-
Two-dimensional (2D) materials, owing to their outstanding photoelectric properties, have demonstrated significant potential in both fundamental scientific research and future technological applications, including optoelectronics, energy storage, and conversion devices, establishing them as a cutting-edge research field in condensed matter physics and materials science. The distinctive layered structure of 2D materials renders their physical properties highly sensitive to external stimuli. High-pressure technology, serving as an efficient, continuous, and clean tuning tool, enables precise structural control and optimization of the photoelectric properties of 2D materials by compressing atomic distances, strengthening interlayer coupling, and even inducing structural phase transitions. This article focuses on prototypical two-dimensional materials, including graphene, transition metal dichalcogenides (TMDs), and two-dimensional metal halide perovskites. Employing the diamond anvil cell combined with multimodal in situ high-pressure characterization techniques—such as Xray diffraction, Raman spectroscopy, photoluminescence, and electrical transport measurements—we systematically elucidate the effects of high pressure on the structural and photoelectric properties of these materials. Key findings demonstrate that high pressure can induce the transition of graphene from a semimetal to a semiconductor or even a superconducting state, trigger structural phase transitions and semiconductor-to-metal transitions in TMDs such as MoS2 and WTe2, and result in pressuredependent bandgap narrowing and marked enhancements of luminescence intensity in two-dimensional perovskites. This work underscores the utility of high-pressure techniques in uncovering the intrinsic correlations between the microstructure and macroscopic properties of twodimensional materials. Furthermore, it discusses the key challenges and opportunities in this emerging research area, providing insights for the development and practical application of novel functional materials.
-
Keywords:
- Two-dimensional materials /
- High pressure /
- photoelectric performance
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 44 1934
[3] Kannan P K, Late D J, Morgan H, Rout C S 2015 Nanoscale 7 13293
[4] Sun Y, Gao S, Lei F, Xie Y 2014 Chem. Soc. Rev. 44 623
[5] Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439
[6] Chow W L, Yu P, Liu F, Hong J, Wang X, Zeng Q, Hsu C, Zhu C, Zhou J, Wang X, Xia J, Yan J, Chen Y, Wu D, Yu T, Shen Z, Lin H, Jin C, Tay B K, Liu Z 2017 Adv. Mater. 29 1602969
[7] Mao H K, Chen B, Chen J, Li K, Lin J F, Yang W, Zheng H 2016 Matter Radiat. Extrems 1 59
[8] Mao H K, Xu J, Bell P M 1986 J. Geophys. Res. Atmos. 91 4673
[9] Zheng H F 2015 Diamond Anvil Cell High-Pressure and High-Temperature Experimental Techniques and Their Applications (Beijing: Science Press) pp78-88 (in Chinese) [郑海飞 2015 金刚石压腔高温高压实验技术及其应用 (北京: 科学出版社) 第78-88页]
[10] Zheng J, Zhang H, Dong S, Liu Y, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P 2014 Nat. Commun. 5 2995
[11] Gu L, Liu S, Zhao H, Yu H 2015 ACS Appl. Mater. Interfaces 7 17641
[12] Clark S M, Jeon K J, Chen J Y, Yoo C S 2012 Solid State Commun. 154 15
