-
As a core component of modern optoelectronic systems, photodetectors play an indispensable role in optical communications, environmental monitoring, medical imaging, and military detection. With the rapid development of related technologies, the development of novel photodetector materials featuring high sensitivity, fast response, and excellent stability has become a key research focus. Among various candidate materials, A2BX6-type vacancy-ordered double perovskites have attracted significant attention due to their unique crystal structures and outstanding optoelectronic properties. These materials not only possess tunable bandgap structures and high carrier mobility but also demonstrate excellent environmental stability, showing broad application prospects in the field of photodetection. In this study, the optoelectronic response behaviors of a representative lead-free double perovskite, Cs2TeCl6, under high-pressure conditions are systematically investigated. Precise experimental observations reveal an anomalous transition in photocurrent from decrease to increase when the pressure reaches 21.7 GPa. By employing advanced characterization techniques, including high-pressure in situ Raman spectroscopy, UV-Vis absorption spectroscopy, and synchrotron X-ray diffraction, the underlying physical mechanism are elucidated: At the critical pressure of 18 GPa, the material enters an intensified compression stage, leading to a significantly accelerated bandgap narrowing rate. This continuous reduction in bandgap effectively mitigates the weak absorption limitation of the indirect bandgap, enabling efficient absorption of previously unexcitable low-energy photons and ultimately resulting in enhanced photocurrent. This finding not only clarifies the intrinsic relationship between the structure and optoelectronic properties of Cs2TeCl6 at a microscopic level, but, more importantly, offers new insights into regulating the optoelectronic performance of perovskite materials through pressure engineering. These outcomes in this work provide important guidance for developing novel high-performance photodetection devices and establish a valuable research method of optimizing other semiconductor materials. In the future, by further refining material compositions and pressure modulation strategies, the design and fabrication of more efficient and stable photodetector materials can be anticipated.
-
Keywords:
- lead-free double perovskite /
- Cs2TeCl6 /
- high pressure /
- optoelectronics
[1] Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803
Google Scholar
[2] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687
Google Scholar
[3] Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J K, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M 2016 ACS Photonics 3 1150
Google Scholar
[4] Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395
Google Scholar
[5] Wang J Y, Zhang C, Liu H L, R McLaughlin, Zhai Y X, Vardeny S R, Liu X J, McGill S, Semenov D, Guo H, Tsuchikawa R, Deshpande V V, Sun D, Vardeny Z V 2019 Nat. Commun. 10 129
Google Scholar
[6] Xu Y Q, Chen Q, Zhang C F, Wang R, Wu H, Zhang X Y, Xing G H, Yu W W, Wang X Y, Zhang Y, Xiao M 2016 J. Am. Chem. Soc. 138 3761
Google Scholar
