Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials

Sun Ying-Hui Mu Cong-Yan Jiang Wen-Gui Zhou Liang Wang Rong-Ming

Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Phys. Sin., 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
Citation: Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Phys. Sin., 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902

Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials

Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Two-dimensional (2D) material has atomic smooth surface, nano-scale thickness and ultra-high specific surface area, which is an important platform for studying the interface interaction between metal nanoparticles (NPs) and 2D materials, and also for observing the surface atomic migration, structural evolution and aggregation of metal NPs in real time and in situ. By rationally designing and constructing the interfaces of metal NPs and 2D materials, the characterization of the interface structure on an atomic scale is very important in revealing the structure-property relationship. It is expected that the investigation is helpful in understanding the mechanism of interaction between metal and 2D materials and optimizing the performance of the devices based on metal-2D material heterojunctions.In this review, the recent progress of interface modulation and physical properties of the heterostructure of metal NPs and 2D materials are summarized. The nucleation, growth, structural evolution and characterization of metal NPs on the surface of 2D materials are reviewed. The effects of metal NPs on the crystal structure, electronic state and energy band of 2D materials are analyzed. The possible interfacial strain and interfacial reaction are also included. Because of the modulation of electrical and optical properties of 2D materials, the performance of metal NPs-2D material based field effect transistor devices and optoelectronic devices are improved. This review is helpful in clarifying the physical mechanism of microstructure affecting the properties of metal NPs-2D material heterostructures on an atomic scale, and also in developing the metal-2D material heterostructures and their applications in the fields of electronic devices, photoelectric devices, energy devices, etc.
      PACS:
      68.65.Pq(Graphene films)
      73.20.Mf(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
      61.46.-w(Structure of nanoscale materials)
      68.37.Lp(Transmission electron microscopy (TEM))
      Corresponding author: Sun Ying-Hui, yhsun@ustb.edu.cn ; Wang Rong-Ming, rmwang@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974041, 12034002, 51971025) and the Beijing Natural Science Foundation, China (Grant No. 2212034).

    自2004年石墨烯被发现以来, 二维材料成为凝聚态物理和材料领域的研究热点. 二维材料具有可调控的原子结构和界面, 是研究低维限制下新奇物理现象的理想材料, 也是实现更高集成度、更低功耗的下一代信息器件的备选材料之一. 石墨烯具有超高的载流子迁移率和杨氏模量、良好的热导率等物理化学性质[1-4]. 理想的石墨烯是零带隙材料, 通过引入N, P等元素掺杂[5-7]、制备纳米带等方式可打开带隙[8,9], 但工艺相对复杂, 对能带的调控有限, 极大地限制了其在半导体领域的应用. 以MoS2, WSe2等为代表的二维层状过渡金属硫族化合物具有丰富的化学组成和晶体结构, 在可见或近红外范围内的可调带隙, 涵盖半导体、绝缘体、导体、超导体等电学性质, 成为石墨烯材料的有力补充, 在新型电子器件和光电器件、能量存储和转换器件等领域展现出潜在的应用价值[10-15].

    在二维材料器件应用中, 二维材料与金属之间的相互作用, 不仅对于形成良好的电极接触具有重要影响, 而且能够提升二维材料性能并衍生出新的功能. 基于界面设计和界面结构调控, 可调节金属和二维材料之间的势垒, 影响界面电荷的注入和输运过程, 实现对二维材料电学和光学等性质的调控. 因此, 近年来对于二维材料与金属纳米颗粒形成的异质界面研究, 受到越来越多的关注. 金属纳米颗粒由于小尺寸效应、表面效应的影响, 其中电子和声子被限制在纳米尺度的空间内, 在光、电、磁、热、力等各方面呈现出与常规块体材料不同的物理性质, 具有更强的光吸收能力和化学活性, 而且利用金属纳米颗粒的表面等离激元共振(surface plasmon resonance, SPR)效应, 还可增强其所负载的二维材料的光吸收能力[16].

    将金属纳米颗粒负载在不同二维材料上, 设计并精准构筑具有特定界面原子构型的金属与二维材料异质结构, 可通过调控界面处的势垒、晶格应变或局域电磁场分布来调控二维材料的电、磁、光学等性质, 以实现其在电子学、光电子学、传感、催化、能源等领域的应用[17]. 利用先进的表征手段揭示其界面原子构型及其在外场条件下的演化过程, 探究二者的界面相互作用机制, 对于推进金属-二维材料异质结构的应用具有重要的意义.

    本文将重点介绍金属纳米颗粒和二维材料异质结构的界面调控以及对物理性质的影响. 基于界面设计, 探讨金属纳米颗粒与二维材料晶格之间的相互作用, 研究金属纳米颗粒在二维材料表面的成核、生长和结构演化, 研究金属纳米颗粒对二维材料的能带结构、晶格振动谱、电子输运和界面电荷转移的影响, 并展望其在电子器件、光电器件等方面的应用.

    二维材料丰富的材料体系、特定的表面结构以及纳米级厚度, 为实时、原位观察金属纳米颗粒在其表面的成核、生长和结构演化等热力学行为和动力学行为提供了一个理想的载体. 运用先进的显微表征方法, 可在微米、纳米、原子层次研究金属纳米颗粒的成核生长等行为, 揭示金属颗粒-二维材料的界面原子构型, 探究其在外场下的晶格结构、原子排列的演化及其对物理性质的影响, 对设计、构建结构和性能稳定的基于金属纳米颗粒与二维材料异质结构的电子器件和光电器件奠定了重要的理论和实验基础.

    金属纳米颗粒在二维材料表面的负载, 可以通过物理和化学方法实现. 根据金属和二维材料表面浸润性的差异, 金属纳米颗粒在二维材料表面呈现出不同的成核和生长模式. 由于理想的二维材料表面无悬挂键, 对于Au, Ag等过渡金属而言, 难以在其表面成核生长. 根据经典的晶体成核理论, 点缺陷、晶界等缺陷位置常常是晶体的成核位点. 理论计算和实验结果表明, 石墨烯中的点缺陷能为金属提供成核位点. 英国曼彻斯特大学Novoselo研究小组[18,19]在机械剥离和化学气相沉积(chemical vapor deposition, CVD)制备的石墨烯表面, 通过热蒸发沉积Au纳米颗粒, 在透射电镜下观察到Au纳米颗粒倾向于在石墨烯的碳氢污染物处出现. 将石墨烯氢化处理后发现, 氢化主要发生在碳氢污染物处, 为金属纳米颗粒的成核生长提供了更多的成键位点[18]. 对于Al, Pd和Ni等金属在石墨烯上的负载也有类似的现象[19]. 英国牛津大学Warner研究小组[20]通过球差校正透射电子显微镜(spherical aberration corrected-transmission electron microscope, AC-TEM)原位研究了在800 ℃下Au纳米颗粒在石墨烯表面的形核动力学行为, 如图1(a)(c))所示. 可以看出, Au纳米颗粒优先在石墨烯的缺陷边缘处成核, 然后移动到表面点缺陷位置(图1(a)红圈标示), 并发生表面原子结构重排[20]. 除碳氢污染物处、表面点缺陷和边缘缺陷处[21]有利于成核之外, 晶界也是金属颗粒重要的成核位点. 在催化反应中广泛应用的Pd, Pt等金属在二维材料表面也观察到类似的成核生长过程[22-24], 如在CVD制备的单层MoS2上热分解氯铂酸原位观察到Pt纳米晶的成核和生长过程. CVD制备的MoS2内部存在很多晶界(图1(d)), 与中心区域相比, 晶界位置的Mo/S原子与Pt原子的结合能更高, 观察到Pt纳米颗粒优先沿晶界成核, 如图1(e)(g)所示[24].

    图 1 缺陷和晶界对金属纳米颗粒在二维材料上成核的影响 (a)—(c) AC-TEM图像显示Au纳米团簇在800 ℃下从石墨烯孔的边缘移动到缺陷位置(红色虚线圆圈)[20]; (d)—(g) Pt纳米颗粒在单层MoS2的晶界处选择性成核[24]\r\nFig. 1. Effects of defects and grain boundaries on the nucleation of metal nanoparticles (NPs) on two-dimensional materials: (a)–(c) AC-TEM images at 800 ℃ showing Au clusters moving from the edge of a graphene hole to a defective site (indicated by red dotted circle)[20]; (d)–(g) selective nucleation of Pt NPs at the grain boundary of monolayer MoS2[24].
    图 1  缺陷和晶界对金属纳米颗粒在二维材料上成核的影响 (a)—(c) AC-TEM图像显示Au纳米团簇在800 ℃下从石墨烯孔的边缘移动到缺陷位置(红色虚线圆圈)[20]; (d)—(g) Pt纳米颗粒在单层MoS2的晶界处选择性成核[24]
    Fig. 1.  Effects of defects and grain boundaries on the nucleation of metal nanoparticles (NPs) on two-dimensional materials: (a)–(c) AC-TEM images at 800 ℃ showing Au clusters moving from the edge of a graphene hole to a defective site (indicated by red dotted circle)[20]; (d)–(g) selective nucleation of Pt NPs at the grain boundary of monolayer MoS2[24].

    以上结果表明, 二维材料表面的点缺陷、晶界等是金属纳米颗粒主要的成核位点. 它可以通过调控缺陷的方式来调控, 进而实现金属纳米颗粒在二维材料表面的调控. 北京理工大学姜澜研究小组[25]用飞秒脉冲激光照射在MoS2表面, 通过制造S原子缺陷, 构建了具有S不饱和键的边缘活性位点(图2(a)), 使其成为了Au颗粒的原子成核位点(图2(b)). 这样就通过改变激光处理条件, 调控MoS2的表面缺陷分布, 实现了Au纳米颗粒密度、尺寸和形貌的调控, 如图2(c)2(d)所示. 美国内布拉斯加大学林肯分校的Li研究小组[26]通过激光诱导缺陷和光还原法在层状MoS2上修饰Ag纳米颗粒时也发现, Ag纳米颗粒的尺寸、密度和生长速率可通过照射激光的功率、照射时间和硝酸银的浓度来调控. 在光照下MoS2纳米片产生电子空穴对, Ag+与电子结合后, 在缺陷处形成Ag核.

    图 2 金纳米颗粒的还原和MoS2表面结构对金纳米颗粒形貌的影响[25] (a)飞秒激光处理后, 在MoS2边缘形成具有S不饱和键的边缘活性位点(红色圆点)的示意图; (b)在边缘活性位点处, 金离子被还原成金原子的示意图; 处理后MoS2表面分别具有(c)短周期结构和(d)长周期结构导致的非球形金纳米颗粒对比图(图中0 s和30 min表示激光处理后的MoS2与AuCl3溶液的反应时间)\r\nFig. 2. Reduction of Au NPs and the effects of surface structures of MoS2 on Au morphology[25]: (a) Schematic of femtosecond pulses irradiating on MoS2; (b) Au cations were reduced to be Au atoms by laser treated MoS2; (c) short-periodic structures and (d) long-periodic structures led to different non-spherical Au NPs (“0 s” and “30 min” represent the reaction time of laser-treated MoS2 and AuCl3 solution).
    图 2  金纳米颗粒的还原和MoS2表面结构对金纳米颗粒形貌的影响[25] (a)飞秒激光处理后, 在MoS2边缘形成具有S不饱和键的边缘活性位点(红色圆点)的示意图; (b)在边缘活性位点处, 金离子被还原成金原子的示意图; 处理后MoS2表面分别具有(c)短周期结构和(d)长周期结构导致的非球形金纳米颗粒对比图(图中0 s和30 min表示激光处理后的MoS2与AuCl3溶液的反应时间)
    Fig. 2.  Reduction of Au NPs and the effects of surface structures of MoS2 on Au morphology[25]: (a) Schematic of femtosecond pulses irradiating on MoS2; (b) Au cations were reduced to be Au atoms by laser treated MoS2; (c) short-periodic structures and (d) long-periodic structures led to different non-spherical Au NPs (“0 s” and “30 min” represent the reaction time of laser-treated MoS2 and AuCl3 solution).

    金属纳米颗粒的尺寸、形貌、密度和结构是影响其电学、光学和催化性质的关键因素[27]. 而纳米颗粒的形状和大小等取决于其成核、生长过程. 一般来讲, 纳米颗粒的成核生长是通过单体附着和纳米构建单元附着聚合两种方式来实现的. 单体一般优先附着在纳米颗粒的高指数晶面上, 这些高指数晶面具有较高的表面能, 和低指数稳定晶面相比, 具有更快的生长速度. 而邻近的纳米颗粒可通过取向附着等方式聚合成更大的纳米颗粒, 进而降低系统的表面能. 在纳米颗粒取向附着生长过程中, 纳米颗粒可能会发生旋转, 以减少颗粒内部和颗粒之间晶界上的位错, 进而降低系统的总能量. 另一种可能的生长机制是通过位错或晶界迁移来实现原子重排. 运用先进的电子显微表征方法, 在原子分辨率原位观察金属纳米颗粒的生长过程, 特别是原子重构与再结晶等结构演化过程, 对于理解纳米颗粒的生长机理, 实现纳米颗粒的控制生长, 推进金属纳米颗粒-二维材料异质结构的应用具有重要的意义.

    石墨烯或氧化石墨烯(GO)不仅有载体的作用, 还可以辅助金属纳米结构的各向异性生长. 如新加坡南洋理工大学张华研究小组[28]将氯金酸、1-氨基-9-十八烯和GO片混合, 通过控制加热反应条件, 获得了具有六角密排结构、直径约1.6 nm的超细Au纳米线, 以及具有六角密排和面心立方交替结构的Au纳米线. 研究发现, GO在防止生长过程中Au纳米线团聚成束的同时, 吸附1-氨基-9-十八烯后使超小的Au种子通过自组装实现各向异性生长, 为利用二维材料的表面特性调控金属纳米结构的形态和分布, 进而调控材料性质提供了一条可能的途径.

    国家纳米中心的孙连峰研究小组[21]在机械剥离的MoS2基底上热蒸发Au, 发现单层MoS2表面的Au纳米颗粒呈不规则岛状结构, 2—4层MoS2表面上的Au纳米颗粒呈等边三角形或对顶三角形结构, 三角形的边长随MoS2的厚度增大而增大. 高分辨TEM分析表明, Au与MoS2之间存在确定的晶体学取向关系: $\rm [111]Au//[001]_{MoS_2}$$\left\langle {211} \right\rangle_{\rm Au}// \left\langle {210} \right\rangle_{\rm MoS_2}$. Au的{220}面和MoS2的{110}面存在8.8%的晶格失配, 形成莫尔条纹的间距约为1.68 nm. 研究表明, MoS2较弱的层间相互作用, 对其表面Au原子的成核和生长具有重要的调控作用. 美国北爱荷华大学的Stollenwerk研究小组[29]用STM发现MoS2表面生长的Au (111)纳米岛经高温退火后出现高度和边长量子尺寸效应, Au和MoS2之间的范德瓦耳斯相互作用促进了Au的外延生长和量子阱态的形成.

