Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure-modulated bandgap and optoelectronic properties in lead-free double perovskite Cs2TeCl6

WU Shuying MA Shuailing ZHAO Chunyan LI Shixin YE Meiyan QI Mengyao ZHAO Xingbin WANG Lingrui CUI Tian

Citation:

Pressure-modulated bandgap and optoelectronic properties in lead-free double perovskite Cs2TeCl6

WU Shuying, MA Shuailing, ZHAO Chunyan, LI Shixin, YE Meiyan, QI Mengyao, ZHAO Xingbin, WANG Lingrui, CUI Tian
cstr: 32037.14.aps.74.20250693
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • As a core component of modern optoelectronic systems, photodetectors play an indispensable role in optical communications, environmental monitoring, medical imaging, and military detection. With the rapid development of related technologies, the development of novel photodetector materials featuring high sensitivity, fast response, and excellent stability has become a key research focus. Among various candidate materials, A2BX6-type vacancy-ordered double perovskites have attracted significant attention due to their unique crystal structures and outstanding optoelectronic properties. These materials not only possess tunable bandgap structures and high carrier mobility but also demonstrate excellent environmental stability, showing broad application prospects in the field of photodetection. In this study, the optoelectronic response behaviors of a representative lead-free double perovskite, Cs2TeCl6, under high-pressure conditions are systematically investigated. Precise experimental observations reveal an anomalous transition in photocurrent from decrease to increase when the pressure reaches 21.7 GPa. By employing advanced characterization techniques, including high-pressure in situ Raman spectroscopy, UV-Vis absorption spectroscopy, and synchrotron X-ray diffraction, the underlying physical mechanism are elucidated: At the critical pressure of 18 GPa, the material enters an intensified compression stage, leading to a significantly accelerated bandgap narrowing rate. This continuous reduction in bandgap effectively mitigates the weak absorption limitation of the indirect bandgap, enabling efficient absorption of previously unexcitable low-energy photons and ultimately resulting in enhanced photocurrent. This finding not only clarifies the intrinsic relationship between the structure and optoelectronic properties of Cs2TeCl6 at a microscopic level, but, more importantly, offers new insights into regulating the optoelectronic performance of perovskite materials through pressure engineering. These outcomes in this work provide important guidance for developing novel high-performance photodetection devices and establish a valuable research method of optimizing other semiconductor materials. In the future, by further refining material compositions and pressure modulation strategies, the design and fabrication of more efficient and stable photodetector materials can be anticipated.
      Corresponding author: MA Shuailing, mashuailing@nbu.edu.cn ; CUI Tian, cuitian@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204254, 52072188), the Program for Science and Technology Innovation Team in Zhejiang, China (Grant No. 2021R01004), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ23A040005), the National Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction, China (Grant No. 2021FGWCXNLJSKJ01), and the Fundamental Research Funds for the Provincial Universities, China (Grant Nos. JYT2023005, JYT2024019).
    [1]

    Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J K, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M 2016 ACS Photonics 3 1150Google Scholar

    [4]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [5]

    Wang J Y, Zhang C, Liu H L, R McLaughlin, Zhai Y X, Vardeny S R, Liu X J, McGill S, Semenov D, Guo H, Tsuchikawa R, Deshpande V V, Sun D, Vardeny Z V 2019 Nat. Commun. 10 129Google Scholar

    [6]

    Xu Y Q, Chen Q, Zhang C F, Wang R, Wu H, Zhang X Y, Xing G H, Yu W W, Wang X Y, Zhang Y, Xiao M 2016 J. Am. Chem. Soc. 138 3761Google Scholar

    [7]

    Chen J Z, Zhao X, Kim S G, Park N G 2019 Adv. Mater. 31 1902902Google Scholar

    [8]

    Ghosh S, Shankar H, Kar P 2022 Mater. Adv. 3 3742Google Scholar

    [9]

    Muscarella L A, Hutter E M 2022 ACS Energy Lett. 7 2128Google Scholar

    [10]