[7] Chen J Z, Zhao X, Kim S G, Park N G 2019 Adv. Mater. 31 1902902
Google Scholar
[8] Ghosh S, Shankar H, Kar P 2022 Mater. Adv. 3 3742
Google Scholar
[9] Muscarella L A, Hutter E M 2022 ACS Energy Lett. 7 2128
Google Scholar
[10] Muhammad Faizan, 赵国琪, 张天旭, 王啸宇, 贺欣, 张立军 2024 物理化学学报 40 2303004
Google Scholar
Faizan M, Zhao G Q, Zhang T X, Wang X Y, He X, Zhang L J 2024 Acta Phys. Chim. Sin. 40 2303004
Google Scholar
[11] Zhang L J, Wang Y C, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005
Google Scholar
[12] Bassett W A 2009 High Pressure Res. 29 163
Google Scholar
[13] Liang Y F, Huang X L, Huang Y P, Wang X, Li F F, Wang Y C, Tian F B, Liu B B, Shen Z X, Cui T 2019 Adv. Sci. 6 1900399
Google Scholar
[14] Lee J H, Jaffe A, Lin Y, Karunadasa H I, Neaton J B 2020 ACS Energy Lett. 5 2174
Google Scholar
[15] McMillan P F 2002 Nat. Mater. 1 19
Google Scholar
[16] Yin Y F, Yan X C, Luo H, Liang Y F, Xu P, Wang Y M, Jin S Y, Tian W M 2025 Angew Chem. Int. Ed. 64 202418587
Google Scholar
[17] Li Z L, Jia B X, Fang S X, Li Q J, Tian F Y, Li H Y, Liu R, Liu Y C, Zhang L J, Liu S Z(Frank), Liu B B 2023 Adv. Sci. 10 2205837
Google Scholar
[18] Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101663
Google Scholar
[19] Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023 Mater. Res. Lett. 11 134
Google Scholar
[20] Guo S H , Mao Y H, Chen C C, Zhang Y, Zhao G X, Bu K J, Hu Q Y, Zhu H M, Zou G F, Yang W G, Mao L L, Lü X J 2024 CCS Chem. 6 1748
Google Scholar
[21] Guo S H, Mihalyi-Koch W, Mao Y H, Li X Y, Bu K J, Hong H L, Hautzinger M P, Luo H, Wang D, Gu J Z, Zhang Y F, Zhang D Z, Hu Q Y, Ding Y, Yang W G, Fu Y P, Jin S, Lü X J 2024 Nat. Commun. 15 3001
Google Scholar
[22] Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024 Small 20 2405692
Google Scholar
[23] Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453
Google Scholar
[24] Smith M D, Jaffe A, Dohner E R, Lindenberg A M, Karunadasa H I 2017 Chem. Sci. 8 4497
Google Scholar
[25] Wang Y Q, Guo S H, Luo H, Zhou C K, Lin H R, Ma X D, Hu Q Y, Du M H, Ma B W, Yang W G, Lü X J 2020 J. Am. Chem. Soc. 142 16001
Google Scholar
[26] Jiang J T, Niu G M, Sui L Z, Wang X W, Zeng X Y, Zhang Y T, Che L, Wu G R, Yuan K J, Yang X M 2023 Adv. Opt. Mater. 11 2202634
Google Scholar
[27] 姚盼盼, 王玲瑞, 王家祥, 郭海中 2020 物理学报 69 218801
Google Scholar
Yao P P, Wang L R, Wang J X, Guo H Z 2020 Acta Phys. Sin. 69 218801
Google Scholar
[28] Pi C J, Yu X, Chen W Q, Yang L L, Wang C, Liu Z C, Wang Y Y, Qiu J B, Liu B T, Xu X H 2021 Mater. Adv. 2 1043
Google Scholar
[29] Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021 Adv. Opt. Mater. 9 2101163
Google Scholar
[30] Folgueras M C, Jin J B, Gao M Y, Quan L N, Steele J A, Srivastava S, Ross M B, Zhang R, Seeler F, Schierle-Arndt K, Asta M, Yang P D 2021 J. Phys. Chem. C 125 25126
Google Scholar
-
图 1 Cs2TeCl6在环境条件下的样品表征 (a) $Fm\bar3m $相Cs2TeCl6的晶体结构Cs2TeCl6的X射线衍射(XRD), 1 atm = 1.013 × 105 Pa; (b) $Fm\bar3m $相Cs2TeCl6的晶体结构; (c) Cs2TeCl6的拉曼光谱; (d) Cs2TeCl6的吸收光谱
Figure 1. Characterization of Cs2TeCl6 under ambient conditions: (a) X-ray diffraction (XRD) pattern of $Fm\bar3m $ phase Cs2TeCl6, 1 atm = 1.013 × 105 Pa; (b) Crystal structure of $Fm\bar3m $ phase Cs2TeCl6; (c) Raman spectrum of Cs2TeCl6; (d) Absorption spectrum of Cs2TeCl6.