    在外场条件下, 金属纳米颗粒与二维材料异质结构的稳定性对其性能具有重要的影响, 研究其结构演化对于金属纳米颗粒与二维材料异质结构的应用具有重要的意义. 贵金属纳米颗粒负载的石墨烯或GO, 在气体吸附和催化等方面表现出良好的应用前景[30-32]. 贵金属纳米颗粒的催化活性与其形貌、分散度、暴露面等有很大的关系, 其在高温下的结构稳定性, 对材料的催化活性具有十分重要的影响. 美国Rice大学Tour研究小组[22]利用化学还原法, 将Pd纳米颗粒均匀负载在热剥离的石墨烯表面, 运用扫描透射电子显微镜(scanning transmission electron microscopy, STEM)在高温下原位观察到Pd纳米颗粒的迁移和聚集现象. 当加热到700 ℃时, Pd纳米颗粒开始在石墨烯表面发生移动, 加热到800 ℃时, Pd纳米颗粒在石墨烯表面通过迁移、靠近、桥接、聚合等形成更大的颗粒, 迁移距离可达100 nm. 韩国科学技术高等研究所Lee研究小组[33]用透射电镜原位观察到石墨烯负载的Au纳米颗粒在高能电子束辐照下通过旋转、晶界推移等实现了晶粒的取向聚合, 如图3所示. 高能电子束促进小颗粒向大颗粒移动, 形成的小角位错用作颗粒聚合过程中的原子扩散通道(图3(a)). 接触颗粒边缘的低配位数原子沿表面向接触界面迁移, 形成位错, 经纳米颗粒旋转形成孪晶界(图3(b)(d)); 或通过原子迁移导致位错/晶界的定向推移, 最终形成一个单晶颗粒(图3(e)(i)). Au颗粒表面的低配位数原子迁移至高能晶面或接触界面处, 最终形成以Au{111}或{100}面为暴露面的纳米颗粒. 英国曼彻斯特大学Novoselo研究小组[18]观察到Au (111)面在石墨烯表面旋转, 并确定Au单原子位于C原子正上方附着在石墨烯表面.

    图 3 实时高分辨TEM图像揭示金纳米颗粒通过旋转和晶界推移实现聚合生长过程[33] (a)两个纳米颗粒靠近时的初始位错角为11.7º; (b)—(d)两个纳米颗粒的晶体取向发生旋转, 位错角随时间减小(黄色虚线代表聚合过程中的内部孪晶界, 红色虚线代表聚合后形成的孪晶界); (e)—(f)两个纳米颗粒靠近时在界面处形成高曲率的“颈”状结构; (g)—(i)晶界逐渐推移至聚合颗粒的边缘, 并形成一个单晶颗粒. 标尺为2 nm\r\nFig. 3. Real-time HRTEM images of coalescence of Au NPs via the rotation and grain boundary (GB) migration[33]: (a) Two NPs approach each other with an initial misalignment angle of 11.7º; (b)–(d) the NPs rotate to align their crystallographic orientations (The yellow and red dotted lines indicate the locked and created twin boundaries, respectively, in the combined particle during coalescence); (e)–(f) two NPs come close together and a neck is formed at the particle-particle interface; (g)–(i) GB moves to the edge of the combined particle, creating a single crystalline particle. Scale bar is 2 nm.
    图 3  实时高分辨TEM图像揭示金纳米颗粒通过旋转和晶界推移实现聚合生长过程[33] (a)两个纳米颗粒靠近时的初始位错角为11.7º; (b)—(d)两个纳米颗粒的晶体取向发生旋转, 位错角随时间减小(黄色虚线代表聚合过程中的内部孪晶界, 红色虚线代表聚合后形成的孪晶界); (e)—(f)两个纳米颗粒靠近时在界面处形成高曲率的“颈”状结构; (g)—(i)晶界逐渐推移至聚合颗粒的边缘, 并形成一个单晶颗粒. 标尺为2 nm
    Fig. 3.  Real-time HRTEM images of coalescence of Au NPs via the rotation and grain boundary (GB) migration[33]: (a) Two NPs approach each other with an initial misalignment angle of 11.7º; (b)–(d) the NPs rotate to align their crystallographic orientations (The yellow and red dotted lines indicate the locked and created twin boundaries, respectively, in the combined particle during coalescence); (e)–(f) two NPs come close together and a neck is formed at the particle-particle interface; (g)–(i) GB moves to the edge of the combined particle, creating a single crystalline particle. Scale bar is 2 nm.

    以石墨烯或GO为载体, 在电子束辐照下原位观察金属纳米颗粒的生长过程时, 由于金属纳米颗粒容易在石墨烯的缺陷处或无定形碳的位置成核, 所以纳米颗粒的生长受周围无定形碳的影响较大. 相较于石墨烯, MoS2在电子束辐照下具有更高的稳定性, 可运用TEM等原位手段更深入地研究MoS2等二维材料与金属颗粒的界面相互作用及其对金属纳米颗粒生长的影响.

    本研究小组用高分辨透射电子显微镜和高分辨扫描透射电子显微镜(high resolution-scanning transmission electron microscopy, HR-STEM), 原位研究了少层MoS2表面沉积的Au纳米颗粒的原子排列和结构演化[34]. 观察Au颗粒从分散的纳米颗粒向枝晶结构的转变过程, 发现高能电子束加速了Au枝晶和MoS2之间的外延取向(图4(a)(c)). 观察到Au原子在MoS2上的迁移形成的原子通道促进了相邻Au纳米颗粒的聚合生长(图4(d)). Au枝晶{220}面和MoS2{110}面的晶格失配形成了典型的莫尔条纹(图4(e)), 原子分辨STEM图像也进一步显示了Au枝晶与MoS2晶格的原子外延排列情况(图4(f)). 在原子层面上研究金属-二维半导体的界面原子构型及其演化可以为基于金属-二维半导体的纳米器件的设计和研制提供重要的实验基础.

    图 4 (a)金刚刚沉积到MoS2上的TEM图像; (b)经过在氮气箱中保存9 d后, 金在MoS2上的TEM图像; (c)图(b)中纳米颗粒区域和枝晶区域的电子衍射图样; (d)原子分辨的STEM图像显示了金原子在MoS2表面上的迁移通道(黄色箭头指示了离散的金原子); (e)金纳米枝晶在MoS2上的典型的莫尔条纹; (f)原子分辨的STEM图像显示了金纳米枝晶与MoS2晶格的外延排列情况[34]\r\nFig. 4. (a) TEM images of Au on MoS2 at the same location just after deposition; (b) TEM images of Au on MoS2 stored in a nitrogen box after 9 days; (c) selective area electron diffraction patterns for the NP and dendrite regions in (b); (d) the atomic-resolution STEM image showing migration channels of Au atoms on MoS2 surfaces (The isolated Au atoms are marked by yellow arrows); (e) typical moiré fringes in HRTEM of Au dendrites on MoS2; (f) the atomic-resolution STEM image showing the lattice match of Au dendrites with MoS2 lattice[34].
    图 4  (a)金刚刚沉积到MoS2上的TEM图像; (b)经过在氮气箱中保存9 d后, 金在MoS2上的TEM图像; (c)图(b)中纳米颗粒区域和枝晶区域的电子衍射图样; (d)原子分辨的STEM图像显示了金原子在MoS2表面上的迁移通道(黄色箭头指示了离散的金原子); (e)金纳米枝晶在MoS2上的典型的莫尔条纹; (f)原子分辨的STEM图像显示了金纳米枝晶与MoS2晶格的外延排列情况[34]
    Fig. 4.  (a) TEM images of Au on MoS2 at the same location just after deposition; (b) TEM images of Au on MoS2 stored in a nitrogen box after 9 days; (c) selective area electron diffraction patterns for the NP and dendrite regions in (b); (d) the atomic-resolution STEM image showing migration channels of Au atoms on MoS2 surfaces (The isolated Au atoms are marked by yellow arrows); (e) typical moiré fringes in HRTEM of Au dendrites on MoS2; (f) the atomic-resolution STEM image showing the lattice match of Au dendrites with MoS2 lattice[34].

    由于金属纳米颗粒与二维材料在晶体结构、晶格常数等方面的差异, 金属纳米颗粒与二维材料的界面可能存在晶格应变和应力, 这些晶格应变对基于金属颗粒与二维材料的器件性能具有重要的影响, 晶格应变可能出现的弛豫现象依赖于金属颗粒与二维材料之间的界面相互作用、外场等条件, 运用先进的表征手段, 研究金属纳米颗粒与二维材料的界面应变及其演化具有重要的意义.

    在上述Au-MoS2异质结构中, 晶格之间存在的晶格失配, 会导致Au的晶格发生膨胀. 运用高分辨电子显微成像、选取电子衍射等手段确定了分散的Au纳米颗粒和结构演化形成的Au枝晶的晶胞参数分别为4.075和4.087 Å, 表明经晶格弛豫后, Au枝晶的晶胞参数增加了~0.3%[34]. 英国牛津大学Warner研究小组[23]运用原位AC-TEM观察800 ºC下高温分解氯铂酸得到的Pt纳米晶, 发现该纳米晶具有面心立方结构, 其中尺寸约3—5 nm的纳米晶与MoS2呈外延生长关系, Pt纳米晶(111)面的晶面间距比相应体材料扩大了~0.6%(图5(a)图5(b)), 而对于只有20个左右Pt原子、直径约1 nm的团簇, 其(111)面晶面间距与MoS2 (100)面的晶格间距(~2.710 Å)接近, 比Pt体材料增加了7.7—9.5% (图5(c)图5(d)).

    图 5 Pt纳米晶和团簇在MoS2上的晶格取向和晶面间距[23] (a)附着在MoS2边缘上的Pt纳米晶的STEM图像; (b)上面(a)图的FFT图像, 标出了Pt和MoS2的晶面指数, 以及Pt (111)晶面间距; (c)超小的Pt纳米晶或Pt团簇的STEM图像显示了与单层MoS2的外延取向, 左下角插图显示了干净的MoS2区域的STEM图; (d)上面(c)图的FFT图像\r\nFig. 5. Lattice orientation and spacing of Pt nanocrystals and clusters on MoS2[23]: (a) STEM image of a Pt nanocrystal attached to the edge of MoS2; (b) FFT image of (a) with the crystal plane indices of Pt and MoS2, and the crystal plane spacing of Pt (111); (c) STEM image of an ultrasmall Pt nanocrystal or cluster showing the epitaxial orientation on monolayer MoS2 (Inset on the left bottom shows a clean region of MoS2); (d) the FFT image of (c).
    图 5  Pt纳米晶和团簇在MoS2上的晶格取向和晶面间距[23] (a)附着在MoS2边缘上的Pt纳米晶的STEM图像; (b)上面(a)图的FFT图像, 标出了Pt和MoS2的晶面指数, 以及Pt (111)晶面间距; (c)超小的Pt纳米晶或Pt团簇的STEM图像显示了与单层MoS2的外延取向, 左下角插图显示了干净的MoS2区域的STEM图; (d)上面(c)图的FFT图像
    Fig. 5.  Lattice orientation and spacing of Pt nanocrystals and clusters on MoS2[23]: (a) STEM image of a Pt nanocrystal attached to the edge of MoS2; (b) FFT image of (a) with the crystal plane indices of Pt and MoS2, and the crystal plane spacing of Pt (111); (c) STEM image of an ultrasmall Pt nanocrystal or cluster showing the epitaxial orientation on monolayer MoS2 (Inset on the left bottom shows a clean region of MoS2); (d) the FFT image of (c).

    拉曼光谱作为一种快速、无损检测技术, 已经被广泛运用于二维材料的表征[35,36]. 声子是固体中最重要的元激发之一, 用拉曼光谱研究声子振动模式, 可以获得二维材料层数[37]、晶体质量[38,39]、堆垛顺序[40-42], 以及层间相互作用的信息[43-45]. 金属与二维材料的晶体结构、对称性、金属键和共价键作用的差异, 也会影响二维材料的晶格振动, 产生与此相关的声子谱或拉曼光谱的变化. 拉曼光谱中的频移反映了声子模的光散射. 拉伸或压缩应变会导致声子模式软化或硬化, 可用拉曼光谱来测量二维材料的应变.

    石墨烯存在的本征波纹导致其在室温下的稳定性, 在石墨烯表面蒸镀Au纳米颗粒, 会引起石墨烯的局部形变, 从而改变其本征波纹[46]. 金属纳米颗粒会导致C—C键的键长和键角改变, 破坏石墨烯晶格本身的六角对称性, 消除Γ点的LO和TO双光学声子模的能量简并, 进而G模劈裂成G+和G两个峰, 峰间距(劈裂)随应变的增大而增大[47]. 同时, 石墨烯的2D模式来源于相邻Dirac锥之间的电子-空穴对的散射, 是一个双光子共振散射过程, 该模式主要受应变影响. 沉积金属颗粒会导致2D模式蓝移, 表明石墨烯受到了Au颗粒的压应力[47]. 此外, 随着石墨烯晶格对称性被打破, 拉曼活性模式的选择定则也可能随之改变, 可能出现一些新的拉曼峰[46].

    在金属纳米颗粒-二维过渡金属硫族化合物(如MoS2, WS2)异质结构中, 由于二者之间的晶格失配、热膨胀系数差异等导致的界面应变, 也会引起类似的声子模式变化. 美国得克萨斯大学达拉斯分校Chabal研究小组[48]利用不同金属与MoS2浸润性的差异, 在单层MoS2表面沉积了不同形貌和分布的Pd, Au, Ag颗粒. 金属沉积后, 加强了S原子的面外振动, 导致反映与Mo原子相邻的S原子反向面外振动的A1g模式出现蓝移. 而反映Mo和S原子面内振动的${\rm E}_{2\mathrm{g}}^{1}$模式的影响因素较为复杂, 实验上可观察到红移、展宽、劈裂等现象. Au, Ag纳米颗粒会引起MoS2内部应变的不均匀分布, 导致MoS2拉曼光谱${\rm E}_{2\mathrm{g}}^{1}$峰的劈裂, 劈裂的大小分别为3.8和6.38 cm–1. 同时也发现在不同层数的MoS2, WS2表面沉积Au和Ag纳米颗粒, 也会导致${\rm E}_{2\mathrm{g}}^{1}$峰的劈裂. 该劈裂来源于Au, Ag纳米颗粒与二维材料接触界面处的局域应变, Au, Ag的SPR增强了局域应变对应的拉曼信号, 可同时观察到来自MoS2或WS2的初始${\rm E}_{2\mathrm{g}}^{1}$峰以及拉应变导致的${\rm E}_{2{\rm{g}}}^{1'}$峰, 二者的频移差产生了拉曼峰的劈裂, 该劈裂可作为局域应变的指标. 定量研究拉曼峰的峰强、峰位和峰形等随界面应变的演化, 发现Ag-MoS2界面的局域应变随时间演化弛豫为MoS2内的非局域应变, 单层MoS2中在~70 d后发生弛豫, 三层MoS2中在~30 d后发生弛豫[50]. 应变弛豫的同时, Ag表面出现硫化, 降低了局域电场强度[51]. 本研究小组还研究了基底材料对局域应变演化的影响, 发现Ag-MoS2界面处局域应变的演化行为在很大程度上取决于与基底的界面相互作用. 随着时间推移, 在蓝宝石(Al2O3)上的MoS2中的局域应变经~72 d后几乎保持不变(图6(e)), 而在云母上的MoS2中的局域应变经同样时间几乎全部释放(图6(f)). 密度泛函理论计算显示, MoS2与Al2O3基底的界面相互作用最强, 而MoS2与云母的界面相互作用最弱, 表明单层MoS2与基底之间的界面相互作用是调控局域应变演化的关键[49].

