-
First-principles density functional theory was employed to systematically study the effects of pressure on the crystal structure, elastic properties, and electronic characteristics of Al4In2N6. The lattice constants of Al4In2N6 decrease with increasing pressure, exhibiting anisotropic compression with greater compressibility along the c-axis. In terms of mechanical properties, the bulk modulus increases with pressure, indicating enhanced compressive resistance. Notably, the Vickers hardness decreases with increasing pressure, suggesting that high pressure could induce plastic deformation in Al4In2N6. Calculations of elastic constants and phonon spectra confirm that Al4In2N6 retains mechanical and dynamical stability across the 0–30 GPa pressure range.
Electronic structure calculations reveal that Al4In2N6 possesses a direct band gap, with non-overlapping conduction and valence bands at the Fermi level and higher carrier mobility in the conduction band compared to the valence band. The band gap increases nearly linearly with pressure, from 3.35 eV at 0 GPa to 4.24 eV at 30 GPa, demonstrating significant pressure-induced modulation of the electronic structure. Furthermore, differential charge density analysis reveals that increasing pressure strengthens Al-N and In-N bonds in Al4In2N6 through shortened interatomic distances and stronger atomic interactions, increasing its compression resistance.
In conclusion, this study not only enhances our understanding of the high-pressure properties of Al4In2N6 but also provides theoretical guidance for its application in UV optoelectronics. Pressure-driven modulation of its mechanical and electronic characteristics highlights its potential for efficient high-pressure optoelectronic devices and materials.-
Keywords:
- Ternary semiconductor /
- high pressure /
- first-principles /
- band gap
-
[1] Liu B, Chen D, Lu H, Tao T, Zhuang Z, Shao Z, Xu W, Ge H, Zhi T, Ren F, Ye J, Xie Z, Zhang R 2020 Adv. Mater. 32 1904354
[2] Hahn C, Zhang Z, Fu A, Wu C H, Hwang Y J, Gargas D J, Yang P 2011 Acs Nano 5 3970
[3] Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B, Li H 2020 Adv. Mater. 32 1903407
[4] Chen K, Kapadia R, Harker A, Desai S, Javey A 2016 Nat. Commun. 7 10502
[5] Qiu P, Liu H, Zhu X L, Tian F, Du M C, Qiu H Y, Chen G L, Hu Y Y, Kong D L, Yang J, Wei H Y, Peng M Z, Zheng X H 2024 Acta Phys. Sin. 73 038102 (in Chinese) [仇鹏,刘恒,朱晓丽,田丰,杜梦超,邱洪宇,陈冠良,胡玉玉,孔德林,杨晋,卫会云,彭铭曾,郑新和 2024 物理学报 73 038102]
[6] F. J. Manjón, Errandonea D, Garro N, Romero A H, Serrano J, Kuball M 2010 Phys. Status Solidi 244 42
[7] E Abid A, Bensalem R, Sealy B J 1986 J. Mater. Sci. 21 1301
[8] Yu R, Liu G, Wang G, Chen C, Xu M, Zhou H, Wang T, Yu J, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852
[9] Ibanez J, Segura A, Garcia-Domene B, Oliva R, Manjon F J, Yamaguchi T, Nanishi Y, Artus L 2012 Phys. Rev. B Condens. Matter 86 999
[10] Khan N, Sedhain A, Li J, Lin J Y, Jiang H X 2008 Appl. Phys. Lett. 92 172101
[11] Davydov V Y, Klochikhin A, Seisyan R, Emtsev V, Ivanov S, Bechstedt F, Furthmüller J, Harima H, Mudryi A, Aderhold J 2002 Phys. Status Solidi B 229 r1
[12] Tansley T L, Foley C P 1986 J. Appl. Phys. 59 3241
[13] Liu X, Lin Z, Lin Y, Chen J, Zou P, Zhou J, Li B, Shen L, Zhu D, Liu Q, Yu W, Li X, Gu H, Wang X, Huang S 2023 Chin. Phys. B 32 117701
[14] Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[15] Beladjal K, Kadri A, Zitouni K, Mimouni K 2021 Superlattices Microstruct. 155 106901
