-
As an ideal single-photon source, quantum dots (QDs) can play a unique role in the field of quantum information. Controlling QD exciton spontaneous emission can be achieved by anti-phase coupling between QD exciton dipole field and Au dipole field after QD film has been transferred onto the Si substrate covered by Au nanoparticles. In experiment, the studied InAs/GaAs QDs are grown by molecular beam epitaxy (MBE) on a (001) semi-insulation substrate. The films containing QDs with different GaAs thickness values are separated from the GaAs substrate by etching away the AlAs sacrificial layer and transferring the QD film to the silicon wafer covered by Au nanoparticles with a diameter of 50 nm. The distance D (thickness of GaAs) from the surface of the Au nanoparticles to the QD layer is 10, 15, 19, 25, and 35 nm, separately. A 640-nm pulsed semiconductor laser with a 40-ps pulse length is used to excite the QD samples for measuring QD exciton photoluminescence and time-resolved photoluminescence spectra at 5 K. It is found that when the distance D is 15–35 nm the spontaneous emission rate of exciton is suppressed. And when D is close to 19 nm, the QD spontaneous emission rate decreases to
$ ~{10}^{-3} $ , which is consistent with the theoretical calculations. The physical mechanism of long-lived exciton luminescence observed in experiment lies in the fact that Au nanoparticles scatter the light field of the exciton radiation in the QD wetting layer, and the phase of the scattered field is opposite to the phase of the exciton radiation field. Therefore, the destructive interference between the exciton radiation field and scattering field of Au nanoparticles results in long-lived exciton emission observed in experiment.-
Keywords:
- quantum dots /
- spontaneous emission rate /
- metal nanoparticles /
- long-lived excitons
[1] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar
Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar
[2] 赵彦辉, 钱琛江, 唐静, 孙悦, 彭凯, 许秀来 2016 物理学报 65 134206Google Scholar
Zhao Y H, Qian C J, Tang J, Sun Y, Peng K, Xu X L 2016 Acta Phys. Sin. 65 134206Google Scholar
[3] Barnes W L 1998 J. Mod. Optic. 45 661Google Scholar
[4] Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar
[5] Purcell E M 1995 Confined Electrons and Photons: New Physics and Applications (Boston: Springer) pp839–839
[6] Parker J A, Sugimoto H, Coe B, Eggena D, Fujii M, Scherer N F, Gray S K, Manna U 2020 Phys. Rev. Lett. 124 097402Google Scholar
[7] Drexhage K H 1974 Progress in Optics (Amsterdam: North Holland) pp163–232
[8] Horng J, Chou Y H, Chang T C, Hsu C Y, Lu T C, Deng H 2019 Optica 6 1443Google Scholar
[9] Zhou Y, Scuri G, Sung J, Gelly R J, Wild D S, De Greve K, Joe A Y, Taniguchi T, Watanabe K, Kim P, Lukin M D, Park H 2020 Phys. Rev. Lett. 124 027401Google Scholar
[10] Chew H 1987 J. Chem. Phys. 87 1355Google Scholar
[11] Klimov V V, Ducloy M, Letokhov V S 1996 J. Mod. Optic. 43 2251Google Scholar
[12] Novotny L 1996 Appl. Phys. Lett. 69 3806Google Scholar
[13] Sun G, Khurgin J B, Soref R A 2008 J. Opt. Soc. Am. B 25 1748Google Scholar
[14] Lakowicz J r, Fu Y 2009 Laser Photonics Rev. 3 221Google Scholar
[15] Bennett R 2015 Phys. Rev. A 92 022503Google Scholar
[16] Kraus W A, Schatz G C 1983 J. Chem. Phys. 79 6130Google Scholar
[17] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp65–68