    图 6 (a)在Al2O3基底上机械剥离不同层数的MoS2的光学照片; (b)在云母基底上机械剥离不同层数的MoS2的光学照片; (c) Al2O3基底的原子力显微图像; (d) 云母基底的原子力显微图像; (e)在Al2O3基底上的单层MoS2沉积Ag纳米颗粒前后, 以及不同天数的拉曼光谱; (f)在云母基底上的单层MoS2沉积Ag纳米颗粒前后, 以及不同天数的拉曼光谱. 红色箭头分别指示了${\rm E}_{2\mathrm{g}}^{1'}$峰的峰位[49]\r\nFig. 6. Optical images of exfoliated MoS2 layers on (a) Al2O3 and (b) mica substrates; AFM images of (c) Al2O3 and (d) mica substrates; comparison of Raman spectra of the pristine and Ag-deposited 1L MoS2 on (e) Al2O3 and (f) mica substrates, as well as the evolution of Raman spectra over time. Raman peak splitting after Ag deposition on the two kinds of substrates can be seen from comparing the first top-most panels and the second panels. The quenching rate of splitting Raman peaks of ${\rm E}_{2\mathrm{g}}^{1'}$ modes differs, as indicated by the red arrows. SEM images of Ag-deposited 1L MoS2 on the two kinds of substrates are shown in the insets. Scale bars are 100 nm[49].
    图 6  (a)在Al2O3基底上机械剥离不同层数的MoS2的光学照片; (b)在云母基底上机械剥离不同层数的MoS2的光学照片; (c) Al2O3基底的原子力显微图像; (d) 云母基底的原子力显微图像; (e)在Al2O3基底上的单层MoS2沉积Ag纳米颗粒前后, 以及不同天数的拉曼光谱; (f)在云母基底上的单层MoS2沉积Ag纳米颗粒前后, 以及不同天数的拉曼光谱. 红色箭头分别指示了${\rm E}_{2\mathrm{g}}^{1'}$峰的峰位[49]
    Fig. 6.  Optical images of exfoliated MoS2 layers on (a) Al2O3 and (b) mica substrates; AFM images of (c) Al2O3 and (d) mica substrates; comparison of Raman spectra of the pristine and Ag-deposited 1L MoS2 on (e) Al2O3 and (f) mica substrates, as well as the evolution of Raman spectra over time. Raman peak splitting after Ag deposition on the two kinds of substrates can be seen from comparing the first top-most panels and the second panels. The quenching rate of splitting Raman peaks of ${\rm E}_{2\mathrm{g}}^{1'}$ modes differs, as indicated by the red arrows. SEM images of Ag-deposited 1L MoS2 on the two kinds of substrates are shown in the insets. Scale bars are 100 nm[49].

    金属纳米颗粒和二维材料之间的晶格相互作用除外延取向排列、界面应力等效应以外, 还可能存在金属与二维材料之间的界面反应. 如英国曼彻斯特大学Bangert研究小组[19]发现, Al, Ti, Cr, Pd和Ni等多种金属会对石墨烯产生反应刻蚀. 图7(a)图7(b)显示了金属Al对石墨烯反应刻蚀产生孔洞并扩大的系列高角环形暗场像(high-angle annular dark-field imaging, HAADF). 金属Ti与石墨烯的相互作用较强, 在石墨烯上分散比较均匀, 它对石墨烯的反应刻蚀相当显著, 甚至可从石墨烯的中间区域刻蚀, 如图7(c)图7(d)所示. 密度泛函理论计算表明, 这些过渡金属原子与石墨烯构成异质结构, 会降低石墨烯中的空位形成能, 促进过渡金属原子对石墨烯的反应刻蚀[52]. 另外, 石墨烯表面的金属纳米颗粒也可导致C原子的催化氧化或氢化, 实现反应刻蚀[53].

    图 7 不同金属团簇刻蚀石墨烯和MoS2的HAADF图像 (a)蒸镀厚度为2 Å的Al以后, 从石墨烯边缘刻蚀出现孔洞的HAADF图像; (b)后续孔洞继续扩大的HAADF图像, 红色箭头标出了一些Al原子; (c)在石墨烯上蒸镀厚度为2 Å的Ti的HAADF图像; (d)由于Ti和石墨烯的相互作用较强, Ti直接从中间区域开始刻蚀[19]; (e) 800 ℃下加热3 h后观察到的还原后的C和Pt纳米晶ADF-STEM图像; (f)—(k)连续ADF-STEM图像显示了图(e)中红色框标示的Pt纳米晶在电子束诱导下对MoS2的反应刻蚀. 橙色箭头表示无定形碳盘. 相邻图的拍照间隔是30 s. 标尺都是1 nm[23]\r\nFig. 7. HAADF images of graphene and MoS2 etched by different metal clusters: (a) Graphene etching in the presence of an Al layer of 2 Å nominal thickness after the start of the hole formation; (b) after the hole enlargement in subsequent scans (Some Al atoms are indicated by red arrows in (a) and (b)); (c) 2 Å titanium evaporated onto monolayer graphene; (d) magnified image showing direct etching of Ti on the basal plane of graphene[19]; (e) ADF-STEM image of a region after 3 h at 800 ℃ showing reduced carbon and Pt nanocrystals; (f)–(k) sequence of ADF-STEM images showing catalytic etching of MoS2 by the Pt nanocrystal labeled in (e), initiated by electron beam irradiation. Orange arrow indicates an amorphous carbon disk. Time between frames is ~30 s. Scale bars are all 1 nm[23].
    图 7  不同金属团簇刻蚀石墨烯和MoS2的HAADF图像 (a)蒸镀厚度为2 Å的Al以后, 从石墨烯边缘刻蚀出现孔洞的HAADF图像; (b)后续孔洞继续扩大的HAADF图像, 红色箭头标出了一些Al原子; (c)在石墨烯上蒸镀厚度为2 Å的Ti的HAADF图像; (d)由于Ti和石墨烯的相互作用较强, Ti直接从中间区域开始刻蚀[19]; (e) 800 ℃下加热3 h后观察到的还原后的C和Pt纳米晶ADF-STEM图像; (f)—(k)连续ADF-STEM图像显示了图(e)中红色框标示的Pt纳米晶在电子束诱导下对MoS2的反应刻蚀. 橙色箭头表示无定形碳盘. 相邻图的拍照间隔是30 s. 标尺都是1 nm[23]
    Fig. 7.  HAADF images of graphene and MoS2 etched by different metal clusters: (a) Graphene etching in the presence of an Al layer of 2 Å nominal thickness after the start of the hole formation; (b) after the hole enlargement in subsequent scans (Some Al atoms are indicated by red arrows in (a) and (b)); (c) 2 Å titanium evaporated onto monolayer graphene; (d) magnified image showing direct etching of Ti on the basal plane of graphene[19]; (e) ADF-STEM image of a region after 3 h at 800 ℃ showing reduced carbon and Pt nanocrystals; (f)–(k) sequence of ADF-STEM images showing catalytic etching of MoS2 by the Pt nanocrystal labeled in (e), initiated by electron beam irradiation. Orange arrow indicates an amorphous carbon disk. Time between frames is ~30 s. Scale bars are all 1 nm[23].

    和石墨烯相比, MoS2具有更强的耐电子束辐照的能力. 英国牛津大学Warner研究小组[23]发现: Pt-MoS2异质结构在室温和60 kV高能电子束辐照下, MoS2保持结构稳定, Pt纳米颗粒周围有碳聚集; 温度提高到800 ºC并保持3 h, 观察到Pt纳米颗粒在电子束作用下开始沿MoS2晶格方向进行反应刻蚀, 刻蚀出具有规则边缘的孔洞(图7(e)(k)). 该方法为在原子尺度裁剪MoS2提供了一种可能途径.

    金属纳米颗粒与二维材料构成异质结构, 金属对二维材料的掺杂可调控二维材料的电学性质, 制备的场效应晶体管可用于传感、光电探测等领域. 金属纳米颗粒存在的局域表面等离激元共振效应会引起局域电场增强, 导致表面拉曼散射和发光增强. 金属纳米颗粒对二维半导体材料的热电子注入、界面晶格应变等可能引起二维半导体材料的结构相变. 界面相互作用还会影响二维材料的电子态和能带结构, 进而影响其电学和光电等性质. 因此, 可通过调控界面电荷转移、界面局域电场增强、界面晶格应变、热电子注入等, 获得性能优异的基于金属纳米颗粒-二维材料异质结构的光、电功能器件.

    场效应晶体管(field effect transistor, FET)是逻辑电路中的基本器件单元. 实现器件的小型化和高集成度, 需要减小FET的沟道尺寸, 这将导致短沟道效应、阈值电压减小、漏电流增大等问题. 二维材料具有超薄、表面悬挂键少、载流子迁移率较高等优点, 其替代硅作为沟道材料, 有望克服短沟道效应等问题, 成为下一代高性能电子器件的重要候选材料. 基于二维材料的场效应晶体管器件已被广泛应用于传感、太阳能电池、光电探测等领域.

    构建金属-二维材料异质结构, 将金属纳米颗粒和二维材料的功能整合, 并进行界面结构设计, 可有效调控沟道二维材料的电学性质(如费米面、载流子浓度等), 从而提升器件性能. 美国堪萨斯州立大学Berry研究小组[54]制备了Au-MoS2纳米异质结构, 并构建了三端FET器件, 发现负载Au纳米颗粒后80 K下器件的电导率提高了3个量级, 有效栅电容增大为原来的9倍(图8). 金属纳米颗粒可通过界面电荷转移掺杂沟道二维材料, 改变其载流子浓度. 沙特阿卜杜拉国王科技大学Li研究小组[55]制备了基于Au-WSe2异质结构的顶栅FET器件, 发现Au纳米颗粒对WSe2产生P型掺杂, 空穴迁移率提升~1.8倍, 电子迁移率降为一半左右, 费米面降低了0.43 eV. 金属纳米颗粒引起的掺杂类型还与二维材料的制备方法、基底类型、金属负载方式等有关, 如在Au-MoS2异质结构中, Au纳米颗粒可对MoS2产生N型掺杂[54], 也可产生P型掺杂[56].

    图 8 Au纳米颗粒修饰MoS2的SEM形貌图和对源漏电流的影响[54] (a)通过化学还原法将Au纳米颗粒负载在MoS2上的过程示意图; (b) Au-MoS2杂化体系的SEM图; (c)在80 K下, 负载了Au颗粒以后(Au-MoS2), 器件的电导率增加了103倍(插图显示了80 K下MoS2的输出曲线放大图); (d)在160 K下, 源漏电压为0.5 V时, MoS2和Au-MoS2 FET的背栅调控转移曲线. 插图分别显示了MoS2和Au-MoS2 FETs的结构示意图和等效电容电路图, 以及Au-MoS2 FET器件的SEM图. 标尺为10 μm.\r\nFig. 8. Morphology of MoS2 modified by Au NPs and the effect on source-drain current in FET[54]: (a) Schematic illustration depicting the anchoring of Au NP on MoS2 via chemical reduction strategy; (b) SEM image of Au-MoS2 hybrid structure; (c) at 80 K the conductivity of MoS2 device is increased 103 folds after Au functionalization (Au-MoS2) (The inset shows an enlarged view of IDS versus VDS response for MoS2 at 80 K); (d) at 160 K, with VDS = 0.5 V, back-gating characteristics of MoS2 and Au-MoS2 FETs are shown. The top inset shows capacitance circuitry of the Au-MoS2 device. Bottom-left inset shows the structure of MoS2 FET and Au-MoS2 FET. Bottom-right inset shows a SEM micrograph of Au-MoS2 FET. Scale bar is 10 μm.
    图 8  Au纳米颗粒修饰MoS2的SEM形貌图和对源漏电流的影响[54] (a)通过化学还原法将Au纳米颗粒负载在MoS2上的过程示意图; (b) Au-MoS2杂化体系的SEM图; (c)在80 K下, 负载了Au颗粒以后(Au-MoS2), 器件的电导率增加了103倍(插图显示了80 K下MoS2的输出曲线放大图); (d)在160 K下, 源漏电压为0.5 V时, MoS2和Au-MoS2 FET的背栅调控转移曲线. 插图分别显示了MoS2和Au-MoS2 FETs的结构示意图和等效电容电路图, 以及Au-MoS2 FET器件的SEM图. 标尺为10 μm.
    Fig. 8.  Morphology of MoS2 modified by Au NPs and the effect on source-drain current in FET[54]: (a) Schematic illustration depicting the anchoring of Au NP on MoS2 via chemical reduction strategy; (b) SEM image of Au-MoS2 hybrid structure; (c) at 80 K the conductivity of MoS2 device is increased 103 folds after Au functionalization (Au-MoS2) (The inset shows an enlarged view of IDS versus VDS response for MoS2 at 80 K); (d) at 160 K, with VDS = 0.5 V, back-gating characteristics of MoS2 and Au-MoS2 FETs are shown. The top inset shows capacitance circuitry of the Au-MoS2 device. Bottom-left inset shows the structure of MoS2 FET and Au-MoS2 FET. Bottom-right inset shows a SEM micrograph of Au-MoS2 FET. Scale bar is 10 μm.

    基于FET的传感器在化学和生物检测中也具有非常重要的应用. 设计制备金属纳米颗粒-二维材料异质结构和功能化半导体沟道材料, 可提高电子器件的检测敏感度. 中国科学院苏州纳米所刘立伟研究小组[57]设计制备了基于Pd纳米颗粒-还原氧化石墨烯(rGO)异质结构的FET传感器, 将NO的检测敏感度提高了5—9倍. 基于Pt-MoS2异质结构制备的晶体管器件对NO2的检测敏感度比纯MoS2晶体管提高了3倍[58]. 检测敏感度的提升主要归因于气体分子吸附量的增多以及金属和二维材料之间肖特基势垒的改变[58]. 通过金属纳米颗粒改性, 可进一步提高检测的灵敏度和选择性, 构筑基于金属-二维材料异质结构的多功能传感器. 美国威斯康星大学密尔沃基分校Chen研究小组[59]制备了基于巯基乙酸(TGA)功能化的Au纳米颗粒和rGO异质结构的多功能传感器. 利用Au纳米颗粒的表面功能化, 将TGA探针分子锚定在rGO表面, 实现了毒性Hg2+的高效探测, 使水溶液中有毒性Hg2+的检测下限低至2.5×10–8 mol/L, 且能够实现快速响应.