[13] Ke F, Zhang L, Chen Y, Yin K, Wang C, Tzeng Y K, Lin Y, Dong H, Liu Z, Tse J S, Mao W L, Wu J, Chen B 2020 Nano Lett. 20 5916
[14] Mak K F, Shan J, Heinz T F 2011 Phys. Rev. Lett. 106 046401
[15] Carr S, Fang S, Jarillo-Herrero P, Kaxiras E 2018 Phys. Rev. B 98 085144
[16] Ke F, Chen Y, Yin K, Yan J, Zhang H, Liu Z, Tse J S, Wu J, Mao H K, Chen B 2019 Proc. Natl. Acad. Sci. USA. 116 9186
[17] Luo B, Wu L, Li D, Zhang Z, Yu X, Li G, Song H 2022 Carbon 196 146
[18] Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H s. P, Koppens F H L 2019 Nature 573 507
[19] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA. 102 10451
[20] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[21] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
[22] Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802
[23] Tanwar S, Arya A, Gaur A, Sharma A L 2021 J. Phys. Condens. Matter 33 303002
[24] Cheng X, Li Y, Shang J, Hu C, Ren Y, Liu M, Qi Z 2017 Nano Res. 11 855
[25] Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X J 2014 Phys. Rev. Lett. 113 036802
[26] Tosatti E, Hromadova L, Martoňák R 2013 Bull. Am. Phys. Soc. 87 144105
[27] Fan X, Singh D J, Jiang Q, Zheng W T 2016 Phys. Chem. Chem. Phys. 18 12080
[28] Wang S, Zhang J, He D, Zhang Y, Wang L, Xu H, Wen X, Ge H, Zhao Y 2013 J. Phys. Chem. Solids 75 100
[29] Bhattacharyya S, Singh A K 2012 Phys. Rev. B 86 075454
[30] Nayak A P, Pandey T, Voiry D, Liu J, Moran S T, Sharma A, Tan C, Chen C H, Li L J, Chhowalla M, Lin J F, Singh A K, Akinwande D 2014 Nano Lett. 15 346
[31] Zhou Y, Chen X, Li N, Zhang R, Wang X, An C, Zhou Y, Pan X, Song F, Wang B, Yang W, Yang Z, Zhang Y 2016 AIP Adv. 6 075008
[32] Zhou D, Zhou Y, Pu C, Chen X, Lu P, Wang X, An C, Zhou Y, Miao F, Ho C H, Sun J, Yang Z, Xing D 2017 NPJ Quantum Mater. 2 19
[33] Yan Y, Jin C, Wang J, Qin T, Li F, Wang K, Han Y, Gao C 2017 J. Phys. Chem. Lett. 8 3648
[34] Fu L, Wan Y, Tang N, Ding Y M, Gao J, Yu J, Guan H, Zhang K, Wang W, Zhang C, Shi J J, Wu X, Shi S F, Ge W, Dai L, Shen B 2017 Sci. Adv. 3 e1700162
[35] Oliva R, Laurien M, Dybala F, Kopaczek J, Qin Y, Tongay S, Rubel O, Kudrawiec R 2019 NPJ 2D Mater. Appl. 3 20
[36] Lorchat E, Froehlicher G, Berciaud S 2016 ACS Nano 10 2752
[37] Hou D, Ma Y, Du J, Yan J, Ji C, Zhu H 2010 J. Phys. Chem. Solids 71 1571
[38] Kao Y C, Huang T, Lin D Y, Huang Y S, Tiong K K, Lee H Y, Lin J M, Sheu H S, Lin C M 2012 J. Chem. Phys. 137 024509
[39] Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C, Singh A K, Akinwande D, Lin J F 2014 Nat. Commun. 5 3731
[40] Jiang F, Yang D, Jiang Y, Liu T, Zhao X, Ming Y, Luo B, Qin F, Fan J, Han H, Zhang L, Zhou Y 2017 J. Am. Chem. Soc. 140 1019
[41] Zhang F, Zhang H, Zhu L, Qin L, Wang Y, Hu Y, Lou Z, Hou Y, Teng F 2019 J. Mater. Chem. C 7 4004
[42] Li L, Sun Z, Wang P, Hu W, Wang S, Ji C, Hong M, Luo J 2017 Angew. Chem. Int. Ed. 56 12150
[43] Xu Y, Wang M, Lei Y, Ci Z, Jin Z 2020 Adv. Energy Mater. 10 2002558
[44] Liu G, Gong J, Kong L, Schaller R D, Hu Q, Liu Z, Yan S, Yang W, Stoumpos C C, Kanatzidis M G, Mao H K, Xu T 2018 Proc. Natl. Acad. Sci. USA. 115 8076
[45] Capitani F, Marini C, Caramazza S, Postorino P, Garbarino G, Hanfland M, Pisanu A, Quadrelli P, Malavasi L 2016 J. Appl. Phys. 119 185901