[18] Shahbazyan T V 2018 Phys. Rev. B 98 115401Google Scholar
[19] 苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权 2015 物理学报 64 235201Google Scholar
Su D, Dou X M, Ding K, Wang H Y, Ni H Q, Niu Z C, Sun B Q 2015 Acta Phys. Sin. 64 235201Google Scholar
[20] 王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权 2014 物理学报 63 027801Google Scholar
Wang H Y, Dou X M, Ni H Q, Niu Z C, Sun B Q 2014 Acta Phys. Sin. 63 027801Google Scholar
[21] Chen H, Huang J, He X, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2020 ACS Photonics 7 3228Google Scholar
[22] Zhuo Z, Chen H, Huang J, Li S, Wang J, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2021 J. Phys. Chem. Lett. 12 3485Google Scholar
[23] Butov L V, Lai C W, Ivanov A L, Gossard A C, Chemla D S 2002 Nature 417 47Google Scholar
[24] Butov L V, Gossard A C, Chemla D S 2002 Nature 418 751Google Scholar
[25] Berman P R 1994 Cavity Quantum Electrodynamics (Boston: Academic Press) pp5–9
[26] Jackson J D 1974 Classical Electrodynamics (New York: John Wily and Sons) pp410–412
[27] Huang J, Chen H, Zhuo Z, Wang J, Li S, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2021 Chin. Phys. B 30 097805Google Scholar
[28] Yu Y, Shang X J, Li M F, Zha G W, Xu J X, Wang L J, Wang G W, Ni H Q, Dou X, Sun B, Niu Z C 2013 Appl. Phys. Lett. 102 201103Google Scholar
-
图 2 Au纳米颗粒作用下, 不同GaAs间隔层厚度量子点样品的PL和TRPL光谱图 (a), (c), (e), (g), (i)分别对应GaAs层厚度 D = 10, 15, 19, 25, 35 nm的量子点样品PL谱线; 图中以“QD emission”标识出了用于后续TRPL谱线测量的量子点发光峰, 其中GaAs层厚度D =19 nm的量子点样品存在多个量子点的发光峰, 其中强度最大的发光峰用于TRPL谱线的测量. (b), (d), (f), (h), (j)分别对应GaAs层厚度 D = 10, 15, 19, 25, 35 nm的量子点样品的TRPL谱线, 黑色虚线为(8)式的拟合结果, 由此得到不同D值量子点发光的寿命. 其中 D = 10 nm 的量子点样品PL和TRPL是在20 MHz重复频率和饱和激发功率下测量, 其他量子点样品PL和TRPL是在1 MHz重复频率和饱和激发功率下测量
Figure 2. PL and TRPL spectra of quantum dot samples with different GaAs spacer thickness under the influence of Au nanoparticles. (a), (c), (e), (g) and (i) are the PL spectra of QDs with GaAs layer thicknesses of D = 10, 15, 19, 25 and 35 nm, respectively. In figures, the “QD emissions” are used for further TRPL measurements. The QD sample with GaAs thickness D of 19 nm shows several emission lines, where the “QD emission” with a big emission intensity is selected for TRPL measurement. (b), (d), (f), (h) and (j) are the TRPL spectra of QDs with GaAs layer thicknesses of D = 10, 15, 19, 25 and 35 nm, respectively. The black dashed lines are the fitting results by using Eq. (8) and the obtained lifetimes are shown in the corresponding graphs. The PL and TRPL of QD samples with D = 10 nm were measured at a repetition frequency of 20 MHz and saturation excitation power, and the PL and TRPL of other QD samples were measured at a repetition frequency of 1 MHz and saturation excitation power.
图 1 (a) MBE外延生长的InAs/GaAs量子点样品结构示意图; (b) 刻蚀剥离后量子点薄膜样品放置于Au纳米颗粒上的示意图; (c) 扫描电子显微镜下Au纳米颗粒照片
Figure 1. (a) Schematic diagram of the MBE epitaxial growth of InAs/GaAs quantum dot sample structure; (b) schematic diagram of the quantum dot film placed on Au nanoparticles; (c) Au nanoparticle photograph taken by a scanning electron microscope.
图 3 在Au纳米颗粒影响下, 量子点激子自发辐射速率随GaAs间隔层厚度D的变化. 其中曲线为理论模拟计算结果, 空心圆为实验数据
Figure 3. Spontaneous emission rate of QD excitons as a function of a thickness D of the GaAs spacer layer under the influence of Au nanoparticles. The solid curve is the theoretical calculation result, and the open circles are the experimental data.