    Muhammad Faizan, 赵国琪, 张天旭, 王啸宇, 贺欣, 张立军 2024 物理化学学报 40 2303004Google Scholar

    Faizan M, Zhao G Q, Zhang T X, Wang X Y, He X, Zhang L J 2024 Acta Phys. Chim. Sin. 40 2303004Google Scholar

    [11]

    Zhang L J, Wang Y C, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005Google Scholar

    [12]

    Bassett W A 2009 High Pressure Res. 29 163Google Scholar

    [13]

    Liang Y F, Huang X L, Huang Y P, Wang X, Li F F, Wang Y C, Tian F B, Liu B B, Shen Z X, Cui T 2019 Adv. Sci. 6 1900399Google Scholar

    [14]

    Lee J H, Jaffe A, Lin Y, Karunadasa H I, Neaton J B 2020 ACS Energy Lett. 5 2174Google Scholar

    [15]

    McMillan P F 2002 Nat. Mater. 1 19Google Scholar

    [16]

    Yin Y F, Yan X C, Luo H, Liang Y F, Xu P, Wang Y M, Jin S Y, Tian W M 2025 Angew Chem. Int. Ed. 64 202418587Google Scholar

    [17]

    Li Z L, Jia B X, Fang S X, Li Q J, Tian F Y, Li H Y, Liu R, Liu Y C, Zhang L J, Liu S Z(Frank), Liu B B 2023 Adv. Sci. 10 2205837Google Scholar

    [18]

    Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101663Google Scholar

    [19]

    Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023 Mater. Res. Lett. 11 134Google Scholar

    [20]

    Guo S H , Mao Y H, Chen C C, Zhang Y, Zhao G X, Bu K J, Hu Q Y, Zhu H M, Zou G F, Yang W G, Mao L L, Lü X J 2024 CCS Chem. 6 1748Google Scholar

    [21]

    Guo S H, Mihalyi-Koch W, Mao Y H, Li X Y, Bu K J, Hong H L, Hautzinger M P, Luo H, Wang D, Gu J Z, Zhang Y F, Zhang D Z, Hu Q Y, Ding Y, Yang W G, Fu Y P, Jin S, Lü X J 2024 Nat. Commun. 15 3001Google Scholar

    [22]

    Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024 Small 20 2405692Google Scholar

    [23]

    Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453Google Scholar

    [24]

    Smith M D, Jaffe A, Dohner E R, Lindenberg A M, Karunadasa H I 2017 Chem. Sci. 8 4497Google Scholar

    [25]

    Wang Y Q, Guo S H, Luo H, Zhou C K, Lin H R, Ma X D, Hu Q Y, Du M H, Ma B W, Yang W G, Lü X J 2020 J. Am. Chem. Soc. 142 16001Google Scholar

    [26]

    Jiang J T, Niu G M, Sui L Z, Wang X W, Zeng X Y, Zhang Y T, Che L, Wu G R, Yuan K J, Yang X M 2023 Adv. Opt. Mater. 11 2202634Google Scholar

    [27]

    姚盼盼, 王玲瑞, 王家祥, 郭海中 2020 物理学报 69 218801Google Scholar

    Yao P P, Wang L R, Wang J X, Guo H Z 2020 Acta Phys. Sin. 69 218801Google Scholar

    [28]

    Pi C J, Yu X, Chen W Q, Yang L L, Wang C, Liu Z C, Wang Y Y, Qiu J B, Liu B T, Xu X H 2021 Mater. Adv. 2 1043Google Scholar

    [29]

    Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021 Adv. Opt. Mater. 9 2101163Google Scholar

    [30]

    Folgueras M C, Jin J B, Gao M Y, Quan L N, Steele J A, Srivastava S, Ross M B, Zhang R, Seeler F, Schierle-Arndt K, Asta M, Yang P D 2021 J. Phys. Chem. C 125 25126Google Scholar

  • 图 1  Cs2TeCl6在环境条件下的样品表征 (a) $Fm\bar3m $相Cs2TeCl6的晶体结构Cs2TeCl6的X射线衍射(XRD), 1 atm = 1.013 × 105 Pa; (b) $Fm\bar3m $相Cs2TeCl6的晶体结构; (c) Cs2TeCl6的拉曼光谱; (d) Cs2TeCl6的吸收光谱

    Figure 1.  Characterization of Cs2TeCl6 under ambient conditions: (a) X-ray diffraction (XRD) pattern of $Fm\bar3m $ phase Cs2TeCl6, 1 atm = 1.013 × 105 Pa; (b) Crystal structure of $Fm\bar3m $ phase Cs2TeCl6; (c) Raman spectrum of Cs2TeCl6; (d) Absorption spectrum of Cs2TeCl6.