[46] Liu G, Kong L, Gong J, Yang W, Mao H, Hu Q, Liu Z, Schaller R D, Zhang D, Xu T 2016 Adv. Funct. Mater. 27 1604208
[47] Ou T, Yan J, Xiao C, Shen W, Liu C, Liu X, Han Y, Ma Y, Gao C 2016 Nanoscale 8 11426
[48] Jaffe A, Lin Y, Mao W L, Karunadasa H I 2017 J. Am. Chem. Soc. 139 4330
[49] Yu P Y, Welber B 1978 Solid State Commun. 25 209
[50] Mujica A, Rubio A, Muñoz A, Needs R J 2003 Rev. Mod. Phys. 75 863
[51] Yuan Y, Liu X, Ma X, Wang X, Li X, Xiao J, Li X, Zhang H, Wang L 2019 Adv. Sci. 6 1900240
[52] Jaffe A, Lin Y, Mao W L, Karunadasa H I 2015 J. Am. Chem. Soc. 137 1673
[53] Liu G, Kong L, Guo P, Stoumpos C C, Hu Q, Liu Z, Cai Z, Gosztola D J, Mao H K, Kanatzidis M G, Schaller R D 2017 ACS Energy Lett. 2 2518
[54] Kong L, Liu G, Gong J, Hu Q, Schaller R D, Dera P, Zhang D, Liu Z, Yang W, Zhu K, Tang Y, Wang C, Wei S H, Xu T, Mao H K 2016 Proc. Natl. Acad. Sci. USA. 113 8910
[55] Kong L, Liu G, Gong J, Mao L, Chen M, Hu Q, Lü X, Yang W, Kanatzidis M G, Mao H K 2020 Proc. Natl. Acad. Sci. USA. 117 16121
[56] Kong L, Gong J, Spanopoulos I, Yan S, Li Z, Zhu Z, Liu X, Zhu Y, Dong H, Shu H, Hu Q, Yang W, Mao H, Kanatzidis M G, Liu G 2024 Adv. Funct. Mater. 34 2414437
[57] Kong L, Gong J, Hu Q, Capitani F, Celeste A, Hattori T, Sano‐Furukawa A, Li N, Yang W, Liu G, Mao H 2020 Adv. Funct. Mater. 31 2009131
[58] Yin T, Liu B, Yan J, Fang Y, Chen M, Chong W K, Jiang S, Kuo J L, Fang J, Liang P, Wei S, Loh K P, Sum T C, White T J, Shen Z X 2018 J. Am. Chem. Soc. 141 1235
[59] Fang Y, Wang J, Zhang L, Niu G, Sui L, Wu G, Yuan K, Wang K, Zou B 2023 Chem. Sci. 14 2652
[60] Li X, Wang S, Zhao S, Li L, Li Y, Zhao B, Shen Y, Wu Z, Shan P, Luo J 2018 Chem. Eur. J. 24 9243
[61] Duan D, Ge C, Rahaman M Z, Lin C H, Shi Y, Lin H, Hu H, Wu T 2023 NPG Asia Mater. 15 8
[62] Wang Y, Guo S, Luo H, Zhou C, Lin H, Ma X, Hu Q, Du M H, Ma B, Yang W, Lü X 2020 J. Am. Chem. Soc. 142 16001
[63] Wang S, Yao Y, Wu Z, Peng Y, Li L, Luo J 2018 J. Mater. Chem. C 6 12267
[64] Cheng X, Xie Z, Zheng W, Li R, Deng Z, Tu D, Shang X, Xu J, Gong Z, Li X, Chen X 2022 Adv. Sci. 9 2103724
[65] Meng X, Ji S, Wang Q, Wang X, Bai T, Zhang R, Yang B, Li Y, Shao Z, Jiang J, Han K, Liu F 2022 Adv. Sci. 9 2203596
[66] Luo H, Guo S, Zhang Y, Bu K, Lin H, Wang Y, Yin Y, Zhang D, Jin S, Zhang W, Yang W, Ma B, Lü X 2021 Adv. Sci. 8 2100786
[67] Ratté J, Macintosh M F, DiLoreto L, Liu J, Mihalyi-Koch W, Hautzinger M P, Guzei I A, Dong Z, Jin S, Song Y 2023 J. Phys. Chem. Lett. 14 403
[68] Guo S, Zhao Y, Bu K, Fu Y, Luo H, Chen M, Hautzinger M P, Wang Y, Jin S, Yang W, Lü X 2020 Angew. Chem. Int. Ed. 59 17533
[69] Ma Z, Liu Z, Lu S, Wang L, Feng X, Yang D, Wang K, Xiao G, Zhang L, Redfern S a. T, Zou B 2018 Nat. Commun. 9 4506
[70] Liu S, Sun S, Gan C K, Del Águila A G, Fang Y, Xing J, Ha T T DO, White T J, Li H, Huang W, Xiong Q 2019 Sci. Adv. 5 eaav9445
[71] Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B 2018 Angew. Chem. Int. Ed. 57 11213
[72] Li M, Liu T, Wang Y, Yang W, Lü X 2020 Matter Radiat. Extrems 5 018201
[73] Fang Y, Zhang L, Wu L, Yan J, Lin Y, Wang K, Mao W L, Zou B 2019 Angew. Chem. Int. Ed. 58 15249
[74] Mao L, Wu Y, Stoumpos C C, Wasielewski M R, Kanatzidis M G 2017 J. Am. Chem. Soc. 139 5210