    除了界面电荷转移效应, 金属纳米颗粒的局域表面等离激元共振(localized surface plasmon resonance, LSPR)所引起的局域电场增强, 可以用于表面增强拉曼散射(surface-enhanced Raman scattering, SERS)和二维半导体材料的发光增强. 二维材料的高比表面积、良好的化学稳定性和热稳定性使得它们常被当作纳米材料的载体, 用于分子探测. 在二维材料表面负载Ag, Au, Cu等贵金属纳米颗粒, 可以有效地引入局域电场增强效应, 进而将这一异质体系用于分子的“指纹”识别和无损痕量检测.

    人们发现石墨烯可以有效淬灭被探测分子的荧光, 实现基于它和被探测分子之间电荷转移的以化学增强为主的SERS探测[60]. 如果在石墨烯上负载贵金属纳米颗粒, 可以引入源于LSPR的电场增强效应, 从而将化学增强和电磁增强效应结合起来, 获得更高的拉曼增强因子. 此外, 金属/二维过渡金属硫族化合物(如MoS2, MoTe2等)异质体系作为新型SERS基底也成为研究热点之一[61,62].

    人们用化学还原HAuCl4或AgNO3的方法制备Au, Ag纳米颗粒, 并通过液相混合搅拌获得了Au, Ag负载的氧化石墨烯(GO)或还原氧化石墨烯(rGO)[63-66]. 将机械剥离的MoS2薄片浸泡到HAuCl4溶液中, 通过物理和化学方法结合也可以制备出Au-MoS2结构用于SERS探测[67]. 图9(a)显示了直径40 nm的Au纳米颗粒附着在GO上的TEM图, 可以看出, Au纳米颗粒在GO表面形成了聚集体, 导致颗粒间存在许多几纳米大小的间隙. Au纳米颗粒在GO表面附着后, 二者之间的相互作用会导致Au纳米颗粒本身的SPR吸收峰展宽并红移(图9(b)). 用对巯基苯胺(PATP)作探测分子, 发现同样浓度的PATP在Au-GO复合体系上的拉曼信号强度远大于在Au纳米颗粒上的信号强度(图9(c)). 这是因为滴在Si片上的Au纳米颗粒比较分散, 而在GO上负载的Au纳米颗粒更容易形成聚集状态, 造成更多的“热点”, 导致Au表面等离激元共振引起拉曼信号增强[63]. 利用对氨基苯硫酚(4-ATP)和对巯基苯甲酸(4-MBA)为探测分子, 与纯Ag纳米颗粒胶体作对比, 发现它们在液相下和Ag-GO混合时, 具有更高的拉曼增强特征峰, 增强因子大于104. 通过调控附着在GO上的Ag纳米颗粒的形貌和大小, 可以改变复合体系的LSPR波长. 当选用与LSPR波长相近的激光激发时, 被探测分子的拉曼信号增强最大[64]. 这说明可通过调控金属纳米颗粒的尺寸来获得更强的SERS效应. 美国西肯塔基大学Gupta研究小组[66]比较了不同大小的Au颗粒和Ag颗粒在GO, rGO, 以及多层石墨烯上对亚甲基蓝(MB)和若丹明R6G两种染料分子的SERS效应, 发现直径~30 nm的Ag颗粒和直径~40 nm的Au颗粒在rGO上的SERS性能最好. 除了LSPR效应引起的电场增强, 金属纳米颗粒与石墨烯之间的电荷转移带来的化学增强也会对SERS信号有贡献. 前者与金属纳米颗粒的直径和间距相关, 后者与金属原子/石墨烯碳原子之间的电荷密度分布有关.

    图 9 (a)直径40 nm的Au纳米颗粒附着在GO上的TEM图; (b) Au纳米颗粒在GO上附着前后的水溶液的吸收谱; (c)分别利用Au纳米颗粒(i)和Au-GO复合体系(ii)得到的PATP分子的SERS光谱[63]; (d) Ag领结阵列直接制备在堆叠的单层和双层MoS2三角形薄片上(插图显示了放大后的Ag领结的SEM图); (e)纯MoS2, Ag领结阵列, 以及Ag领结-MoS2的PL光谱对比(插图是对数坐标下的PL光谱数据); (f)在77 K, TE激发极化下, 纯MoS2, Ag领结阵列, 以及Ag领结-MoS2的ΔR/R反射光谱. Ag领结-MoS2体系显示出了由于MoS2激子和LSPR模式光学耦合导致的Fano共振现象. 其中, Ag领结阵列的几何参数: 边长100 nm, x和y方向周期分别为400和300 nm[68]\r\nFig. 9. (a) TEM images of 40 nm Au NPs deposited on GO sheets; (b) UV-vis spectra of aqueous solution of 40 nm Au NPs before and after attachment to the GO sheet; (c) SERS spectra of PATP using (i) the 40 nm Au NPs and (ii) the corresponding Au-GO composites as SERS substrates, respectively[63]; (d) SEM image showing the Ag bowtie array directly patterned on well-defined, stacked triangular flakes of mono- and bilayer MoS2 (The inset shows the enlarged SEM image of the Ag bowtie); (e) PL spectra of bare MoS2, bowtie array and bowtie-MoS2. Inset shows PL in log scale; (f) ΔR/R spectra of bare MoS2, Ag bowtie array, and Ag bowtie-MoS2 at 77 K and TE polarization. Clear Fano resonances are observed when the bowtie lattice-LSP modes overlap with MoS2 excitons. Ag bowtie array: side length 100 nm, x and y direction periods 400 and 300 nm, respectively[68].
    图 9  (a)直径40 nm的Au纳米颗粒附着在GO上的TEM图; (b) Au纳米颗粒在GO上附着前后的水溶液的吸收谱; (c)分别利用Au纳米颗粒(i)和Au-GO复合体系(ii)得到的PATP分子的SERS光谱[63]; (d) Ag领结阵列直接制备在堆叠的单层和双层MoS2三角形薄片上(插图显示了放大后的Ag领结的SEM图); (e)纯MoS2, Ag领结阵列, 以及Ag领结-MoS2的PL光谱对比(插图是对数坐标下的PL光谱数据); (f)在77 K, TE激发极化下, 纯MoS2, Ag领结阵列, 以及Ag领结-MoS2的ΔR/R反射光谱. Ag领结-MoS2体系显示出了由于MoS2激子和LSPR模式光学耦合导致的Fano共振现象. 其中, Ag领结阵列的几何参数: 边长100 nm, xy方向周期分别为400和300 nm[68]
    Fig. 9.  (a) TEM images of 40 nm Au NPs deposited on GO sheets; (b) UV-vis spectra of aqueous solution of 40 nm Au NPs before and after attachment to the GO sheet; (c) SERS spectra of PATP using (i) the 40 nm Au NPs and (ii) the corresponding Au-GO composites as SERS substrates, respectively[63]; (d) SEM image showing the Ag bowtie array directly patterned on well-defined, stacked triangular flakes of mono- and bilayer MoS2 (The inset shows the enlarged SEM image of the Ag bowtie); (e) PL spectra of bare MoS2, bowtie array and bowtie-MoS2. Inset shows PL in log scale; (f) ΔR/R spectra of bare MoS2, Ag bowtie array, and Ag bowtie-MoS2 at 77 K and TE polarization. Clear Fano resonances are observed when the bowtie lattice-LSP modes overlap with MoS2 excitons. Ag bowtie array: side length 100 nm, x and y direction periods 400 and 300 nm, respectively[68].

    除表面增强拉曼散射效应外, 金属纳米颗粒的SPR效应还可增强二维半导体材料的发光(photoluminescence, PL)特性. 一般而言, 直接带隙半导体的发光量子效率会比间接带隙半导体的效率高, 具有直接带隙的单层悬空MoS2的发光量子产率比具有间接带隙的两层MoS2的产率高两个量级以上[69]. 但由于直接带隙和间接带隙的不同能谷间的能量差别小, 以及非辐射跃迁通道的存在, 实际的单层MoS2的发光量子效率达不到理想水平[68,70]. 因此, 调控金属SPR波长以增强局域场强, 利用金属热电子与二维半导体材料的界面电荷转移提高电子-空穴复合率, 是提升金属-二维材料异质结构发光量子产率的有效途径.

    美国西北大学Aydin研究小组[71]用电子束曝光(electron beam lithography, EBL)方法制备了Ag纳米盘阵列-MoS2异质结构, Ag纳米盘的SPR效应增强了激发场与辐射场, 导致光场与MoS2产生较强的相互作用, 使Ag-MoS2异质结构的PL峰增强了~12倍. 采用不同的SPR纳米结构设计, 可实现低负载率Au, Ag等贵金属对MoS2材料PL峰的增强[68,70,72,73]. 美国宾夕法尼亚大学Agarwal研究小组[68]设计制备了边长、周期、间距等几何参数可调的Ag纳米领结负载MoS2异质结构(图9(d)), 用532 nm激光测量时, 其发光峰强比纯MoS2增强超过一个量级(图9(e)). 当Ag领结阵列的LSPR吸收峰位与MoS2的A, B激子能量相近时, Ag-MoS2的PL峰增强最大, 同时Ag领结阵列的LSPR效应还会引起PL峰形变化. 总的发光增强因子gtotal可用激发率增强因子gex和发射率增强因子gem的乘积表示, 即gtotal = gexgem, 其中激发率增强主要来源于局域电场增强, 一般不会引起PL的峰形和峰位变化, 发射率增强可用内部量子效率η的变化来解释. η与辐射复合率kr和非辐射复合率knr有关, 即η = kr/(kr+knr). 对于SPR耦合体系, kr主要由局域等离激元场决定, knr和等离激元损耗、激子淬灭相关, 二者都是频率的函数. 因此, PL峰形变化说明发光增强主要来源于发射增强[68]. 金属纳米颗粒的形状(如纳米立方体、球、八面体等)会影响其SPR模式, 上述发光增强因子gtotal还需要加入与金属纳米颗粒SPR模式发射方向有关的收集效率β项, 即gtotal = gexgemβ/β0, β0为无金属纳米颗粒时的发光收集效率[74].

    金属-二维材料的界面电荷转移不仅会引起二维材料中载流子浓度和费米面的变化, 影响电子-空穴复合率, 还可能导致一些二维材料的结构相变.

    二维材料大多具有层状结构, 也可能存在多种晶体结构. 不同晶体结构、不同堆垛方式等会影响其电学、光学、力学、热学等物理性质, 不同的晶体结构在特定条件下可能发生转换, 产生相变. 诱导二维材料发生相变的方法包括加压、加热, 以及掺杂等[75]. 比如, 通过加压可以使MoS2发生半导体-金属转变[76,77], 使WSe2发生半导体-半金属转变[78]; 通过掺杂Re, Mn等单原子可以使MoS2或WS2发生2H-1T相变[79,80]; 通过碱金属嵌入可使MoS2, WS2, TiS2等发生相变. 1982年, Py和Haering[81]通过原位X射线衍射发现MoS2在Li离子嵌入后会发生一阶相变. 中国科学院物理所白雪冬研究小组[82]利用原位透射电镜证实了Li离子嵌入MoS2中会产生2H-1T结构相变, 王兆翔研究小组[83]通过原位X射线衍射和球差电镜在原子分辨下验证了Na+嵌入时MoS2的结构变化. 除了以上诱导相变的方法, 利用金属纳米颗粒SPR效应, 设计制备特定的金属纳米颗粒-二维材料异质结构, 在特定波段内激发金属的光响应, 产生的热电子注入到二维材料中, 可引起二维材料本征电子态的变化, 甚至产生相变.

    北京大学方哲宇研究小组[84]在单层MoS2表面沉积了Au纳米颗粒, 采用近场光学显微镜和拉曼光谱仪在77 K对Au-MoS2异质结构的形貌、拉曼光谱和发光(PL)光谱进行了表征. 如图10(a)所示, 沉积Au纳米颗粒导致PL峰的红移和展宽, 该红移可能来源于MoS2从2H相到1T相转变引起的带隙窄化; 如图10(b)所示, 沉积Au纳米颗粒后拉曼光谱出现了1T相MoS2的特征拉曼峰, 进一步验证了MoS2从2H到1T的结构相变. 他们提出, Au纳米颗粒经光照产生SPR激发, 伴随等离激元衰减产生的热电子转移到MoS2表面, 填充在未占据的Mo 4d轨道. 根据晶体配位场理论, 2H相中的Mo原子采用三棱柱配位形式, Mo 4d轨道具有3种简并轨道, 分别是$ {\mathrm{d}}_{{z}^{2}} $, $ {\mathrm{d}}_{{x}^{2}-{y}^{2}} $和dxy, dxz和dyz. 而1T相中的Mo原子采用八面体配位形式, Mo 4d轨道具有2种简并轨道[85], 分别是dxy, dxz, dyz$ {\mathrm{d}}_{{z}^{2}}, {\mathrm{d}}_{{x}^{2}-{y}^{2}} $, 如图10(e)所示. +4价的Mo有两个d电子, 当热电子转移到MoS2去填充未占据的Mo 4d轨道时, 1T相能量更低、更稳定[84]. 通过热电子注入, MoS2从半导体性的2H相转变到金属性的1T相. 利用金属纳米颗粒的SPR效应, 是一种有效调控二维材料电子态和能带结构的方法.

    图 10 表面等离激元共振产生的热电子诱导MoS2单层从2H相到1T相相变[84] (a)在MoS2上沉积直径5 nm的金纳米颗粒后, PL光谱出现红移和展宽; (b)在Au纳米颗粒沉积后出现的三个新的拉曼峰与1T相一致; (c) MoS2薄膜的示意图, 其中Au纳米颗粒产生的热电子转移到MoS2中; (d) Au纳米颗粒中的等离激元衰减成热电子, 其最高的电子能量在费米能级以上一个等离激元量子(热电子产生的原理), 而热电子可以转移到MoS2的导带中; (e) 2H和1T晶格结构之间的转变(在晶体配位场理论中, 2H相中的Mo 4d轨道具有3个能级, 而1T中的Mo 4d轨道仅具有2个能级. 当热电子填充未占据的Mo 4d轨道时, 1T相稳定)\r\nFig. 10. Plasmonic hot electron induced structural phase transition from 2H to 1T in monolayer MoS2[84]: (a) PL spectrum red-shifting and broadening was found after the 5 nm Au NPs were deposited on MoS2; (b) three new Raman peaks consistent with the 1T phase recorded after the Au NP deposition; (c) schematic of a MoS2 film with hot electrons generated from Au NPs; (d) the principle of hot electron generation is Au NP plasmon decay into hot electrons with the highest electron energies one plasmon quantum above the Fermi level; (e) the transition between 2H and 1T structure (The Mo 4d-orbitals in 2H phase have three groups, and in 1T phase have two. When an extra electron fill an unoccupied Mo 4d-orbital, the 1T phase is stabilized).
    图 10  表面等离激元共振产生的热电子诱导MoS2单层从2H相到1T相相变[84] (a)在MoS2上沉积直径5 nm的金纳米颗粒后, PL光谱出现红移和展宽; (b)在Au纳米颗粒沉积后出现的三个新的拉曼峰与1T相一致; (c) MoS2薄膜的示意图, 其中Au纳米颗粒产生的热电子转移到MoS2中; (d) Au纳米颗粒中的等离激元衰减成热电子, 其最高的电子能量在费米能级以上一个等离激元量子(热电子产生的原理), 而热电子可以转移到MoS2的导带中; (e) 2H和1T晶格结构之间的转变(在晶体配位场理论中, 2H相中的Mo 4d轨道具有3个能级, 而1T中的Mo 4d轨道仅具有2个能级. 当热电子填充未占据的Mo 4d轨道时, 1T相稳定)
    Fig. 10.  Plasmonic hot electron induced structural phase transition from 2H to 1T in monolayer MoS2[84]: (a) PL spectrum red-shifting and broadening was found after the 5 nm Au NPs were deposited on MoS2; (b) three new Raman peaks consistent with the 1T phase recorded after the Au NP deposition; (c) schematic of a MoS2 film with hot electrons generated from Au NPs; (d) the principle of hot electron generation is Au NP plasmon decay into hot electrons with the highest electron energies one plasmon quantum above the Fermi level; (e) the transition between 2H and 1T structure (The Mo 4d-orbitals in 2H phase have three groups, and in 1T phase have two. When an extra electron fill an unoccupied Mo 4d-orbital, the 1T phase is stabilized).