    图 2  Cs2TeCl6光电测试准备 (a), (b) Cs2TeCl6高压DAC光电性质测试装置示意图; (c) 0.69 GPa、0.1 V偏压时, Cs2TeCl6在不同入射波长下的光响应图谱

    Figure 2.  Preparation for optoelectronic measurements of Cs2TeCl6: (a), (b) Schematic diagram of the high-pressure DAC optoelectronic measurement setup for Cs2TeCl6; (c) Photoresponse spectra of Cs2TeCl6 under different incident wavelengths at 0.69 GPa with 0.1 V bias.

    图 3  405 nm入射波长、0.1 V偏压下, Cs2TeCl6高压光电测试 (a) Cs2TeCl6在高压下的光响应图谱; (b) 光电流密度Jph以及光响应强度R在升压过程中随压力的变化趋势

    Figure 3.  High-pressure optoelectronic measurements of Cs2TeCl6 at 405 nm incident wavelength with 0.1 V bias: (a) Photoresponse spectra of Cs2TeCl6 under high pressure; (b) pressure-dependent variations of photocurrent density (Jph) and responsivity (R) during compression.

    图 4  Cs2TeCl6高压下带隙的变化 (a) 高压下的Cs2TeCl6紫外-可见吸收光谱; (b) 带隙随压力变化趋势; (c) 压力下DAC中Cs2TeCl6的光学显微照片

    Figure 4.  Bandgap evolution of Cs2TeCl6 under high pressure: (a) UV-Vis absorption spectra of Cs2TeCl6 under compression; (b) pressure dependence of the bandgap; (c) optical micrograph of Cs2TeCl6 in a DAC upon compression.

    图 5  532 nm激光激发下, Ruby作为传压介质, Cs2TeCl6的高压拉曼表征 (a) Cs2TeCl6高压拉曼图谱; (b) Cs2TeCl6拉曼振动峰随压力变化趋势

    Figure 5.  High-pressure Raman characterization of Cs2TeCl6 using Ruby as pressure-transmitting medium under 532 nm laser excitation: (a) High-pressure Raman spectra of Cs2TeCl6; (b) pressure dependence of Raman frequencies in Cs2TeCl6.

  • [1]

    Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J K, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M 2016 ACS Photonics 3 1150Google Scholar

    [4]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [5]

    Wang J Y, Zhang C, Liu H L, R McLaughlin, Zhai Y X, Vardeny S R, Liu X J, McGill S, Semenov D, Guo H, Tsuchikawa R, Deshpande V V, Sun D, Vardeny Z V 2019 Nat. Commun. 10 129Google Scholar

    [6]

    Xu Y Q, Chen Q, Zhang C F, Wang R, Wu H, Zhang X Y, Xing G H, Yu W W, Wang X Y, Zhang Y, Xiao M 2016 J. Am. Chem. Soc. 138 3761Google Scholar

    [7]

    Chen J Z, Zhao X, Kim S G, Park N G 2019 Adv. Mater. 31 1902902Google Scholar

    [8]

    Ghosh S, Shankar H, Kar P 2022 Mater. Adv. 3 3742Google Scholar

    [9]

    Muscarella L A, Hutter E M 2022 ACS Energy Lett. 7 2128Google Scholar

    [10]

    Muhammad Faizan, 赵国琪, 张天旭, 王啸宇, 贺欣, 张立军 2024 物理化学学报 40 2303004Google Scholar

    Faizan M, Zhao G Q, Zhang T X, Wang X Y, He X, Zhang L J 2024 Acta Phys. Chim. Sin. 40 2303004Google Scholar

    [11]

    Zhang L J, Wang Y C, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005Google Scholar

    [12]