[75] Szafrański M, Katrusiak A 2016 J. Phys. Chem. Lett. 7 3458
[76] Wang Y, Lü X, Yang W, Wen T, Yang L, Ren X, Wang L, Lin Z, Zhao Y 2015 J. Am. Chem. Soc. 137 11144
[77] Lü X, Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith J S, Yang W, Zhao Y, Xu H, Kanatzidis M G, Jia Q 2016 Adv. Mater. 28 8663
[78] Li Q, Wang Y, Pan W, Yang W, Zou B, Tang J, Quan Z 2017 Angew. Chem. Int. Ed. 56 15969
[79] Cui H, Zhang H, Xu S, Cheng L, Tao H, Wang L, Pan G, You W, Mao Y 2025 Appl. Phys. Lett. 126 173101
[80] Chen Y, Fu R, Wang L, Ma Z, Xiao G, Wang K, Zou B 2019 J. Mater. Chem. A 7 6357
[81] Guo S, Bu K, Li J, Hu Q, Luo H, He Y, Wu Y, Zhang D, Zhao Y, Yang W, Kanatzidis M G, Lü X 2021 J. Am. Chem. Soc. 143 2545
[82] Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nat. Phys. 11 582
[83] Li S, Luo J, Liu J, Tang J 2019 J. Phys. Chem. Lett. 10 1999
[84] Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872
[85] Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 16098
[86] Lv J, Jia H, Chen G, Wang Y, Liu M, Ning Y, Wang Y, Yuan L, Lu M, Zhang J 2022 ACS Appl. Mater. Interfaces 14 46056
[87] Zhang J, Zhang Y, Wu X, Ma Y, Chien S Y, Guan R, Zhang D, Yang B, Yan B, Yang J 2018 ACS Appl. Mater. Interfaces 10 42856
[88] Wang Y, Xu Y, Hu M, Ling H, Zhu X 2020 Nanophotonics 9 1601
[89] Li X H, Shan-Shan L, Cui H L, Zhang R Z 2020 ACS Omega 5 22248
[90] Shivani V, Sriram S 2025 Diamond Relat. Mater.154 112192
[91] Ye C, Liu M 2022 J. Mol. Model. 28 40
[92] Yang J, Wu X, Li X, Liu Y, Gao M, Liu X, Kong L, Yang S 2011 Appl. Phys. A 105 161
[93] Li Y, Zhang J, Wang Q, Jin Y, Huang D, Cui Q, Zou G 2010 J. Phys. Chem. B 114 9429
[94] Hu K, Yao M, Yang Z, Xiao G, Zhu L, Zhang H, Liu R, Zou B, Liu B 2020 Nanoscale 12 12300
[95] Ruan L W, Zhu Y J, Qiu L G, Yuan Y P, Lu Y X 2014 Comput. Mater. Sci. 91 258
[96] Zhou J, Zhu M, Han Y, Zhou X, Wang S, Chen J, Wu H, Hou Y, Lu Y 2024 J. Appl. Phys. 135 224301
[97] Wickramaratne D, Weston L, Van De Walle C G 2018 J. Phys. Chem. C 122 25524
[98] Cai Q, Scullion D, Gan W, Falin A, Zhang S, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H 2019 Sci. Adv. 5 eaav0129
[99] Yeol K MA, Zhang L, Jin S, Wang Y, Yoon S I, Hwang H, Oh J, Jeong D S, Wang M, Chatterjee S, Kim G, Jang A R, Yang J, Ryu S, Jeong H Y, Ruoff R S, Chhowalla M, Ding F, Shin H S 2022 Nature 606 88
[100] Chang H Y, Yang S, Lee J, Tao L, Hwang W S, Jena D, Lu N, Akinwande D 2013 ACS Nano 7 5446
[101] Lee G H, Cui X, Kim Y D, Arefe G, Zhang X, Lee C H, Ye F, Watanabe K, Taniguchi T, Kim P, Hone J 2015 ACS Nano 9 7019
[102] Britnell L, Gorbachev R V, Geim A K, Ponomarenko L A, Mishchenko A, Greenaway M T, Fromhold T M, Novoselov K S, Eaves L 2013 Nat. Commun. 4 1794
[103] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Katsnelson M I, Eaves L, Morozov S V, Mayorov A S, Peres N M R, Neto A H C, Leist J, Geim A K, Ponomarenko L A, Novoselov K S 2012 Nano Lett. 12 1707
[104] Segura A, Cuscó R, Taniguchi T, Watanabe K, Cassabois G, Gil B, Artús L 2019 J. Phys. Chem. C 123 20167
[105] Xue Y, Wang H, Tan Q, Zhang J, Yu T, Ding K, Jiang D, Dou X, Shi J J, Sun B Q 2018 ACS Nano 12 7127
[106] Akamaru H, Onodera A, Endo T, Mishima O 2002 J. Phys. Chem. Solids 63 887
Metrics
- Abstract views: 123
- PDF Downloads: 0
- Cited By: 0