    MoS2从2H相到1T相转变, 不仅提高了MoS2的导电性, 而且降低了其与金属纳米颗粒的接触电阻, 更有利于界面电荷转移. 同时, 在相变过程中会产生更多的晶界, 提供更多活性位点, 也有利于提高金属纳米颗粒-二维材料异质结构的催化活性. 北京大学方哲宇研究小组[86]发现Au@Ag纳米棒-MoS2异质结构经可见光照射激发热电子导致MoS2从2H到1T的相变, 形成的金属-1T相界面提高了析氢催化反应效率. 吉林大学郑伟涛、崔小强研究小组[87-89]通过构筑大晶格失配的金属Pd-MoS2, Co-MoS2异质结构, 利用界面应力调控实现了MoS2从2H到1T的相变, 使金属-MoS2体系表现出优异的析氢催化性能, 如单原子Co-MoS2异质结构的电化学制氢性能甚至可和商用Pt/C媲美.

    以MoS2为代表的二维半导体材料具有优异的电学、光学等物理性质, 在纳米电子学和光电子学中被广泛研究. 但由于二维半导体材料的光吸收能力较差, 如单层MoS2仅能吸收入射光功率的5.6%, 所以制备的光电晶体管的光响应率低. 运用光学性质优异的金属纳米结构改进二维材料的光吸收能力, 是优化二维材料光电器件性能的重要途径. 金属纳米颗粒的LSPR效应可有效提高对特定频率光的吸收率并提供大量热电子, 影响界面载流子转移, 进而调控器件性能. 金属纳米颗粒-二维材料异质结构已经被广泛应用于各种二维光电器件中, 并极大地提升了器件光电性能.

    中国科学院上海技术物理研究所胡伟达研究小组[90]在少层MoS2上放置Au纳米材料, 发现Au的SPR效应可以增强局域电场, 从而显著提高了MoS2光电晶体管的光电流响应. 在少层MoS2光电晶体管上沉积4 nm厚Au的器件的光电流响应增强了一倍, 而设计的周期性Au纳米颗粒阵列制备的器件表现出3倍增强的光电流响应[90]. 在Ag-MoS2, Au-MoTe2, Au-SnS2等光电晶体管中也都报道了显著的光电流响应增强[91-93]. 在Au-MoTe2异质结构中, Au的电子转移导致MoTe2导电模式从p型为主变为n型为主, 进一步增强了光电流. 在365和405 nm光照下, 器件的光电流提高了210倍以上[92].

    设计并精准构筑金属纳米颗粒的单体结构或者阵列结构, 可进一步增强光电流. 中国台湾清华大学Yen研究小组[94]的实验结果表明: 当把Au纳米立方体附着在双层MoS2上时, 将会产生比Au纳米八面体、Au纳米球更大的光电流, 是本征双层MoS2器件的8倍; 在同样的辐照和测试条件下, Au纳米立方体附着会导致光响应度提高6.8倍. 北京大学方哲宇研究小组[95]设计制备了Au纳米盘七聚体阵列, 夹在两片石墨烯单层之间构建了光电探测器(图11(a)), 该探测器显示出优异的光电性能, 选用Au纳米盘七聚体Fano共振波长激光(785 nm)激发时器件的光电流比本征的石墨烯器件提高了800 %, 如图11(b)所示. 中国科学院重庆绿色智能技术研究所魏兴战研究小组[73]设计制备的基于光栅图案Au纳米颗粒-单层MoS2异质结构的光电探测器(图11(c)), 在532 nm激光激发下, 光电流达到了无Au纳米颗粒层相同尺寸器件的111倍(图11(d)). Au纳米颗粒光栅结构显示了很强的LSPR效应, 极大地提高了光电流[73].

    图 11 (a)夹在两片单层石墨烯之间的单个Au纳米盘七聚体的示意图; (b)沿着插图中所示的线扫描方向, 对没有Au纳米天线、有Au纳米盘二聚体和七聚体阵列修饰的石墨烯的光电流的测量结果[95]; (c)负载Au纳米颗粒光栅结构的单层MoS2光电探测器的示意图; (d)不同光电探测器的光电流随时间的变化曲线, 其中VG = 0 V, VDS = 1 V. Bare表示没有Au纳米颗粒负载的单层MoS2, NP I和NP II分别表示MoS2上负载的Au纳米颗粒具有不同的直径和密度, NP G表示Au纳米颗粒光栅结构[73]\r\nFig. 11. (a) Schematic illustration of a single Au heptamer sandwiched between two sheets of monolayer graphene; (b) photocurrent measurements of graphene without Au nanoantennas and modified by Au dimer and heptamer arrays, obtained along the line scan direction shown in the inset; (c) schematic diagram of a monolayer MoS2 photodetector loaded with Au NP grating; (d) photocurrent-time response of different photodetectors, where VG = 0 V and VDS = 1 V. Bare denotes monolayer MoS2 without Au NPs, NP I and NP II denote Au NPs loaded on MoS2 with different diameters and densities, respectively, and NP G denotes Au NP grating structure[73].
    图 11  (a)夹在两片单层石墨烯之间的单个Au纳米盘七聚体的示意图; (b)沿着插图中所示的线扫描方向, 对没有Au纳米天线、有Au纳米盘二聚体和七聚体阵列修饰的石墨烯的光电流的测量结果[95]; (c)负载Au纳米颗粒光栅结构的单层MoS2光电探测器的示意图; (d)不同光电探测器的光电流随时间的变化曲线, 其中VG = 0 V, VDS = 1 V. Bare表示没有Au纳米颗粒负载的单层MoS2, NP I和NP II分别表示MoS2上负载的Au纳米颗粒具有不同的直径和密度, NP G表示Au纳米颗粒光栅结构[73]
    Fig. 11.  (a) Schematic illustration of a single Au heptamer sandwiched between two sheets of monolayer graphene; (b) photocurrent measurements of graphene without Au nanoantennas and modified by Au dimer and heptamer arrays, obtained along the line scan direction shown in the inset; (c) schematic diagram of a monolayer MoS2 photodetector loaded with Au NP grating; (d) photocurrent-time response of different photodetectors, where VG = 0 V and VDS = 1 V. Bare denotes monolayer MoS2 without Au NPs, NP I and NP II denote Au NPs loaded on MoS2 with different diameters and densities, respectively, and NP G denotes Au NP grating structure[73].

    除Au和Ag等具有强等离激元响应的金属外, Pt, Pd等过渡金属也具有很强的催化活性和宽谱SPR响应, 在未来纳米等离激元器件的设计中具有重要地位. 印度国家物理实验室Husale研究小组[96]利用聚焦离子束工艺制备了基于Pt纳米带-双层MoS2异质结构的光电探测器(图12(a)), 在532 nm可见光照射下, 光电流增加了~3个量级(图12(b)), 并可实现宽光谱探测和对紫外光、红外光的高敏感响应(图12(c)图12(d)), 且光电流随照射激光的功率密度线性增加(图12(d)插图).

    图 12 (a)修饰有Pt纳米带的双层MoS2光电器件示意图; (b)在可见光(532 nm)照射下, 测量沉积Pt纳米带前后器件光电流随时间的变化(红色表示沉积前的结果, 绿色表示沉积后的结果); (c)在紫外光(325 nm)照射下, 测量不同偏置电压下的光电流随时间的变化(光功率密度: 184 mW·cm–2); (d)在近红外光(980 nm)照射下, 改变入射光功率密度, 测得的时间依赖的光电流曲线(偏置电压: 1 V). 插图显示光电流正比于入射激光功率[96]\r\nFig. 12. (a) Schematic diagram of a bilayer MoS2 device deposited with Pt nanostrips; (b) time-dependent photocurrent measurement before and after deposition of Pt nanostrips under visible light (532 nm) irradiation (Red curve indicates the result before deposition and green curve indicates that after deposition); (c) photocurrent measurement at different bias voltages under UV light (325 nm) irradiation (power density 184 mW·cm–2); (d) time-dependent photocurrent measurements under exposure to different NIR light (980 nm) intensities (bias voltage: 1 V), where the inset shows that the linear dependence of the photocurrent on the incident laser power intensity[96].
    图 12  (a)修饰有Pt纳米带的双层MoS2光电器件示意图; (b)在可见光(532 nm)照射下, 测量沉积Pt纳米带前后器件光电流随时间的变化(红色表示沉积前的结果, 绿色表示沉积后的结果); (c)在紫外光(325 nm)照射下, 测量不同偏置电压下的光电流随时间的变化(光功率密度: 184 mW·cm–2); (d)在近红外光(980 nm)照射下, 改变入射光功率密度, 测得的时间依赖的光电流曲线(偏置电压: 1 V). 插图显示光电流正比于入射激光功率[96]
    Fig. 12.  (a) Schematic diagram of a bilayer MoS2 device deposited with Pt nanostrips; (b) time-dependent photocurrent measurement before and after deposition of Pt nanostrips under visible light (532 nm) irradiation (Red curve indicates the result before deposition and green curve indicates that after deposition); (c) photocurrent measurement at different bias voltages under UV light (325 nm) irradiation (power density 184 mW·cm–2); (d) time-dependent photocurrent measurements under exposure to different NIR light (980 nm) intensities (bias voltage: 1 V), where the inset shows that the linear dependence of the photocurrent on the incident laser power intensity[96].

    二维材料具有原子级光滑表面、纳米级厚度和超高的比表面积, 为研究金属纳米颗粒与二维材料的界面相互作用, 实时、原位观察金属纳米颗粒的表面原子迁移、结构演化和聚合等热力学行为提供了一个理想的平台. 相关研究为实现金属纳米颗粒与二维材料异质结构的界面调控和性能优化奠定了基础. 金属纳米颗粒与二维材料的界面相互作用, 不仅体现在晶格结构的相互影响上, 还体现在金属对二维材料的电子态和能带结构的影响上. 如金属与二维材料界面可能存在的局域应变不仅会影响二维材料的晶格振动模式, 而且会影响其能带结构. 设计特定的界面结构, 通过调控其界面局域应变, 可以实现对二维半导体材料电学和光学等性质的调控. 金属和二维半导体材料之间存在的肖特基势垒会影响界面电荷的注入和输运过程, 进而显著地影响二维半导体的电学和光电性质. 从原子、电子层次去理解金属和二维半导体材料界面存在的电荷注入或转移, 对改善器件接触、提升器件性能, 具有非常重要的科学意义. 面向特定性质金属-二维半导体异质结构的精准构筑, 异质结构在工作条件下的结构稳定性与结构演化、在原子尺度揭示材料的微结构、界面结构和性质之间的关系等问题成为研究重点和难点. 金属-二维半导体异质结构的精准构筑也需要人们能从原子、电子层次认识和调控金属与二维半导体材料的界面及相互作用. 近年来, 先进表征设备和分析方法的高速发展为这些问题的解决提供了可能, 特别是环境气氛球差校正透射电镜的出现和应用, 实现了气体环境条件下样品的原子分辨原位表征, 可实时观察纳米颗粒的成核、生长、结构相变和反应过程, 为在原子尺度上理解金属-二维半导体异质结构的动态行为、界面相互作用及与物理、化学性质之间的相互关系提供了强有力的工具. 利用环境气氛透射电子显微镜, 模拟材料生长物理化学过程, 结合球差校正技术, 可以在原子尺度原位观察金属-二维半导体异质结构的动态原子迁移、界面原子构型、能带结构和电子态演变过程等, 为构筑金属-二维半导体异质结构及其原子级调控研究提供了直接的实验证据.

    在金属-二维半导体异质结构的精准构筑和界面结构与性质研究的基础上, 设计具有特定功能和性能的金属-二维半导体异质结构纳米器件和结构组件, 利用界面电子转移、表面等离激元与激子相互作用等物理过程, 提高电子器件、光电器件的工作性能, 有望为后硅时代的新型器件研制和应用奠定实验和理论基础.