图 2 Cs2TeCl6光电测试准备 (a), (b) Cs2TeCl6高压DAC光电性质测试装置示意图; (c) 0.69 GPa、0.1 V偏压时, Cs2TeCl6在不同入射波长下的光响应图谱
Figure 2. Preparation for optoelectronic measurements of Cs2TeCl6: (a), (b) Schematic diagram of the high-pressure DAC optoelectronic measurement setup for Cs2TeCl6; (c) Photoresponse spectra of Cs2TeCl6 under different incident wavelengths at 0.69 GPa with 0.1 V bias.
图 3 405 nm入射波长、0.1 V偏压下, Cs2TeCl6高压光电测试 (a) Cs2TeCl6在高压下的光响应图谱; (b) 光电流密度Jph以及光响应强度R在升压过程中随压力的变化趋势
Figure 3. High-pressure optoelectronic measurements of Cs2TeCl6 at 405 nm incident wavelength with 0.1 V bias: (a) Photoresponse spectra of Cs2TeCl6 under high pressure; (b) pressure-dependent variations of photocurrent density (Jph) and responsivity (R) during compression.
图 4 Cs2TeCl6高压下带隙的变化 (a) 高压下的Cs2TeCl6紫外-可见吸收光谱; (b) 带隙随压力变化趋势; (c) 压力下DAC中Cs2TeCl6的光学显微照片
Figure 4. Bandgap evolution of Cs2TeCl6 under high pressure: (a) UV-Vis absorption spectra of Cs2TeCl6 under compression; (b) pressure dependence of the bandgap; (c) optical micrograph of Cs2TeCl6 in a DAC upon compression.
图 5 532 nm激光激发下, Ruby作为传压介质, Cs2TeCl6的高压拉曼表征 (a) Cs2TeCl6高压拉曼图谱; (b) Cs2TeCl6拉曼振动峰随压力变化趋势
Figure 5. High-pressure Raman characterization of Cs2TeCl6 using Ruby as pressure-transmitting medium under 532 nm laser excitation: (a) High-pressure Raman spectra of Cs2TeCl6; (b) pressure dependence of Raman frequencies in Cs2TeCl6.
-
[1] Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803
Google Scholar
[2] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687
Google Scholar
[3] Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J K, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M 2016 ACS Photonics 3 1150
Google Scholar
[4] Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395
Google Scholar
[5] Wang J Y, Zhang C, Liu H L, R McLaughlin, Zhai Y X, Vardeny S R, Liu X J, McGill S, Semenov D, Guo H, Tsuchikawa R, Deshpande V V, Sun D, Vardeny Z V 2019 Nat. Commun. 10 129
Google Scholar
[6] Xu Y Q, Chen Q, Zhang C F, Wang R, Wu H, Zhang X Y, Xing G H, Yu W W, Wang X Y, Zhang Y, Xiao M 2016 J. Am. Chem. Soc. 138 3761
Google Scholar
[7] Chen J Z, Zhao X, Kim S G, Park N G 2019 Adv. Mater. 31 1902902
Google Scholar
[8] Ghosh S, Shankar H, Kar P 2022 Mater. Adv. 3 3742
Google Scholar
[9] Muscarella L A, Hutter E M 2022 ACS Energy Lett. 7 2128
Google Scholar
[10] Muhammad Faizan, 赵国琪, 张天旭, 王啸宇, 贺欣, 张立军 2024 物理化学学报 40 2303004
Google Scholar
Faizan M, Zhao G Q, Zhang T X, Wang X Y, He X, Zhang L J 2024 Acta Phys. Chim. Sin. 40 2303004
Google Scholar
