect in two-dimensional materials. Acta Physica Sinica, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [4] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [5] Wu Yan-Fei, Zhu Meng-Yuan, Zhao Rui-Jie, Liu Xin-Jie, Zhao Yun-Chi, Wei Hong-Xiang, Zhang Jing-Yan, Zheng Xin-Qi, Shen Jian-Xin, Huang He, Wang Shou-Guo. The fabrication and physical properties of two-dimensional van der Waals heterostructures. Acta Physica Sinica, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [6] Song Rui, Wang Bi-Li, Feng Kai, Wang Li, Liang Dan-Dan. Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [7] Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Physica Sinica, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] Hoo Qian-Ying, Xu Yang. Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application. Acta Physica Sinica, 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [9] Huang Yu-Hao, Zhang Gui-Tao, Wang Ru-Qian, Chen Qian, Wang Jin-Lan. Electronic structure and stability of two-dimensional bimetallic ferromagnetic semiconductor CrMoI6. Acta Physica Sinica, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [10] Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211516
    [11] Meng Yu-Xin, Zhao Yi-Fan, Li Shao-Chun. Research progress of puckered honeycomb monolayers. Acta Physica Sinica, 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [12] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [13] Zou Shuang-Yang,  Muhammad Arshad,  Yang Gao-Ling,  Liu Rui-Bin,  Shi Li-Jie,  Zhang Yong-You,  Jia Bao-Hua,  Zhong Hai-Zheng,  Zou Bing-Suo. Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures. Acta Physica Sinica, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [14] Yang Huan, Zhang Sui-Meng, Xing Ling-Ling, Wu Xing-Ju, Zhao Min-Fu. A theoretical study on collision mechanisms for low energy electron impact ionization of helium in the perpendicular geometry. Acta Physica Sinica, 2017, 66(7): 073401. doi: 10.7498/aps.66.073401
    [15] Yang Huan, Xing Ling-Ling, Zhang Sui-Meng, Wu Xing-Ju, Yuan Hao. Influence of screening effect on double differential cross section and single differential cross section for (e, 2e) process of helium. Acta Physica Sinica, 2013, 62(18): 183402. doi: 10.7498/aps.62.183402
    [16] Yang Huan, Zhang Sui-Meng, Wu Xing-Ju. A theoretical study on final channel screening and exchange effects in large energy loss geometry. Acta Physica Sinica, 2009, 58(10): 6938-6945. doi: 10.7498/aps.58.6938
    [17] Zheng Rui-Lun. Energy of excitons and probability distribution of electrons in columned composite system composed of quantum dots and quantum wires. Acta Physica Sinica, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [18] Song Zhao-Quan, Xu Hui, Li Yan-Feng, Liu Xiao-Liang. The effects of non-diagonal disorder and dimensions in low-dimensional disordered electronic system. Acta Physica Sinica, 2005, 54(5): 2198-2201. doi: 10.7498/aps.54.2198
    [19] Xu Quan, Tian Qiang. The interaction of excitons with phonons and solution of breathers in one-dimensional molecular chain. Acta Physica Sinica, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [20] Jin Hua, Zhang Li-Gong, Zheng Zhu-Hong, Kong Xiang-Gui, An Li-Nan, Shen De-Zhen. Exciton tunnelling in ZnCdSe quantum well/CdSe quantum dots. Acta Physica Sinica, 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
Metrics
  • Abstract views:  4814
  • PDF Downloads:  119
  • Cited By: 0
Publishing process
  • Received Date:  05 April 2023
  • Accepted Date:  05 May 2023
  • Available Online:  16 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回