    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206Google Scholar

    [3]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [5]

    Panchokarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R 2009 Adv. Mater. 21 4726

    [6]

    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752Google Scholar

    [7]

    Latorre-Sanchez M, Primo A, Garcia H 2013 Angew. Chem. Int. Edit. 52 11813Google Scholar

    [8]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877Google Scholar

    [9]

    Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321Google Scholar

    [10]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [11]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [12]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [13]

    Lü R, Terrones H, Elias A L, Perea-Lopez N, Gutierrez H R, Cruz-Silva E, Rajukumar L P, Dresselhaus M S, Terrones M 2015 Nano Today 10 559Google Scholar

    [14]

    Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [15]

    Zhou L, Xia T, Cao T, Wang L, Chen Y, Li S, Wang R, Guo H 2020 J. Alloys Compd. 818 152909Google Scholar

    [16]

    Najmaei S, Mlayah A, Arbouet A, Girard C, Leotin J, Lou J 2014 ACS Nano 8 12682Google Scholar

    [17]

    Xiu X W, Zhang W C, Hou S T, Li Z, Lei F C, Xu S C, Li C H, Man B Y, Yu J, Zhang C 2021 Chin. Phys. B 30 088801Google Scholar

    [18]

    Zan R, Bangert U, Ramasse Q, Novoselov K S 2011 Small 7 2868Google Scholar

    [19]

    Zan R, Bangert U, Ramasse Q, Novoselov K S 2012 J. Phys. Chem. Lett. 3 953Google Scholar

    [20]

    Chen Q, He K, Robertson A W, Kirkland A I, Warner J H 2016 ACS Nano 10 10418Google Scholar

    [21]

    Zhou H, Yu F, Guo C F, Wang Z, Lan Y, Wang G, Fang Z, Liu Y, Chen S, Sun L F, Ren Z 2015 Nanoscale 7 9153Google Scholar

    [22]

    Jin Z, Nackashi D, Lu W, Kittrell C, Tour J M 2010 Chem. Mater. 22 5695Google Scholar

    [23]

    Wang S, Sawada H, Chen Q, Han G G D, Allen C, Kirkland A I, Warner J H 2017 ACS Nano 11 9057Google Scholar

    [24]

    Wang S, Sawada H, Han X, Zhou S, Li S, Guo Z X, Kirkland A I, Warner J H 2018 ACS Nano 12 5626Google Scholar

    [25]

    Zuo P, Jiang L, Li X, Li B, Xu Y, Shi X, Ran P, Ma T, Li D, Qu L, Lu Y, Grigoropoulos C P 2017 ACS Appl. Mater. Interfaces 9 7447Google Scholar

    [26]

    Lei Y T, Li D W, Zhang T C, Huang X, Liu L, Lu Y F 2017 J. Mater. Chem. C 5 8883Google Scholar

    [27]

    Liu X W, Wang D S, Li Y D 2012 Nano Today 7 448Google Scholar

    [28]

    Huang X, Li S, Wu S, Huang Y, Boey F, Gan C L, Zhang H 2012 Adv. Mater. 24 979Google Scholar

    [29]

    Kidd T E, Weber J, Holzapfel R, Doore K, Stollenwerk A J 2018 Appl. Phys. Lett. 113 191603Google Scholar

    [30]

    Muszynski R, Seger B, Kamat P V 2008 J. Phys. Chem. C 112 5263Google Scholar

    [31]

    Kamat P V 2010 J. Phys. Chem. Lett. 1 520Google Scholar

    [32]

    Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F 2010 Nano Res. 3 429Google Scholar

    [33]

    Yuk J M, Jeong M, Kim S Y, Seo H K, Kim J, Lee J Y 2013 Chem. Commun. 49 11479Google Scholar

    [34]

    Sun Y, Zhao H, Zhou D, Zhu Y, Ye H, Moe Y A, Wang R 2019 Nano Res. 12 947Google Scholar

    [35]

    Lu X, Luo X, Zhang J, Quek S Y, Xiong Q 2016 Nano Res. 9 3559Google Scholar

    [36]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [37]

    Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S 2010 ACS Nano 4 2695Google Scholar

    [38]

    Liu H T, Ryu S M, Chen Z Y, Steigerwald M L, Nuckolls C, Brus L E 2009 J. Am. Chem. Soc. 131 17099Google Scholar

    [39]

    Martins F E H, Moutinho M V O, Stavale F, Lucchese M M, Capaz R B, Achete C A, Jorio A 2010 Phys. Rev. B 82 125429Google Scholar

    [40]

    Lui C H, Malard L M, Kim S, Lantz G, Laverge F E, Saito R, Heinz T F 2012 Nano Lett. 12 5539Google Scholar

    [41]

    Wu J B, Zhang X, Ijaes M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C, Tan P H 2014 Nat. Commun. 5 5309Google Scholar

    [42]

    Zhang X, Han W P, Qiao X F, Tan Q H, Wang Y F, Zhang J, Tan P H 2016 Carbon 99 118Google Scholar

    [43]

    Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C, Tan P H 2013 Phys. Rev. B 87 115413Google Scholar

    [44]

    Zhao H, Wu J B, Zhong H X, Guo Q S, Wang X M, Xia F N, Yang L, Tan P H, Wang H 2015 Nano Res. 8 3651Google Scholar

    [45]

    Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G, Wang F 2014 Nat. Commun. 5 4966Google Scholar

    [46]

    Wang P, Zhang D, Zhang L, Fang Y 2013 Chem. Phys. Lett. 556 146Google Scholar

    [47]

    Qiu C, Zhou H, Cao B, Sun L, Yu T 2013 Carbon 59 487Google Scholar

    [48]

    Gong C, Huang C, Miller J, Cheng L, Hao Y, Cobden D, Kim J, Ruoff R S, Wallace R M, Cho K, Xu X, Chabal Y J 2013 ACS Nano 7 11350Google Scholar

    [49]

    Sun Y, Moe Y A, Xu Y, Sun Y, Wang X, Li F, Liu K, Wang R 2019 Nanoscale 11 22432Google Scholar

    [50]

    Sun Y H, Liu K, Hong X P, Chen M, Kim J, Shi S F, Wu J Q, Zettl A, Wang F 2014 Nano Lett. 14 5329Google Scholar

    [51]

    Moe Y A, Sun Y H, Ye H Y, Liu K, Wang R 2018 ACS Appl. Mater. Interfaces 10 40246Google Scholar

    [52]

    Boukhvalov D W, Katsnelson M I 2009 Appl. Phys. Lett. 95 023109

    [53]

    Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P 2009 Nano Lett. 9 2600Google Scholar

    [54]

    Sreeprasad T S, Phong N, Kim N, Berry V 2013 Nano Lett. 13 4434Google Scholar

    [55]

    Chen C H, Wu C L, Pu J, Chiu M H, Kumar P, Takenobu T, Li L J 2014 2D Mater. 1 034001

    [56]

    Shi Y, Huang J K, Jin L, Hsu Y T, Yu S F, Li L J, Yang H Y 2013 Sci. Rep. 3 1839Google Scholar

    [57]

    Li W W, Geng X M, Guo Y F, Rong J Z, Gong Y P, Wu L Q, Zhang X M, Li P, Xu J B, Cheng G S, Sun M T, Liu L W 2011 ACS Nano 5 6955Google Scholar

    [58]

    He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, Zhang H 2012 Small 8 2994Google Scholar

    [59]

    Chen K, Lu G, Chang J, Mao S, Yu K, Cui S, Chen J 2012 Anal. Chem. 84 4057Google Scholar

    [60]

    Xu W G, Mao N N, Zhang J 2013 Small 9 1206Google Scholar

    [61]

    Jing X X, Li D Q, Zhang Y, Hou X Y, Jiang J, Fan X C, Wang M C, Feng S P, Yu Y F, Lu J P, Hu Z L, Ni Z H 2021 Chin. Phys. Lett. 38 074203Google Scholar

    [62]

    Li J H, Zhang S N, Zhai Y J, Ma J G, Fang W H, Zhang Y 2019 Acta Phys. Sin. 68 134203Google Scholar

    [63]

    Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, Zhang Z 2010 Nanoscale 2 2733Google Scholar

    [64]

    Hou H, Wang P, Zhang J, Li C, Jin Y 2015 ACS Appl. Mater. Interfaces 7 18038Google Scholar

    [65]

    Liu M, Chen W 2013 Biosens. Bioelectron. 46 68Google Scholar

    [66]

    Gupta S, Banaszak A, Smith T, Dimakis N 2018 J. Raman Spectrosc. 49 438Google Scholar

    [67]

    Singha S S, Nandi D, Singha A 2015 RSC Adv. 5 24188Google Scholar

    [68]

    Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A T C, Agarwal R 2015 Nano Lett. 15 3646Google Scholar

    [69]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [70]

    Lee K C J, Chen Y H, Lin H Y, Cheng C C, Chen P Y, Wu T Y, Shih M H, Wei K H, Li L J, Chang C W 2015 Sci. Rep. 5 16374Google Scholar

    [71]

    Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar

    [72]

    Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J, Halas N J 2014 Appl. Phys. Lett. 104 031112Google Scholar

    [73]

    Li J, Nie C, Sun F, Tang L, Zhang Z, Zhang J, Zhao Y, Shen J, Feng S, Shi H, Wei X 2020 ACS Appl. Mater. Interfaces 12 8429Google Scholar

    [74]

    Gao W, Lee Y H, Jiang R, Wang J, Liu T, Ling X Y 2016 Adv. Mater. 28 701Google Scholar

    [75]

    Zhang H Z, Xu C Y, Nan H Y, Xiao S Q, Gu X F 2020 Acta Phys. Sin. 69 246101Google Scholar

    [76]

    Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X J 2014 Phys. Rev. Lett. 113 036802Google Scholar

    [77]

    Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C, Singh A K, Akinwande D, Lin J F 2014 Nat. Commun. 5 3731Google Scholar

    [78]

    Liu B, Han Y H, Gao C X, Ma Y Z, Peng G, Wu B J, Liu C L, Wang Y, Hu T J, Cui X Y, Ren W B, Li Y, Su N N, Liu H W, Zou G T 2010 J. Phys. Chem. C 114 14251Google Scholar

    [79]

    Lin Y C, Dumcencon D O, Huang Y S, Suenaga K 2014 Nat. Nanotechnol. 9 391Google Scholar

    [80]

    Loh T A J, Chua D H C 2015 J. Phys. Chem. C 119 27496Google Scholar

    [81]

    Py M A H, Haering R R 1983 Can. J. Phys. 61 76Google Scholar

    [82]

    Wang L, Xu Z, Wang W, Bai X D 2014 J. Am. Chem. Soc. 136 6693Google Scholar

    [83]

    Wang X F, Shen X, Wang Z X, Yu R C, Chen L Q 2014 ACS Nano 8 11394Google Scholar

    [84]

    Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z Y 2014 Adv. Mater. 26 6467Google Scholar

    [85]

    Gong C, Zhang H J, Wang W H, Colombo L, Wallace R M, Cho K J 2013 Appl. Phys. Lett. 103 053513Google Scholar

    [86]

    Kang Y, Gong Y, Hu Z, Li Z, Qiu Z, Zhu X, Ajayan P M, Fang Z 2015 Nanoscale 7 4482Google Scholar

    [87]

    Wei S, Cui X Q, Xu Y, Shang B, Zhang Q, Gu L, Fan X, Zheng L, Hou C, Huang H, Wen S, Zheng W T 2019 ACS Energy Lett. 4 368Google Scholar

    [88]

    Shang B, Cui X Q, Jiao L, Qi K, Wang Y W, Fan J C, Yue Y Y, Wang H Y, Bao Q L, Fan X F, Wei S T, Song W, Cheng Z L, Guo S J, Zheng W T 2019 Nano Lett. 19 2758Google Scholar

    [89]

    Qi K, Cui X Q, Gu L, Yu S, Fan X, Luo M, Xu S, Li N, Zheng L, Zhang Q, Ma J, Gong Y, Lü F, Wang K, Huang H, Zhang W, Guo S, Zheng W T, Liu P 2019 Nat. Commun. 10 5231Google Scholar

    [90]

    Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X, Lu W 2015 Small 11 2392Google Scholar

    [91]

    Lan H Y, Hsieh Y H, Chiao Z Y, Jariwala D, Shih M H, Yen T J, Hess O, Lu Y J 2021 Nano Lett. 21 3083Google Scholar

    [92]

    Chen W, Liang R, Liu Y, Zhang S, Cheng W, Zhao L, Xu J 2019 Appl. Phys. Lett 115 142102Google Scholar

    [93]

    Han X, Xing J, Xu H, Huang Y, Li D, Lu J, Li P, Wu Y 2020 Nanotechnology 31 215201Google Scholar

    [94]

    Sriram P, Wen Y P, Manikandan A, Hsu K C, Tang S Y, Hsu B W, Chen Y Z, Lin H W, Jeng H T, Chueh Y L, Yen T J 2020 Chem. Mater. 32 2242Google Scholar

    [95]

    Fang Z Y, Liu Z, Wang Y, Ajayan P M, Nordlander P, Halas N J 2012 Nano Lett. 12 3808Google Scholar

    [96]

    Kumar R, Sharma A, Kaur M, Husale S 2017 Adv. Opt. Mater 5 1700009Google Scholar

    期刊类型引用(3)

    1. 郝东凤,胥文慧. 应变效应对二维材料异质结构中能带结构的影响. 造纸装备及材料. 2025(01): 50-52 . 百度学术
    2. 王清翔,邓腾,唐红梅. Mn_3O_4-Ni/C@FeOOH复合材料的界面构筑及其在电解水制氢中的应用. 能源研究与管理. 2024(02): 54-60 . 百度学术
    3. 杜立杰,陈靖雯,王荣明. 基于C_(14)H_(31)O_3P-Ti_3C_2/Au肖特基结的自驱动近红外探测器. 物理学报. 2023(13): 243-250 . 百度学术

    其他类型引用(4)

  • 图 1  缺陷和晶界对金属纳米颗粒在二维材料上成核的影响 (a)—(c) AC-TEM图像显示Au纳米团簇在800 ℃下从石墨烯孔的边缘移动到缺陷位置(红色虚线圆圈)[20]; (d)—(g) Pt纳米颗粒在单层MoS2的晶界处选择性成核[24]

    Figure 1.  Effects of defects and grain boundaries on the nucleation of metal nanoparticles (NPs) on two-dimensional materials: (a)–(c) AC-TEM images at 800 ℃ showing Au clusters moving from the edge of a graphene hole to a defective site (indicated by red dotted circle)[20]; (d)–(g) selective nucleation of Pt NPs at the grain boundary of monolayer MoS2[24].

    图 2  金纳米颗粒的还原和MoS2表面结构对金纳米颗粒形貌的影响[25] (a)飞秒激光处理后, 在MoS2边缘形成具有S不饱和键的边缘活性位点(红色圆点)的示意图; (b)在边缘活性位点处, 金离子被还原成金原子的示意图; 处理后MoS2表面分别具有(c)短周期结构和(d)长周期结构导致的非球形金纳米颗粒对比图(图中0 s和30 min表示激光处理后的MoS2与AuCl3溶液的反应时间)

    Figure 2.  Reduction of Au NPs and the effects of surface structures of MoS2 on Au morphology[25]: (a) Schematic of femtosecond pulses irradiating on MoS2; (b) Au cations were reduced to be Au atoms by laser treated MoS2; (c) short-periodic structures and (d) long-periodic structures led to different non-spherical Au NPs (“0 s” and “30 min” represent the reaction time of laser-treated MoS2 and AuCl3 solution).

    图 3  实时高分辨TEM图像揭示金纳米颗粒通过旋转和晶界推移实现聚合生长过程[33] (a)两个纳米颗粒靠近时的初始位错角为11.7º; (b)—(d)两个纳米颗粒的晶体取向发生旋转, 位错角随时间减小(黄色虚线代表聚合过程中的内部孪晶界, 红色虚线代表聚合后形成的孪晶界); (e)—(f)两个纳米颗粒靠近时在界面处形成高曲率的“颈”状结构; (g)—(i)晶界逐渐推移至聚合颗粒的边缘, 并形成一个单晶颗粒. 标尺为2 nm

    Figure 3.  Real-time HRTEM images of coalescence of Au NPs via the rotation and grain boundary (GB) migration[33]: (a) Two NPs approach each other with an initial misalignment angle of 11.7º; (b)–(d) the NPs rotate to align their crystallographic orientations (The yellow and red dotted lines indicate the locked and created twin boundaries, respectively, in the combined particle during coalescence); (e)–(f) two NPs come close together and a neck is formed at the particle-particle interface; (g)–(i) GB moves to the edge of the combined particle, creating a single crystalline particle. Scale bar is 2 nm.