[11] Zhang L J, Wang Y C, Lv J, Ma Y M 2017 Nat. Rev. Mater. 2 17005
Google Scholar
[12] Bassett W A 2009 High Pressure Res. 29 163
Google Scholar
[13] Liang Y F, Huang X L, Huang Y P, Wang X, Li F F, Wang Y C, Tian F B, Liu B B, Shen Z X, Cui T 2019 Adv. Sci. 6 1900399
Google Scholar
[14] Lee J H, Jaffe A, Lin Y, Karunadasa H I, Neaton J B 2020 ACS Energy Lett. 5 2174
Google Scholar
[15] McMillan P F 2002 Nat. Mater. 1 19
Google Scholar
[16] Yin Y F, Yan X C, Luo H, Liang Y F, Xu P, Wang Y M, Jin S Y, Tian W M 2025 Angew Chem. Int. Ed. 64 202418587
Google Scholar
[17] Li Z L, Jia B X, Fang S X, Li Q J, Tian F Y, Li H Y, Liu R, Liu Y C, Zhang L J, Liu S Z(Frank), Liu B B 2023 Adv. Sci. 10 2205837
Google Scholar
[18] Zhao W Y, Ma Z W, Shi Y, Fu R J, Wang K, Sui Y M, Xiao G J, Zou B 2023 Cell Rep. Phys. Sci. 4 101663
Google Scholar
[19] Fang S X, Li Q J, Li Z L, Dong Q, Jing X L, Li C Y, Li H Y, Liu B, Liu R, Liu B B 2023 Mater. Res. Lett. 11 134
Google Scholar
[20] Guo S H , Mao Y H, Chen C C, Zhang Y, Zhao G X, Bu K J, Hu Q Y, Zhu H M, Zou G F, Yang W G, Mao L L, Lü X J 2024 CCS Chem. 6 1748
Google Scholar
[21] Guo S H, Mihalyi-Koch W, Mao Y H, Li X Y, Bu K J, Hong H L, Hautzinger M P, Luo H, Wang D, Gu J Z, Zhang Y F, Zhang D Z, Hu Q Y, Ding Y, Yang W G, Fu Y P, Jin S, Lü X J 2024 Nat. Commun. 15 3001
Google Scholar
[22] Shi H, Chen L, Moutaabbid H, Feng Z B, Zhang G Z, Wang L R, Li Y W, Guo H Z, Liu C L 2024 Small 20 2405692
Google Scholar
[23] Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453
Google Scholar
[24] Smith M D, Jaffe A, Dohner E R, Lindenberg A M, Karunadasa H I 2017 Chem. Sci. 8 4497
Google Scholar
[25] Wang Y Q, Guo S H, Luo H, Zhou C K, Lin H R, Ma X D, Hu Q Y, Du M H, Ma B W, Yang W G, Lü X J 2020 J. Am. Chem. Soc. 142 16001
Google Scholar
[26] Jiang J T, Niu G M, Sui L Z, Wang X W, Zeng X Y, Zhang Y T, Che L, Wu G R, Yuan K J, Yang X M 2023 Adv. Opt. Mater. 11 2202634
Google Scholar
[27] 姚盼盼, 王玲瑞, 王家祥, 郭海中 2020 物理学报 69 218801
Google Scholar
Yao P P, Wang L R, Wang J X, Guo H Z 2020 Acta Phys. Sin. 69 218801
Google Scholar
[28] Pi C J, Yu X, Chen W Q, Yang L L, Wang C, Liu Z C, Wang Y Y, Qiu J B, Liu B T, Xu X H 2021 Mater. Adv. 2 1043
Google Scholar
[29] Li Z L, Li H Y, Liu N N, Du M Y, Jin X L, Li Q J, Du Y, Guo L, Liu B B 2021 Adv. Opt. Mater. 9 2101163
Google Scholar
[30] Folgueras M C, Jin J B, Gao M Y, Quan L N, Steele J A, Srivastava S, Ross M B, Zhang R, Seeler F, Schierle-Arndt K, Asta M, Yang P D 2021 J. Phys. Chem. C 125 25126
Google Scholar
Catalog
Metrics
- Abstract views: 619
- PDF Downloads: 3
- Cited By: 0