-
The essence of the scientific problem in all solid-state batteries lies in the properties of the introduced solid electrolyte and the existence of a new solid-solid interface. Starting from the structure-property relationship, the structural evolution of the solid-solid interface and the electrolyte itself, and the matter transport process determine the performance of the all-solid-state battery. With the continuous enrichment of solid electrolyte materials, the current problems in all solid-state batteries are mainly concentrated on the solid-solid interface. The composition and structure at the interface limit the performance of all solid-state batteries. According to the different situations of solid-solid interface contact, this article summarizes and discusses the structure and matter transport at the solid-solid interface in all solid-state batteries according to the three levels of solid-solid interface physical contact, chemical contact and surface modification. Finally, the relationship between local symmetry and material properties under the macroscopic complex system is discussed from the perspective of the functional origin of functional materials.
-
Keywords:
- all-solid-state battery /
- interface structure /
- matter transportation /
- electron microscopy
[1] Hu Y S 2016 Nat. Energy 1 16042Google Scholar
[2] Ma C, Chen K, Liang C, Nan C W, Ishikawa R, More K, Chi M 2014 Energy Environ. Sci. 7 1638Google Scholar
[3] Xiao D, Gu L 2020 Nano Sel. 1
[4] Liu X Z, Tang Z X, Li Q H, Zhang Q H, Yu X Q, Gu L 2020 Cell Rep. Phys. Sci. 1 100066Google Scholar
[5] Nie K, Hong Y, Qiu J, Li Q, Yu X, Li H, Chen L 2018 Front. Chem. 6 1Google Scholar
[6] Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y C, Wei F, Mai L 2018 Joule 2 1991Google Scholar
[7] Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2020 Nat. Rev. Mater. 5 105Google Scholar
[8] Banerjee A, Wang X, Fang C, Wu E A, Meng Y S 2020 Chem. Rev. acs.chemrev.0 c00101
[9] Gong Y, Zhang J, Jiang L, Shi J A, Zhang Q, Yang Z, Zou D, Wang J, Yu X, Xiao R, Hu Y S, Gu L, Li H, Chen L 2017 J. Am. Chem. Soc. 139 4274Google Scholar
[10] Gong Y, Chen Y, Zhang Q, Meng F, Shi J A, Liu X, Liu X, Zhang J, Wang H, Wang J, Yu Q, Zhang Z, Xu Q, Xiao R, Hu Y S, Gu L, Li H, Huang X, Chen L 2018 Nat. Commun. 9 3341Google Scholar
[11] Ohta S, Kobayashi T, Seki J, Asaoka T 2012 J. Power Sources 202 332Google Scholar
[12] Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259Google Scholar
[13] Li X, Ren Z, Norouzi Banis M, Deng S, Zhao Y, Sun Q, Wang C, Yang X, Li W, Liang J, Li X, Sun Y, Adair K, Li R, Hu Y, Sham T K, Huang H, Zhang L, Lu S, Luo J, Sun X 2019 ACS Energy Lett. 4 2480Google Scholar
[14] Qiu J, Liu X, Chen R, Li Q, Wang Y, Chen P, Gan L, Lee S J, Nordlund D, Liu Y, Yu X, Bai X, Li H, Chen L 2020 Adv. Funct. Mater. 30 1909392Google Scholar