    Bassett W A 2009 High Pressure Res. 29 163Google Scholar

    [13]

    Liang Y F, Huang X L, Huang Y P, Wang X, Li F F, Wang Y C, Tian F B, Liu B B, Shen Z X, Cui T 2019 Adv. Sci. 6 1900399Google Scholar

    [14]

    Lee J H, Jaffe A, Lin Y, Karunadasa H I, Neaton J B 2020 ACS Energy Lett. 5 2174Google Scholar

    [15]

    McMillan P F 2002 Nat. Mater. 1 19Google Scholar

    [16]

    Yin Y F, Yan X C, Luo H, Liang Y F, Xu P, Wang Y M, Jin S Y, Tian W M 2025 Angew Chem. Int. Ed. 64 202418587Google Scholar

    [17]

    Li Z L, Jia B X, Fang S X, Li Q J, Tian F Y, Li H Y, Liu R, Liu Y C, Zhang L J, Liu S Z(Frank), Liu B B 2023 Adv. Sci. 10 2205837Google Scholar

    [18]

    Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101663Google Scholar

    [19]

    Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023 Mater. Res. Lett. 11 134Google Scholar

    [20]

    Guo S H , Mao Y H, Chen C C, Zhang Y, Zhao G X, Bu K J, Hu Q Y, Zhu H M, Zou G F, Yang W G, Mao L L, Lü X J 2024 CCS Chem. 6 1748Google Scholar

    [21]

    Guo S H, Mihalyi-Koch W, Mao Y H, Li X Y, Bu K J, Hong H L, Hautzinger M P, Luo H, Wang D, Gu J Z, Zhang Y F, Zhang D Z, Hu Q Y, Ding Y, Yang W G, Fu Y P, Jin S, Lü X J 2024 Nat. Commun. 15 3001Google Scholar

    [22]

    Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024 Small 20 2405692Google Scholar

    [23]

    Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453Google Scholar

    [24]

    Smith M D, Jaffe A, Dohner E R, Lindenberg A M, Karunadasa H I 2017 Chem. Sci. 8 4497Google Scholar

    [25]

    Wang Y Q, Guo S H, Luo H, Zhou C K, Lin H R, Ma X D, Hu Q Y, Du M H, Ma B W, Yang W G, Lü X J 2020 J. Am. Chem. Soc. 142 16001Google Scholar

    [26]

    Jiang J T, Niu G M, Sui L Z, Wang X W, Zeng X Y, Zhang Y T, Che L, Wu G R, Yuan K J, Yang X M 2023 Adv. Opt. Mater. 11 2202634Google Scholar

    [27]

    姚盼盼, 王玲瑞, 王家祥, 郭海中 2020 物理学报 69 218801Google Scholar

    Yao P P, Wang L R, Wang J X, Guo H Z 2020 Acta Phys. Sin. 69 218801Google Scholar

    [28]

    Pi C J, Yu X, Chen W Q, Yang L L, Wang C, Liu Z C, Wang Y Y, Qiu J B, Liu B T, Xu X H 2021 Mater. Adv. 2 1043Google Scholar

    [29]

    Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021 Adv. Opt. Mater. 9 2101163Google Scholar

    [30]

    Folgueras M C, Jin J B, Gao M Y, Quan L N, Steele J A, Srivastava S, Ross M B, Zhang R, Seeler F, Schierle-Arndt K, Asta M, Yang P D 2021 J. Phys. Chem. C 125 25126Google Scholar