-
[1] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar
Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar
[2] 赵彦辉, 钱琛江, 唐静, 孙悦, 彭凯, 许秀来 2016 物理学报 65 134206Google Scholar
Zhao Y H, Qian C J, Tang J, Sun Y, Peng K, Xu X L 2016 Acta Phys. Sin. 65 134206Google Scholar
[3] Barnes W L 1998 J. Mod. Optic. 45 661Google Scholar
[4] Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar
[5] Purcell E M 1995 Confined Electrons and Photons: New Physics and Applications (Boston: Springer) pp839–839
[6] Parker J A, Sugimoto H, Coe B, Eggena D, Fujii M, Scherer N F, Gray S K, Manna U 2020 Phys. Rev. Lett. 124 097402Google Scholar
[7] Drexhage K H 1974 Progress in Optics (Amsterdam: North Holland) pp163–232
[8] Horng J, Chou Y H, Chang T C, Hsu C Y, Lu T C, Deng H 2019 Optica 6 1443Google Scholar
[9] Zhou Y, Scuri G, Sung J, Gelly R J, Wild D S, De Greve K, Joe A Y, Taniguchi T, Watanabe K, Kim P, Lukin M D, Park H 2020 Phys. Rev. Lett. 124 027401Google Scholar
[10] Chew H 1987 J. Chem. Phys. 87 1355Google Scholar
[11] Klimov V V, Ducloy M, Letokhov V S 1996 J. Mod. Optic. 43 2251Google Scholar
[12] Novotny L 1996 Appl. Phys. Lett. 69 3806Google Scholar
[13] Sun G, Khurgin J B, Soref R A 2008 J. Opt. Soc. Am. B 25 1748Google Scholar
[14] Lakowicz J r, Fu Y 2009 Laser Photonics Rev. 3 221Google Scholar
[15] Bennett R 2015 Phys. Rev. A 92 022503Google Scholar
[16] Kraus W A, Schatz G C 1983 J. Chem. Phys. 79 6130Google Scholar
[17] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp65–68
[18] Shahbazyan T V 2018 Phys. Rev. B 98 115401Google Scholar
[19] 苏丹, 窦秀明, 丁琨, 王海艳, 倪海桥, 牛智川, 孙宝权 2015 物理学报 64 235201Google Scholar
Su D, Dou X M, Ding K, Wang H Y, Ni H Q, Niu Z C, Sun B Q 2015 Acta Phys. Sin. 64 235201Google Scholar
[20] 王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权 2014 物理学报 63 027801Google Scholar
Wang H Y, Dou X M, Ni H Q, Niu Z C, Sun B Q 2014 Acta Phys. Sin. 63 027801Google Scholar
[21] Chen H, Huang J, He X, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2020 ACS Photonics 7 3228Google Scholar
[22] Zhuo Z, Chen H, Huang J, Li S, Wang J, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2021 J. Phys. Chem. Lett. 12 3485Google Scholar
[23] Butov L V, Lai C W, Ivanov A L, Gossard A C, Chemla D S 2002 Nature 417 47Google Scholar
[24] Butov L V, Gossard A C, Chemla D S 2002 Nature 418 751Google Scholar
[25] Berman P R 1994 Cavity Quantum Electrodynamics (Boston: Academic Press) pp5–9
[26] Jackson J D 1974 Classical Electrodynamics (New York: John Wily and Sons) pp410–412
[27] Huang J, Chen H, Zhuo Z, Wang J, Li S, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2021 Chin. Phys. B 30 097805Google Scholar
[28] Yu Y, Shang X J, Li M F, Zha G W, Xu J X, Wang L J, Wang G W, Ni H Q, Dou X, Sun B, Niu Z C 2013 Appl. Phys. Lett. 102 201103Google Scholar
Catalog
Metrics
- Abstract views: 5900
- PDF Downloads: 118
- Cited By: 0