[15] Hartmann P, Leichtweiss T, Busche M R, Schneider M, Reich M, Sann J, Adelhelm P, Janek J 2013 J. Phys. Chem. C 117 21064Google Scholar
[16] Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, Xue L, Jia Q, Goodenough J B 2016 Proc. Natl. Acad. Sci. 113 13313Google Scholar
[17] Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More K L, Dudney N J, Chi M 2016 Nano Lett. 16 7030Google Scholar
[18] Chen X, He W, Ding L X, Wang S, Wang H 2019 Energy Environ. Sci. 12 938Google Scholar
[19] Shiraki S, Shirasawa T, Suzuki T, Kawasoko H, Shimizu R, Hitosugi T 2018 ACS Appl. Mater. Interfaces 10 41732Google Scholar
[20] Liu Y, Sun Q, Zhao Y, Wang B, Kaghazchi P, Adair K R, Li R, Zhang C, Liu J, Kuo L Y, Hu Y, Sham T K, Zhang L, Yang R, Lu S, Song X, Sun X 2018 Appl. Mater. Interfaces 10 31240Google Scholar
[21] Shi X, Pang Y, Wang B, Sun H, Wang X, Li Y, Yang J, Li H W, Zheng S 2020 Mater. Today Nano 10 1
[22] Zhang Y, Tian Y, Xiao Y, Miara L J, Aihara Y, Tsujimura T, Shi T, Scott M C, Ceder G 2020 Adv. Energy Mater. 10 1903778Google Scholar
[23] Zhang L, Yang T, Du C, Liu Q, Tang Y, Zhao J, Wang B, Chen T, Sun Y, Jia P, Li H, Geng L, Chen J, Ye H, Wang Z, Li Y, Sun H, Li X, Dai Q, Tang Y, Peng Q, Shen T, Zhang S, Zhu T, Huang J 2020 Nat. Nanotechnol. 15 94Google Scholar
[24] Su Y, Ye L, Fitzhugh W, Wang Y, Gil-González E, Kim I, Li X 2020 Energy Environ. Sci. 13 908Google Scholar
-
图 2 物理接触界面的结构和物质输运 (a) LCO正极在全固态电池中结构演化[9]; (b) LNMO正极材料在全固态电池中的结构演化[10]; (c) LCO/LLZO固-固接触界面结构和物质交换的调控[12]; (d) NCM811/LGPS固-固接触界面在工作中的结构演化和物质交换[13]
Figure 2. Structure and material transport of the physical contact interface: (a) The structural evolution of the LCO positive electrode in an all-solid-state battery[9]; (b) the structural evolution of LNMO cathode materials in all-solid-state batteries [10]; (c) regulation of LCO/LLZO solid-solid contact interface structure and material exchange[12]; (d) structural evolution and material exchange of NCM811/LGPS solid-solid contact interface during operation[13].
图 4 改善固-固界面物理接触 (a) 阴极支撑的固态电解质方案[18]; (b) 电极表面原子尺度结构调控全固态电池的界面[19]
Figure 4. Improvement of the physical contact of the solid-solid interface: (a) A cathode-supported solid electrolyte membrane framework[18]; (b) the surface structure of the electrode controlled by the interface of the all-solid-state battery[19].
图 5 电极和电解质的表面改性处理 (a) LAGP固态电解质的表面包覆处理[20]; (b) LBH固态电解质的原位LiF表面修饰[21]; (c) NCM523正极的表面包覆处理[22]; (d) 金属锂负极的表面处理[24].
Figure 5. Surface modification treatment of electrode and electrolyte: (a) Surface treatment of LAGP solid electrolyte[20]; (b) LBH solid electrolyte with in-situ LiF surface modification[21]; (c) NCM523 positive electrode surface coating treatment[22]; (d) Surface treatment of lithium metal anode[24].