[16] Guo Q G Q, Yoshida A Y A 1994 Jpn. J. Appl. Phys. 33 2453
[17] Zhao F, Yao G R, Song J J, Ding B B, Xiong J Y, Su C, Zheng S W, Zhang T, Fan G H 2013 Chin. Phys. B 22 058503
[18] Chen J J, Shen L H, Qi D L, Wu L J, Li X, Song J Y, Zhang X L 2022 Ceram. Int. 48 2802
[19] Moussa R, Abdiche A, Khenata R, Wang X, Varshney D, Sun X W, Omran S B, Bouhemadou A, Rai D 2018 J. Phys. Chem. Solids 119 36
[20] Mao W, Zhang J C, Xue J S, Hao Y, Ma X H, Wang C, Liu H X, Xu S R, Yang L A, Bi Z W, Liang X Z, Zhang J F, Kuang X W 2010 Chin. Phys. Lett. 27 128501
[21] Wen X X, Yang X D, He M, Li Y, Wang G, Lu P Y, Qian W N, Li Y, Zhang W W, Wu W B, Chen F S, Ding L Z 2012 Chin. Phys. Lett. 29 097304
[22] Zhang X F, Wang L, Liu J, Wei L, Xu J 2013 Chin. Phys. B 22 017202
[23] Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301
[24] Zhan X M, Hao M L, Wang Q, Li W, Xiao H L, Feng C, Jiang L J, Wang C M, Wang X L, Wang Z G 2017 Chin. Phys. Lett. 34 047301
[25] Dong Y, Son D H, Dai Q, Lee J H, Won C H, Kim J G, Chen D, Lee J H, Lu H, Zhang R, Zheng Y 2018 Sensors 18 1314
[26] Li A, Wang C, Xu S, Zheng X, He Y, Ma X, Lu X, Zhang J, Liu K, Zhao Y Hao Y 2021 Appl. Phys. Lett. 119 122104
[27] Robin Chang Y H, Yoon T L, Lim T L 2016 Curr. Appl. Phys. 16 1277
[28] Borovac D, Sun W, Song R, Wierer J J, Tansu N 2020 J. Cryst. Growth 533 125469
[29] Yonenaga I, Ohkubo Y, Deura M, Kutsukake K, Tokumoto Y, Ohno Y, Yoshikawa A, Wang X Q 2015 AIP Adv. 5 077131
[30] Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Res. 2735 841
[31] Chen M, Guo G C, He L 2010 J. PhysicsCondensed Matter 22 445501
[32] Al-Khatatbeh Y, Lee K K M, Kiefer B 2009 Phys. Rev. B 79 134114
[33] Man X X, Gong B C, Sun P H, Liu K, Lu Z Y 2022 Phys. Rev. B 106 035136
[34] Yu F, Liu Y 2019 Computation 7 57
[35] Velpula R T, Jain B, Philip M R, Nguyen H D, Wang R, Nguyen H P T 2020 Sci. Rep. 10 2547
[36] Robin Chang Y H, Yoon T L, Lim T L, Rakitin M 2016 J. Alloys Compd. 682 338
[37] Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713
[38] Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227
[39] Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172
[40] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
[42] Blöchl P E 1994 Phys. Rev. B 50 17953
[43] Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116
[44] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[45] Togo A, Oba F, Tanaka I 2008 Phys.rev.b 78
[46] Togo A, Tanaka I 2015 Scr. Mater. 108 1
[47] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
[48] Muscat J, Wander A, Harrison N M 2001 Chem. Phys. Lett. 342 397
[49] Garza A J, Scuseria G E 2016 J. Phys. Chem. Lett. 7 4165
[50] Sugita Y, Miyake T, Motome Y 2018 Phys. Rev. B 97 035125
[51] Robin Chang Y H, Yoon T L, Lim T L, Tuh M H 2017 J. Alloys Compd. 704 160
[52] Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104
[53] Voigt W 1889 Ann. Phys. 274 573
[54] Reuss A 1929 ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech. 9 49
[55] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[56] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic constants and elastic moduli of metals and insulators handbook (Kiev: Naukova Dumka) pp. 60–180
[57] Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93
[58] Meng J, Sun L, Zhang Y, Xue F, Chu C, Bai J 2020 Materials 13 427
Metrics
- Abstract views: 10
- PDF Downloads: 0
- Cited By: 0