  • [1] GUO Hongwei, HE Miaomiao, JIANG Yun, LI Hui, ZHANG Jinyan, LIAN Min, CUI Tian. Structural and optoelectronic properties of lead-free double perovskite Cs2AgInCl2 under pigh pressure. Acta Physica Sinica, 2025, 74(17): 178401. doi: 10.7498/aps.74.20250613
    [2] CHENG Lingying, ZHANG Huafang, MAO Yanli. Recent Progress on Structures and Photoelectric Properties of Two-Dimensional Materials under High Pressure. Acta Physica Sinica, 2025, 74(20): . doi: 10.7498/aps.74.20251034
    [3] CHEN Meijuan, GUO Jiaxin, WU Hao, ZHENG Xiaoran, MIN Nan, TIAN Hui, LI Quanjun, DU Shiyu, SHEN Longhai. First-principles study of structure, elasticity, and electronic properties of ternary semiconductor Al4In2N6 under high pressure. Acta Physica Sinica, 2025, 74(17): 177102. doi: 10.7498/aps.74.20250287
    [4] LI Chenkai, ZHU Jinlong. Optoelectronic properties of high pressure regulated transition metal chalcogenides and their heterostructures. Acta Physica Sinica, 2025, 74(17): 176802. doi: 10.7498/aps.74.20250498
    [5] YAN Xiaoli, FENG Zhenbao, YU Lan, LIU Cailong. Photoelectric properties of HfS2 under high pressure. Acta Physica Sinica, 2025, 74(17): 177801. doi: 10.7498/aps.74.20250893
    [6] Chen Bei, Deng Yong-He, Qi Qing-Hua, Gao Ming, Wen Da-Dong, Wang Xiao-Yun, Peng Ping. Analysis of icosahedral structure in rapidly solidified Pd82Si18 amorphous alloy under high pressure. Acta Physica Sinica, 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [7] Guo Lin, Yang Xiao-Fan, Cheng Er-Jian, Pan Bing-Lin, Zhu Chu-Chu, Li Shi-Yan. Pressure-induced superconductivity in triangular lattice spin liquid candidate NaYbSe2. Acta Physica Sinica, 2023, 72(15): 157401. doi: 10.7498/aps.72.20230730
    [8] Tian Long, Zheng Li-Ang, Zhang Xiao-Li, Wu Yi-Miao, Wang Qing-Wei, Qin Bo, Wang Ya-Jun, Li Wei, Shi Shao-Ping, Chen Li-Rong, Zheng Yao-Hui. Resonant electro-optic phase modulator and photodetector for stabilizing laser frequency and quantum optics. Acta Physica Sinica, 2023, 72(14): 148502. doi: 10.7498/aps.72.20230485
    [9] Wang Fei, Li Quan-Jun, Hu Kuo, Liu Bing-Bing. Electron microscopic study on high-pressure induced deformation of nano-TiO2. Acta Physica Sinica, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [10] Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao. Effects of defects on electrical transport properties of anatase TiO2 polycrystalline under high pressure: AC impedance measurement. Acta Physica Sinica, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [11] Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao. Grain and grain boundary behaviors and electrical transport properties of TiO2 nanowires under high pressure. Acta Physica Sinica, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [12] Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming. Photogating effect in two-dimensional photodetectors. Acta Physica Sinica, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [13] Yao Pan-Pan, Wang Ling-Rui, Wang Jia-Xiang, Guo Hai-Zhong. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure. Acta Physica Sinica, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [14] Wang Chun-Jie, Wang Yue, Gao Chun-Xiao. Grain boundary electrical characteristics for rutile TiO2 under pressure. Acta Physica Sinica, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [15] Yan Xia-Chao, Zhu Jiang, Zhang La-Bao, Xing Qiang-Lin, Chen Ya-Jun, Zhu Hong-Quan, Li Jian-Ting, Kang Lin, Chen Jian, Wu Pei-Heng. Model of bit error rate for laser communication based on superconducting nanowire single photon detector. Acta Physica Sinica, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [16] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [17] Zhang Pin-Liang, Gong Zi-Zheng, Ji Guang-Fu, Liu Song. First-principles study of high-pressure physical properties of α-Ti2Zr. Acta Physica Sinica, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [18] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [19] Lü Xiao-Jing, Weng Chun-Sheng, Li Ning. The analysis of CO2 absorption spectrum characteristics near 1.58 μm at high pressures. Acta Physica Sinica, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [20] Wang Hai-Yan, Liu Ri-Ping, Ma Ming-Zhen, Gao Ming, Yao Yu-Shu, Wang Wen-Kui. Solidification of FeSi2 alloy under high pressure. Acta Physica Sinica, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
Metrics
  • Abstract views:  619
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2025
  • Accepted Date:  29 June 2025
  • Available Online:  18 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回