-
As a core component of modern optoelectronic systems, photodetectors play an indispensable role in optical communications, environmental monitoring, medical imaging, and military detection. With the rapid development of related technologies, the development of novel photodetector materials featuring high sensitivity, fast response, and excellent stability has become a key research focus. Among various candidate materials, A₂BX₆-type vacancy-ordered double perovskites have attracted significant attention due to their unique crystal structures and outstanding optoelectronic properties. These materials not only possess tunable bandgap structures and high carrier mobility but also demonstrate excellent environmental stability, showing broad application prospects in the field of photodetection.This study systematically investigated the optoelectronic response behavior of a representative lead-free double perovskite, Cs2TeCl6, under high-pressure conditions. Precise experimental observations revealed an anomalous transition in photocurrent from decrease to increase when the pressure reached 18 GPa. By employing advanced characterization techniques, including high-pressure in situ Raman spectroscopy, UV-Vis absorption spectroscopy, and synchrotron X-ray diffraction, we elucidated the underlying physical mechanism:at the critical pressure of 18 GPa, the material enters an intensified compression stage, leading to a significantly accelerated bandgap narrowing rate. This continuous reduction in bandgap effectively mitigates the weak absorption limitation of the indirect bandgap, enabling efficient absorption of previously unexcitable low-energy photons and ultimately resulting in enhanced photocurrent.This discovery not only clarifies the intrinsic relationship between the structure and optoelectronic properties of Cs2TeCl6 at the microscopic level but, more importantly, provides new insights for regulating the optoelectronic performance of perovskite materials through pressure engineering. The findings offer important guidance for developing novel high-performance photodetection devices and establish a valuable research methodology for optimizing other semiconductor materials. In the future, by further refining material compositions and pressure modulation strategies, the design and fabrication of more efficient and stable photodetector materials can be anticipated.
-
Keywords:
- lead-free double perovskite /
- Cs2TeCl6 /
- high pressure /
- optoelectronics
-
[1] Li Y, Shi Z F, Li X J, Shan C X 2019Chin. Phys. B 28 017803
[2] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014Nature Nanotechnology 9 687
[3] Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J K, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M 2016ACS Photonics 3 1150
[4] Liu M Z, Johnston M B, Snaith H J 2013Nature 501 395
[5] Wang J Y, Zhang C, Liu H L, R McLaughlin, Zhai Y X, Vardeny S R, Liu X J, McGill S, Semenov D, Guo H, Tsuchikawa R, Deshpande V V, Sun D, Vardeny Z V 2019Nat. Commun. 10 129
[6] Xu Y Q, Chen Q, Zhang C F, Wang R, Wu H, Zhang X Y, Xing G H, Yu W W, Wang X Y, Zhang Y, Xiao M 2016J. Am. Chem. Soc. 138 3761
[7] Chen J Z, Zhao X, Kim S G, Park N G 2019Adv. Mater. 31 1902902
[8] Ghosh S, Shankar H, Kar P 2022Mater. Adv. 3 3742
[9] Muscarella L A, Hutter E M 2022ACS Energy Lett. 7 2128
[10] Faizan M, Zhao G Q, Zhang T X, Wang X Y, He X, Zhang L J 2024Acta Physico-Chimica Sinica 40 2303004(in Chinese)[Muhammad Faizan, 赵国琪, 张天旭, 王啸宇, 贺欣, 张立军2024物理学报40 2303004]
[11] Zhang L J, Wang Y C, Lv J, Ma Y M 2017Nat Rev Mater 2 17005
[12] Bassett W A 2009High Pressure Research 29 163
[13] Liang Y F, Huang X L, Huang Y P, Wang X, Li F F, Wang Y C, Tian F B, Liu B B, Shen Z X, Cui T 2019Adv. Sci. 6 1900399
[14] Lee J H, Jaffe A, Lin Y, Karunadasa H I, Neaton J B 2020ACS Energy Letters 5 2174
[15] McMillan P F 2002Nature Materials 1 19
[16] Yin Y F, Yan X C, Luo H, Liang Y F, Xu P, Wang Y M, Jin S Y, Tian W M 2025Angew Chem Int Ed 64 202418587
[17] Li Z L, Jia B X, Fang S X, Li Q J, Tian F Y, Li H Y, Liu R, Liu Y C, Zhang L J, Liu S Z(Frank), Liu B B 2023Advanced Science 10 2205837
[18] Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023Cell Reports Physical Science 4 101663
[19] Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023Materials Research Letters 11 134
[20] Guo S H, Mao Y H, Chen C C, Zhang Y, Zhao G X, Bu K J, Hu Q Y, Zhu H M, Zou G F, Yang W G, Mao L L, Lü X J 2024CCS Chem 6 1748
[21] Guo S H, Mihalyi-Koch W, Mao Y H, Li X Y, Bu K J, Hong H L, Hautzinger M P, Luo H, Wang D, Gu J Z, Zhang Y F, Zhang D Z, Hu Q Y, Ding Y, Yang W G, Fu Y P, Jin S, Lü X J 2024Nat Commun 15 3001
[22] Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024Small 20 2405692
[23] Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016J. Am. Chem. Soc. 138 8453
[24] Smith M D, Jaffe A, Dohner E R, Lindenberg A M, Karunadasa H I 2017Chem. Sci. 8 4497
[25] Wang Y Q, Guo S H, Luo H, Zhou C K, Lin H R, Ma X D, Hu Q Y, Du M H, Ma B W, Yang W G, Lü X J 2020J. Am. Chem. Soc. 142 16001
[26] Jiang J T, Niu G M, Sui L Z, Wang X W, Zeng X Y, Zhang Y T, Che L, Wu G R, Yuan K J, Yang X M 2023Advanced Optical Materials 11 2202634
[27] Yao P P, Wang L R, Wang J X, Guo H Z 2020Acta Phys. Sin. 69 218801(in Chinese)[姚盼盼, 王玲瑞, 王家祥, 郭海中2020物理学报 69 218801]
[28] Pi C J, Yu X, Chen W Q, Yang L L, Wang C, Liu Z C, Wang Y Y, Qiu J B, Liu B T, Xu X H 2021Mater. Adv. 2 1043
[29] Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021Advanced Optical Materials 9 2101163
[30] Folgueras M C, Jin J B, Gao M Y, Quan L N, Steele J A, Srivastava S, Ross M B, Zhang R, Seeler F, Schierle-Arndt K, Asta M, Yang P D 2021J. Phys. Chem. C 125 25126
Metrics
- Abstract views: 13
- PDF Downloads: 0
- Cited By: 0