    图 4  (a)金刚刚沉积到MoS2上的TEM图像; (b)经过在氮气箱中保存9 d后, 金在MoS2上的TEM图像; (c)图(b)中纳米颗粒区域和枝晶区域的电子衍射图样; (d)原子分辨的STEM图像显示了金原子在MoS2表面上的迁移通道(黄色箭头指示了离散的金原子); (e)金纳米枝晶在MoS2上的典型的莫尔条纹; (f)原子分辨的STEM图像显示了金纳米枝晶与MoS2晶格的外延排列情况[34]

    Figure 4.  (a) TEM images of Au on MoS2 at the same location just after deposition; (b) TEM images of Au on MoS2 stored in a nitrogen box after 9 days; (c) selective area electron diffraction patterns for the NP and dendrite regions in (b); (d) the atomic-resolution STEM image showing migration channels of Au atoms on MoS2 surfaces (The isolated Au atoms are marked by yellow arrows); (e) typical moiré fringes in HRTEM of Au dendrites on MoS2; (f) the atomic-resolution STEM image showing the lattice match of Au dendrites with MoS2 lattice[34].

    图 5  Pt纳米晶和团簇在MoS2上的晶格取向和晶面间距[23] (a)附着在MoS2边缘上的Pt纳米晶的STEM图像; (b)上面(a)图的FFT图像, 标出了Pt和MoS2的晶面指数, 以及Pt (111)晶面间距; (c)超小的Pt纳米晶或Pt团簇的STEM图像显示了与单层MoS2的外延取向, 左下角插图显示了干净的MoS2区域的STEM图; (d)上面(c)图的FFT图像

    Figure 5.  Lattice orientation and spacing of Pt nanocrystals and clusters on MoS2[23]: (a) STEM image of a Pt nanocrystal attached to the edge of MoS2; (b) FFT image of (a) with the crystal plane indices of Pt and MoS2, and the crystal plane spacing of Pt (111); (c) STEM image of an ultrasmall Pt nanocrystal or cluster showing the epitaxial orientation on monolayer MoS2 (Inset on the left bottom shows a clean region of MoS2); (d) the FFT image of (c).

    图 6  (a)在Al2O3基底上机械剥离不同层数的MoS2的光学照片; (b)在云母基底上机械剥离不同层数的MoS2的光学照片; (c) Al2O3基底的原子力显微图像; (d) 云母基底的原子力显微图像; (e)在Al2O3基底上的单层MoS2沉积Ag纳米颗粒前后, 以及不同天数的拉曼光谱; (f)在云母基底上的单层MoS2沉积Ag纳米颗粒前后, 以及不同天数的拉曼光谱. 红色箭头分别指示了${\rm E}_{2\mathrm{g}}^{1'}$峰的峰位[49]

    Figure 6.  Optical images of exfoliated MoS2 layers on (a) Al2O3 and (b) mica substrates; AFM images of (c) Al2O3 and (d) mica substrates; comparison of Raman spectra of the pristine and Ag-deposited 1L MoS2 on (e) Al2O3 and (f) mica substrates, as well as the evolution of Raman spectra over time. Raman peak splitting after Ag deposition on the two kinds of substrates can be seen from comparing the first top-most panels and the second panels. The quenching rate of splitting Raman peaks of ${\rm E}_{2\mathrm{g}}^{1'}$ modes differs, as indicated by the red arrows. SEM images of Ag-deposited 1L MoS2 on the two kinds of substrates are shown in the insets. Scale bars are 100 nm[49].

    图 7  不同金属团簇刻蚀石墨烯和MoS2的HAADF图像 (a)蒸镀厚度为2 Å的Al以后, 从石墨烯边缘刻蚀出现孔洞的HAADF图像; (b)后续孔洞继续扩大的HAADF图像, 红色箭头标出了一些Al原子; (c)在石墨烯上蒸镀厚度为2 Å的Ti的HAADF图像; (d)由于Ti和石墨烯的相互作用较强, Ti直接从中间区域开始刻蚀[19]; (e) 800 ℃下加热3 h后观察到的还原后的C和Pt纳米晶ADF-STEM图像; (f)—(k)连续ADF-STEM图像显示了图(e)中红色框标示的Pt纳米晶在电子束诱导下对MoS2的反应刻蚀. 橙色箭头表示无定形碳盘. 相邻图的拍照间隔是30 s. 标尺都是1 nm[23]

    Figure 7.  HAADF images of graphene and MoS2 etched by different metal clusters: (a) Graphene etching in the presence of an Al layer of 2 Å nominal thickness after the start of the hole formation; (b) after the hole enlargement in subsequent scans (Some Al atoms are indicated by red arrows in (a) and (b)); (c) 2 Å titanium evaporated onto monolayer graphene; (d) magnified image showing direct etching of Ti on the basal plane of graphene[19]; (e) ADF-STEM image of a region after 3 h at 800 ℃ showing reduced carbon and Pt nanocrystals; (f)–(k) sequence of ADF-STEM images showing catalytic etching of MoS2 by the Pt nanocrystal labeled in (e), initiated by electron beam irradiation. Orange arrow indicates an amorphous carbon disk. Time between frames is ~30 s. Scale bars are all 1 nm[23].

    图 8  Au纳米颗粒修饰MoS2的SEM形貌图和对源漏电流的影响[54] (a)通过化学还原法将Au纳米颗粒负载在MoS2上的过程示意图; (b) Au-MoS2杂化体系的SEM图; (c)在80 K下, 负载了Au颗粒以后(Au-MoS2), 器件的电导率增加了103倍(插图显示了80 K下MoS2的输出曲线放大图); (d)在160 K下, 源漏电压为0.5 V时, MoS2和Au-MoS2 FET的背栅调控转移曲线. 插图分别显示了MoS2和Au-MoS2 FETs的结构示意图和等效电容电路图, 以及Au-MoS2 FET器件的SEM图. 标尺为10 μm.

    Figure 8.  Morphology of MoS2 modified by Au NPs and the effect on source-drain current in FET[54]: (a) Schematic illustration depicting the anchoring of Au NP on MoS2 via chemical reduction strategy; (b) SEM image of Au-MoS2 hybrid structure; (c) at 80 K the conductivity of MoS2 device is increased 103 folds after Au functionalization (Au-MoS2) (The inset shows an enlarged view of IDS versus VDS response for MoS2 at 80 K); (d) at 160 K, with VDS = 0.5 V, back-gating characteristics of MoS2 and Au-MoS2 FETs are shown. The top inset shows capacitance circuitry of the Au-MoS2 device. Bottom-left inset shows the structure of MoS2 FET and Au-MoS2 FET. Bottom-right inset shows a SEM micrograph of Au-MoS2 FET. Scale bar is 10 μm.

    图 9  (a)直径40 nm的Au纳米颗粒附着在GO上的TEM图; (b) Au纳米颗粒在GO上附着前后的水溶液的吸收谱; (c)分别利用Au纳米颗粒(i)和Au-GO复合体系(ii)得到的PATP分子的SERS光谱[63]; (d) Ag领结阵列直接制备在堆叠的单层和双层MoS2三角形薄片上(插图显示了放大后的Ag领结的SEM图); (e)纯MoS2, Ag领结阵列, 以及Ag领结-MoS2的PL光谱对比(插图是对数坐标下的PL光谱数据); (f)在77 K, TE激发极化下, 纯MoS2, Ag领结阵列, 以及Ag领结-MoS2的ΔR/R反射光谱. Ag领结-MoS2体系显示出了由于MoS2激子和LSPR模式光学耦合导致的Fano共振现象. 其中, Ag领结阵列的几何参数: 边长100 nm, xy方向周期分别为400和300 nm[68]

    Figure 9.  (a) TEM images of 40 nm Au NPs deposited on GO sheets; (b) UV-vis spectra of aqueous solution of 40 nm Au NPs before and after attachment to the GO sheet; (c) SERS spectra of PATP using (i) the 40 nm Au NPs and (ii) the corresponding Au-GO composites as SERS substrates, respectively[63]; (d) SEM image showing the Ag bowtie array directly patterned on well-defined, stacked triangular flakes of mono- and bilayer MoS2 (The inset shows the enlarged SEM image of the Ag bowtie); (e) PL spectra of bare MoS2, bowtie array and bowtie-MoS2. Inset shows PL in log scale; (f) ΔR/R spectra of bare MoS2, Ag bowtie array, and Ag bowtie-MoS2 at 77 K and TE polarization. Clear Fano resonances are observed when the bowtie lattice-LSP modes overlap with MoS2 excitons. Ag bowtie array: side length 100 nm, x and y direction periods 400 and 300 nm, respectively[68].

    图 10  表面等离激元共振产生的热电子诱导MoS2单层从2H相到1T相相变[84] (a)在MoS2上沉积直径5 nm的金纳米颗粒后, PL光谱出现红移和展宽; (b)在Au纳米颗粒沉积后出现的三个新的拉曼峰与1T相一致; (c) MoS2薄膜的示意图, 其中Au纳米颗粒产生的热电子转移到MoS2中; (d) Au纳米颗粒中的等离激元衰减成热电子, 其最高的电子能量在费米能级以上一个等离激元量子(热电子产生的原理), 而热电子可以转移到MoS2的导带中; (e) 2H和1T晶格结构之间的转变(在晶体配位场理论中, 2H相中的Mo 4d轨道具有3个能级, 而1T中的Mo 4d轨道仅具有2个能级. 当热电子填充未占据的Mo 4d轨道时, 1T相稳定)

    Figure 10.  Plasmonic hot electron induced structural phase transition from 2H to 1T in monolayer MoS2[84]: (a) PL spectrum red-shifting and broadening was found after the 5 nm Au NPs were deposited on MoS2; (b) three new Raman peaks consistent with the 1T phase recorded after the Au NP deposition; (c) schematic of a MoS2 film with hot electrons generated from Au NPs; (d) the principle of hot electron generation is Au NP plasmon decay into hot electrons with the highest electron energies one plasmon quantum above the Fermi level; (e) the transition between 2H and 1T structure (The Mo 4d-orbitals in 2H phase have three groups, and in 1T phase have two. When an extra electron fill an unoccupied Mo 4d-orbital, the 1T phase is stabilized).

    图 11  (a)夹在两片单层石墨烯之间的单个Au纳米盘七聚体的示意图; (b)沿着插图中所示的线扫描方向, 对没有Au纳米天线、有Au纳米盘二聚体和七聚体阵列修饰的石墨烯的光电流的测量结果[95]; (c)负载Au纳米颗粒光栅结构的单层MoS2光电探测器的示意图; (d)不同光电探测器的光电流随时间的变化曲线, 其中VG = 0 V, VDS = 1 V. Bare表示没有Au纳米颗粒负载的单层MoS2, NP I和NP II分别表示MoS2上负载的Au纳米颗粒具有不同的直径和密度, NP G表示Au纳米颗粒光栅结构[73]

    Figure 11.  (a) Schematic illustration of a single Au heptamer sandwiched between two sheets of monolayer graphene; (b) photocurrent measurements of graphene without Au nanoantennas and modified by Au dimer and heptamer arrays, obtained along the line scan direction shown in the inset; (c) schematic diagram of a monolayer MoS2 photodetector loaded with Au NP grating; (d) photocurrent-time response of different photodetectors, where VG = 0 V and VDS = 1 V. Bare denotes monolayer MoS2 without Au NPs, NP I and NP II denote Au NPs loaded on MoS2 with different diameters and densities, respectively, and NP G denotes Au NP grating structure[73].

    图 12  (a)修饰有Pt纳米带的双层MoS2光电器件示意图; (b)在可见光(532 nm)照射下, 测量沉积Pt纳米带前后器件光电流随时间的变化(红色表示沉积前的结果, 绿色表示沉积后的结果); (c)在紫外光(325 nm)照射下, 测量不同偏置电压下的光电流随时间的变化(光功率密度: 184 mW·cm–2); (d)在近红外光(980 nm)照射下, 改变入射光功率密度, 测得的时间依赖的光电流曲线(偏置电压: 1 V). 插图显示光电流正比于入射激光功率[96]

    Figure 12.  (a) Schematic diagram of a bilayer MoS2 device deposited with Pt nanostrips; (b) time-dependent photocurrent measurement before and after deposition of Pt nanostrips under visible light (532 nm) irradiation (Red curve indicates the result before deposition and green curve indicates that after deposition); (c) photocurrent measurement at different bias voltages under UV light (325 nm) irradiation (power density 184 mW·cm–2); (d) time-dependent photocurrent measurements under exposure to different NIR light (980 nm) intensities (bias voltage: 1 V), where the inset shows that the linear dependence of the photocurrent on the incident laser power intensity[96].

  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206Google Scholar

    [3]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [4]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [5]

    Panchokarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R 2009 Adv. Mater. 21 4726

    [6]

    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752Google Scholar

    [7]

    Latorre-Sanchez M, Primo A, Garcia H 2013 Angew. Chem. Int. Edit. 52 11813Google Scholar

    [8]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877Google Scholar

    [9]

    Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321Google Scholar

    [10]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [11]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [12]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [13]

    Lü R, Terrones H, Elias A L, Perea-Lopez N, Gutierrez H R, Cruz-Silva E, Rajukumar L P, Dresselhaus M S, Terrones M 2015 Nano Today 10 559Google Scholar

    [14]

    Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [15]

    Zhou L, Xia T, Cao T, Wang L, Chen Y, Li S, Wang R, Guo H 2020 J. Alloys Compd. 818 152909Google Scholar

    [16]

    Najmaei S, Mlayah A, Arbouet A, Girard C, Leotin J, Lou J 2014 ACS Nano 8 12682Google Scholar

    [17]

    Xiu X W, Zhang W C, Hou S T, Li Z, Lei F C, Xu S C, Li C H, Man B Y, Yu J, Zhang C 2021 Chin. Phys. B 30 088801Google Scholar

    [18]

    Zan R, Bangert U, Ramasse Q, Novoselov K S 2011 Small 7 2868Google Scholar

    [19]

    Zan R, Bangert U, Ramasse Q, Novoselov K S 2012 J. Phys. Chem. Lett. 3 953Google Scholar

    [20]

    Chen Q, He K, Robertson A W, Kirkland A I, Warner J H 2016 ACS Nano 10 10418Google Scholar

    [21]

    Zhou H, Yu F, Guo C F, Wang Z, Lan Y, Wang G, Fang Z, Liu Y, Chen S, Sun L F, Ren Z 2015 Nanoscale 7 9153Google Scholar

    [22]

    Jin Z, Nackashi D, Lu W, Kittrell C, Tour J M 2010 Chem. Mater. 22 5695Google Scholar

    [23]

    Wang S, Sawada H, Chen Q, Han G G D, Allen C, Kirkland A I, Warner J H 2017 ACS Nano 11 9057Google Scholar

    [24]

    Wang S, Sawada H, Han X, Zhou S, Li S, Guo Z X, Kirkland A I, Warner J H 2018 ACS Nano 12 5626Google Scholar

    [25]

    Zuo P, Jiang L, Li X, Li B, Xu Y, Shi X, Ran P, Ma T, Li D, Qu L, Lu Y, Grigoropoulos C P 2017 ACS Appl. Mater. Interfaces 9 7447Google Scholar

    [26]

    Lei Y T, Li D W, Zhang T C, Huang X, Liu L, Lu Y F 2017 J. Mater. Chem. C 5 8883Google Scholar

    [27]

    Liu X W, Wang D S, Li Y D 2012 Nano Today 7 448Google Scholar

    [28]

    Huang X, Li S, Wu S, Huang Y, Boey F, Gan C L, Zhang H 2012 Adv. Mater. 24 979Google Scholar