-
[1] Hu Y S 2016 Nat. Energy 1 16042Google Scholar
[2] Ma C, Chen K, Liang C, Nan C W, Ishikawa R, More K, Chi M 2014 Energy Environ. Sci. 7 1638Google Scholar
[3] Xiao D, Gu L 2020 Nano Sel. 1
[4] Liu X Z, Tang Z X, Li Q H, Zhang Q H, Yu X Q, Gu L 2020 Cell Rep. Phys. Sci. 1 100066Google Scholar
[5] Nie K, Hong Y, Qiu J, Li Q, Yu X, Li H, Chen L 2018 Front. Chem. 6 1Google Scholar
[6] Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y C, Wei F, Mai L 2018 Joule 2 1991Google Scholar
[7] Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2020 Nat. Rev. Mater. 5 105Google Scholar
[8] Banerjee A, Wang X, Fang C, Wu E A, Meng Y S 2020 Chem. Rev. acs.chemrev.0 c00101
[9] Gong Y, Zhang J, Jiang L, Shi J A, Zhang Q, Yang Z, Zou D, Wang J, Yu X, Xiao R, Hu Y S, Gu L, Li H, Chen L 2017 J. Am. Chem. Soc. 139 4274Google Scholar
[10] Gong Y, Chen Y, Zhang Q, Meng F, Shi J A, Liu X, Liu X, Zhang J, Wang H, Wang J, Yu Q, Zhang Z, Xu Q, Xiao R, Hu Y S, Gu L, Li H, Huang X, Chen L 2018 Nat. Commun. 9 3341Google Scholar
[11] Ohta S, Kobayashi T, Seki J, Asaoka T 2012 J. Power Sources 202 332Google Scholar
[12] Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259Google Scholar
[13] Li X, Ren Z, Norouzi Banis M, Deng S, Zhao Y, Sun Q, Wang C, Yang X, Li W, Liang J, Li X, Sun Y, Adair K, Li R, Hu Y, Sham T K, Huang H, Zhang L, Lu S, Luo J, Sun X 2019 ACS Energy Lett. 4 2480Google Scholar
[14] Qiu J, Liu X, Chen R, Li Q, Wang Y, Chen P, Gan L, Lee S J, Nordlund D, Liu Y, Yu X, Bai X, Li H, Chen L 2020 Adv. Funct. Mater. 30 1909392Google Scholar
[15] Hartmann P, Leichtweiss T, Busche M R, Schneider M, Reich M, Sann J, Adelhelm P, Janek J 2013 J. Phys. Chem. C 117 21064Google Scholar
[16] Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, Xue L, Jia Q, Goodenough J B 2016 Proc. Natl. Acad. Sci. 113 13313Google Scholar
[17] Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More K L, Dudney N J, Chi M 2016 Nano Lett. 16 7030Google Scholar
[18] Chen X, He W, Ding L X, Wang S, Wang H 2019 Energy Environ. Sci. 12 938Google Scholar
[19] Shiraki S, Shirasawa T, Suzuki T, Kawasoko H, Shimizu R, Hitosugi T 2018 ACS Appl. Mater. Interfaces 10 41732Google Scholar
[20] Liu Y, Sun Q, Zhao Y, Wang B, Kaghazchi P, Adair K R, Li R, Zhang C, Liu J, Kuo L Y, Hu Y, Sham T K, Zhang L, Yang R, Lu S, Song X, Sun X 2018 Appl. Mater. Interfaces 10 31240Google Scholar
[21] Shi X, Pang Y, Wang B, Sun H, Wang X, Li Y, Yang J, Li H W, Zheng S 2020 Mater. Today Nano 10 1
[22] Zhang Y, Tian Y, Xiao Y, Miara L J, Aihara Y, Tsujimura T, Shi T, Scott M C, Ceder G 2020 Adv. Energy Mater. 10 1903778Google Scholar
[23] Zhang L, Yang T, Du C, Liu Q, Tang Y, Zhao J, Wang B, Chen T, Sun Y, Jia P, Li H, Geng L, Chen J, Ye H, Wang Z, Li Y, Sun H, Li X, Dai Q, Tang Y, Peng Q, Shen T, Zhang S, Zhu T, Huang J 2020 Nat. Nanotechnol. 15 94Google Scholar
[24] Su Y, Ye L, Fitzhugh W, Wang Y, Gil-González E, Kim I, Li X 2020 Energy Environ. Sci. 13 908Google Scholar
Catalog
Metrics
- Abstract views: 14209
- PDF Downloads: 804
- Cited By: 0