    [29]

    Kidd T E, Weber J, Holzapfel R, Doore K, Stollenwerk A J 2018 Appl. Phys. Lett. 113 191603Google Scholar

    [30]

    Muszynski R, Seger B, Kamat P V 2008 J. Phys. Chem. C 112 5263Google Scholar

    [31]

    Kamat P V 2010 J. Phys. Chem. Lett. 1 520Google Scholar

    [32]

    Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F 2010 Nano Res. 3 429Google Scholar

    [33]

    Yuk J M, Jeong M, Kim S Y, Seo H K, Kim J, Lee J Y 2013 Chem. Commun. 49 11479Google Scholar

    [34]

    Sun Y, Zhao H, Zhou D, Zhu Y, Ye H, Moe Y A, Wang R 2019 Nano Res. 12 947Google Scholar

    [35]

    Lu X, Luo X, Zhang J, Quek S Y, Xiong Q 2016 Nano Res. 9 3559Google Scholar

    [36]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [37]

    Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S 2010 ACS Nano 4 2695Google Scholar

    [38]

    Liu H T, Ryu S M, Chen Z Y, Steigerwald M L, Nuckolls C, Brus L E 2009 J. Am. Chem. Soc. 131 17099Google Scholar

    [39]

    Martins F E H, Moutinho M V O, Stavale F, Lucchese M M, Capaz R B, Achete C A, Jorio A 2010 Phys. Rev. B 82 125429Google Scholar

    [40]

    Lui C H, Malard L M, Kim S, Lantz G, Laverge F E, Saito R, Heinz T F 2012 Nano Lett. 12 5539Google Scholar

    [41]

    Wu J B, Zhang X, Ijaes M, Han W P, Qiao X F, Li X L, Jiang D S, Ferrari A C, Tan P H 2014 Nat. Commun. 5 5309Google Scholar

    [42]

    Zhang X, Han W P, Qiao X F, Tan Q H, Wang Y F, Zhang J, Tan P H 2016 Carbon 99 118Google Scholar

    [43]

    Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C, Tan P H 2013 Phys. Rev. B 87 115413Google Scholar

    [44]

    Zhao H, Wu J B, Zhong H X, Guo Q S, Wang X M, Xia F N, Yang L, Tan P H, Wang H 2015 Nano Res. 8 3651Google Scholar

    [45]

    Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G, Wang F 2014 Nat. Commun. 5 4966Google Scholar

    [46]

    Wang P, Zhang D, Zhang L, Fang Y 2013 Chem. Phys. Lett. 556 146Google Scholar

    [47]

    Qiu C, Zhou H, Cao B, Sun L, Yu T 2013 Carbon 59 487Google Scholar

    [48]

    Gong C, Huang C, Miller J, Cheng L, Hao Y, Cobden D, Kim J, Ruoff R S, Wallace R M, Cho K, Xu X, Chabal Y J 2013 ACS Nano 7 11350Google Scholar

    [49]

    Sun Y, Moe Y A, Xu Y, Sun Y, Wang X, Li F, Liu K, Wang R 2019 Nanoscale 11 22432Google Scholar

    [50]

    Sun Y H, Liu K, Hong X P, Chen M, Kim J, Shi S F, Wu J Q, Zettl A, Wang F 2014 Nano Lett. 14 5329Google Scholar

    [51]

    Moe Y A, Sun Y H, Ye H Y, Liu K, Wang R 2018 ACS Appl. Mater. Interfaces 10 40246Google Scholar

    [52]

    Boukhvalov D W, Katsnelson M I 2009 Appl. Phys. Lett. 95 023109

    [53]

    Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P 2009 Nano Lett. 9 2600Google Scholar

    [54]

    Sreeprasad T S, Phong N, Kim N, Berry V 2013 Nano Lett. 13 4434Google Scholar

    [55]

    Chen C H, Wu C L, Pu J, Chiu M H, Kumar P, Takenobu T, Li L J 2014 2D Mater. 1 034001

    [56]

    Shi Y, Huang J K, Jin L, Hsu Y T, Yu S F, Li L J, Yang H Y 2013 Sci. Rep. 3 1839Google Scholar

    [57]

    Li W W, Geng X M, Guo Y F, Rong J Z, Gong Y P, Wu L Q, Zhang X M, Li P, Xu J B, Cheng G S, Sun M T, Liu L W 2011 ACS Nano 5 6955Google Scholar

    [58]

    He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, Zhang H 2012 Small 8 2994Google Scholar

    [59]

    Chen K, Lu G, Chang J, Mao S, Yu K, Cui S, Chen J 2012 Anal. Chem. 84 4057Google Scholar

    [60]

    Xu W G, Mao N N, Zhang J 2013 Small 9 1206Google Scholar

    [61]

    Jing X X, Li D Q, Zhang Y, Hou X Y, Jiang J, Fan X C, Wang M C, Feng S P, Yu Y F, Lu J P, Hu Z L, Ni Z H 2021 Chin. Phys. Lett. 38 074203Google Scholar

    [62]

    Li J H, Zhang S N, Zhai Y J, Ma J G, Fang W H, Zhang Y 2019 Acta Phys. Sin. 68 134203Google Scholar

    [63]

    Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, Zhang Z 2010 Nanoscale 2 2733Google Scholar

    [64]

    Hou H, Wang P, Zhang J, Li C, Jin Y 2015 ACS Appl. Mater. Interfaces 7 18038Google Scholar

    [65]

    Liu M, Chen W 2013 Biosens. Bioelectron. 46 68Google Scholar

    [66]

    Gupta S, Banaszak A, Smith T, Dimakis N 2018 J. Raman Spectrosc. 49 438Google Scholar

    [67]

    Singha S S, Nandi D, Singha A 2015 RSC Adv. 5 24188Google Scholar

    [68]

    Lee B, Park J, Han G H, Ee H S, Naylor C H, Liu W, Johnson A T C, Agarwal R 2015 Nano Lett. 15 3646Google Scholar

    [69]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [70]

    Lee K C J, Chen Y H, Lin H Y, Cheng C C, Chen P Y, Wu T Y, Shih M H, Wei K H, Li L J, Chang C W 2015 Sci. Rep. 5 16374Google Scholar

    [71]

    Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar

    [72]

    Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J, Halas N J 2014 Appl. Phys. Lett. 104 031112Google Scholar

    [73]

    Li J, Nie C, Sun F, Tang L, Zhang Z, Zhang J, Zhao Y, Shen J, Feng S, Shi H, Wei X 2020 ACS Appl. Mater. Interfaces 12 8429Google Scholar

    [74]

    Gao W, Lee Y H, Jiang R, Wang J, Liu T, Ling X Y 2016 Adv. Mater. 28 701Google Scholar

    [75]

    Zhang H Z, Xu C Y, Nan H Y, Xiao S Q, Gu X F 2020 Acta Phys. Sin. 69 246101Google Scholar

    [76]

    Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X J 2014 Phys. Rev. Lett. 113 036802Google Scholar

    [77]

    Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C, Singh A K, Akinwande D, Lin J F 2014 Nat. Commun. 5 3731Google Scholar

    [78]

    Liu B, Han Y H, Gao C X, Ma Y Z, Peng G, Wu B J, Liu C L, Wang Y, Hu T J, Cui X Y, Ren W B, Li Y, Su N N, Liu H W, Zou G T 2010 J. Phys. Chem. C 114 14251Google Scholar

    [79]

    Lin Y C, Dumcencon D O, Huang Y S, Suenaga K 2014 Nat. Nanotechnol. 9 391Google Scholar

    [80]

    Loh T A J, Chua D H C 2015 J. Phys. Chem. C 119 27496Google Scholar

    [81]

    Py M A H, Haering R R 1983 Can. J. Phys. 61 76Google Scholar

    [82]

    Wang L, Xu Z, Wang W, Bai X D 2014 J. Am. Chem. Soc. 136 6693Google Scholar

    [83]

    Wang X F, Shen X, Wang Z X, Yu R C, Chen L Q 2014 ACS Nano 8 11394Google Scholar

    [84]

    Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z Y 2014 Adv. Mater. 26 6467Google Scholar

    [85]

    Gong C, Zhang H J, Wang W H, Colombo L, Wallace R M, Cho K J 2013 Appl. Phys. Lett. 103 053513Google Scholar

    [86]

    Kang Y, Gong Y, Hu Z, Li Z, Qiu Z, Zhu X, Ajayan P M, Fang Z 2015 Nanoscale 7 4482Google Scholar

    [87]

    Wei S, Cui X Q, Xu Y, Shang B, Zhang Q, Gu L, Fan X, Zheng L, Hou C, Huang H, Wen S, Zheng W T 2019 ACS Energy Lett. 4 368Google Scholar

    [88]

    Shang B, Cui X Q, Jiao L, Qi K, Wang Y W, Fan J C, Yue Y Y, Wang H Y, Bao Q L, Fan X F, Wei S T, Song W, Cheng Z L, Guo S J, Zheng W T 2019 Nano Lett. 19 2758Google Scholar

    [89]

    Qi K, Cui X Q, Gu L, Yu S, Fan X, Luo M, Xu S, Li N, Zheng L, Zhang Q, Ma J, Gong Y, Lü F, Wang K, Huang H, Zhang W, Guo S, Zheng W T, Liu P 2019 Nat. Commun. 10 5231Google Scholar

    [90]

    Miao J, Hu W, Jing Y, Luo W, Liao L, Pan A, Wu S, Cheng J, Chen X, Lu W 2015 Small 11 2392Google Scholar

    [91]

    Lan H Y, Hsieh Y H, Chiao Z Y, Jariwala D, Shih M H, Yen T J, Hess O, Lu Y J 2021 Nano Lett. 21 3083Google Scholar

    [92]

    Chen W, Liang R, Liu Y, Zhang S, Cheng W, Zhao L, Xu J 2019 Appl. Phys. Lett 115 142102Google Scholar

    [93]

    Han X, Xing J, Xu H, Huang Y, Li D, Lu J, Li P, Wu Y 2020 Nanotechnology 31 215201Google Scholar

    [94]

    Sriram P, Wen Y P, Manikandan A, Hsu K C, Tang S Y, Hsu B W, Chen Y Z, Lin H W, Jeng H T, Chueh Y L, Yen T J 2020 Chem. Mater. 32 2242Google Scholar

    [95]

    Fang Z Y, Liu Z, Wang Y, Ajayan P M, Nordlander P, Halas N J 2012 Nano Lett. 12 3808Google Scholar

    [96]

    Kumar R, Sharma A, Kaur M, Husale S 2017 Adv. Opt. Mater 5 1700009Google Scholar

  • [1] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] Wu Yan-Fei, Zhu Meng-Yuan, Zhao Rui-Jie, Liu Xin-Jie, Zhao Yun-Chi, Wei Hong-Xiang, Zhang Jing-Yan, Zheng Xin-Qi, Shen Jian-Xin, Huang He, Wang Shou-Guo. The fabrication and physical properties of two-dimensional van der Waals heterostructures. Acta Physica Sinica, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [3] Song Rui, Wang Bi-Li, Feng Kai, Wang Li, Liang Dan-Dan. Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [4] Liu Tian-Yao, Liu Can, Liu Kai-Hui. Atomic-scale manufacture of metre-sized two-dimensional single crystals by interfacial modulation. Acta Physica Sinica, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [5] Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211516
    [6] Meng Yu-Xin, Zhao Yi-Fan, Li Shao-Chun. Research progress of puckered honeycomb monolayers. Acta Physica Sinica, 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [7] Huang Yu-Hao, Zhang Gui-Tao, Wang Ru-Qian, Chen Qian, Wang Jin-Lan. Electronic structure and stability of two-dimensional bimetallic ferromagnetic semiconductor CrMoI6. Acta Physica Sinica, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [8] Gong Yue, Gu Lin. Structural evolution and matter transportation of the interface in all-solid-state battery. Acta Physica Sinica, 2020, 69(22): 226801. doi: 10.7498/aps.69.20201160
    [9] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [10] Duan Jia-Hua, Chen Jia-Ning. Recent progress of near-field studies of two-dimensional polaritonics. Acta Physica Sinica, 2019, 68(11): 110701. doi: 10.7498/aps.68.20190341
    [11] Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin. Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation. Acta Physica Sinica, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [12] Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo. Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes. Acta Physica Sinica, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [13] Cao Liang, Zhang Wen-Hua, Chen Tie-Xin, Han Yu-Yan, Xu Fa-Qiang, Zhu Jun-Fa, Yan Wen-Sheng, Xu Yang, Wang Feng. The molecular orientation and electronic structure of 3, 4, 9, 10-perylene tetracarboxylic dianhydride grown on Au(111). Acta Physica Sinica, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [14] Nano-β-FeSi2/a-Si multi-layered structure prepared by magnetron sputtering. Acta Physica Sinica, 2007, 56(12): 7188-7194. doi: 10.7498/aps.56.7188
    [15] Liu Yan-Yan, Bauer-Grosse E., Zhang Qing-Yu. Morphology and structure of the diamond film synthesized from carbon monoxide gas. Acta Physica Sinica, 2007, 56(11): 6572-6579. doi: 10.7498/aps.56.6572
    [16] Wang Zhen-Xia, Wang Sen, Hu Jian-Gang, Yu Guo-Jun. Preliminary structural study of multi-wall carbon nanotubes in a returning phase transition process. Acta Physica Sinica, 2005, 54(9): 4263-4268. doi: 10.7498/aps.54.4263
    [17] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [18] Wang Miao, Li Zhen-Hua, Saito Yahachi. Investigation of the fabrication and structure of double-wall carbon nanotubes. Acta Physica Sinica, 2003, 52(11): 2939-2940. doi: 10.7498/aps.52.2939
    [19] Wang Zhen-Xia, Li Xue-Peng, Yu Li-Ping, Ma Yu-Gang, He Guo-Wei, Hu Gang, Chen Yi, Duan Xiao-Feng. . Acta Physica Sinica, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [20] Li Xiao-Na, Nie Dong, Dong Chuang, Ma Teng-Cai, Jin Xing, Zhang Zhe. . Acta Physica Sinica, 2002, 51(1): 115-124. doi: 10.7498/aps.51.115
  • 期刊类型引用(3)

    1. 郝东凤,胥文慧. 应变效应对二维材料异质结构中能带结构的影响. 造纸装备及材料. 2025(01): 50-52 . 百度学术
    2. 王清翔,邓腾,唐红梅. Mn_3O_4-Ni/C@FeOOH复合材料的界面构筑及其在电解水制氢中的应用. 能源研究与管理. 2024(02): 54-60 . 百度学术
    3. 杜立杰,陈靖雯,王荣明. 基于C_(14)H_(31)O_3P-Ti_3C_2/Au肖特基结的自驱动近红外探测器. 物理学报. 2023(13): 243-250 . 百度学术

    其他类型引用(4)

Metrics
  • Abstract views:  15188
  • PDF Downloads:  571
  • Cited By: 7
Publishing process
  • Received Date:  13 October 2021
  • Accepted Date:  04 November 2021
  • Available Online:  26 January 2022
  • Published Online:  20 March 2022

/

返回文章
返回