-
The effects of pressure on the crystal structure, elastic properties, and electronic characteristics of Al4In2N6 are systematically studied using first-principles density functional theory. The lattice constants of Al4In2N6 decrease with the increase of pressure, exhibiting anisotropic compression with greater compressibility along the c-axis. In terms of mechanical properties, the bulk modulus increases with the increase of pressure, indicating enhanced compressive resistance. Notably, the Vickers hardness decreases with the increase of pressure, indicating that high pressure can induce plastic deformation in Al4In2N6. The calculations of elastic constants and phonon spectra confirm that Al4In2N6 retains mechanical and dynamical stability in the pressure range of 0–30 GPa. Electronic structure calculations reveal that Al4In2N6 possesses a direct band gap, and non-overlapping conduction and valence bands at the Fermi level. The conduction band has a higher carrier mobility than the valence band. The band gap increases almost linearly with pressure rising from 3.35 eV at 0 GPa to 4.24 eV at 30 GPa, demonstrating significant pressure-induced modulation of the electronic structure. Furthermore, the analysis of differential charge densities reveals that increasing pressure can strengthen the Al-N and In-N bonds in Al4In2N6 through shortened interatomic distances and stronger atomic interactions, increasing its compression resistance. In summary, this study not only deepens our understanding of the high-pressure properties of Al4In2N6 but also provides theoretical guidance for its application in UV optoelectronics. Pressure-driven modulation of its mechanical and electronic characteristics highlights its potential in efficient high-pressure optoelectronic devices and materials.
-
Keywords:
- ternary semiconductor /
- high pressure /
- first-principles /
- band gap
-
表 1 Al4In2N6在不同压力下的晶格参数
Table 1. Lattice parameters of Al4In2N6 under different pressures.
Pressure/GPa a/Å b/Å c/Å 0 9.832 5.654 5.250 5 9.749 5.603 5.195 10 9.669 5.557 5.149 15 9.600 5.516 5.107 20 9.535 5.478 5.068 25 9.477 5.445 5.032 30 9.422 5.413 4.999 表 2 在0—30 GPa 压力 Al4In2N6的弹性常数
Table 2. Elastic constant of Al4In2N6 under 0–30 GPa pressures.
Pressure/GPa C11/GPa C12/GPa C13/GPa C22/GPa C23/GPa C33/GPa C44/GPa C55/GPa C66/GPa 0 318.606 113.886 89.017 305.200 92.444 311.408 84.739 84.903 95.602 5 330.169 126.317 103.218 327.053 105.181 326.999 86.887 88.385 96.321 10 340.077 143.266 118.822 337.579 124.623 338.138 85.186 87.028 94.397 15 359.171 163.187 130.986 352.270 135.623 357.799 88.682 87.873 95.539 20 375.952 175.971 146.621 363.912 151.179 361.684 89.566 86.445 93.548 25 389.382 192.252 161.374 370.366 171.460 363.533 88.451 87.052 91.683 30 402.037 207.158 171.490 379.130 181.476 381.927 86.653 84.002 90.021 表 3 0—30 GPa 压力下Al4In2N6的弹性模量(B, G, E, B/G)、硬度Hv和泊松比$\mu $
Table 3. The elastic modulus (B, G, E, B/G), hardness (Hv), and Poisson’s ratio ($\mu $) of Al4In2N6 under pressures of 0–30 GPa.
Pressure/GPa B/GPa E/GPa G/GPa (B/G) $\mu $ HV/GPa 0 169.443 240.336 95.099 1.782 0.264 11.998 5 183.649 247.651 97.099 1.891 0.275 11.377 10 198.718 245.38 94.800 2.096 0.294 9.952 15 214.192 251.75 96.522 2.219 0.304 9.447 20 227.465 250.967 95.344 2.386 0.316 8.625 25 241.177 247.277 93.023 2.593 0.329 7.711 30 253.426 245.888 91.866 2.759 0.338 7.123 -
[1] Liu B, Chen D, Lu H, Tao T, Zhuang Z, Shao Z, Xu W, Ge H, Zhi T, Ren F, Ye J, Xie Z, Zhang R 2020 Adv. Mater. 32 1904354
Google Scholar
[2] Hahn C, Zhang Z, Fu A, Wu C H, Hwang Y J, Gargas D J, Yang P 2011 ACS Nano 5 3970
Google Scholar
[3] Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B, Li H 2020 Adv. Mater. 32 1903407
Google Scholar
[4] Chen K, Kapadia R, Harker A, Desai S, Javey A 2016 Nat. Commun. 7 10502
Google Scholar
[5] 仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和 2024 物理学报 73 038102
Google Scholar
Qiu P, Liu H, Zhu X L, Tian F, Du M C, Qiu H Y, Chen G L, Hu Y Y, Kong D L, Yang J, Wei H Y, Peng M Z, Zheng X H 2024 Acta Phys. Sin. 73 038102
Google Scholar
[6] Manjón F J, Errandonea D, Garro N, Romero A H, Serrano J, Kuball M 2010 Phys. Status Solidi 244 42
[7] E Abid A, Bensalem R, Sealy B J 1986 J. Mater. Sci. 21 1301
Google Scholar
[8] Yu R, Liu G, Wang G, Chen C, Xu M, Zhou H, Wang T, Yu J, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852
Google Scholar
[9] Ibanez J, Segura A, Garcia-Domene B, Oliva R, Manjon F J, Yamaguchi T, Nanishi Y, Artus L 2012 Phys. Rev. B: Condens. Matter 86 999
[10] Khan N, Sedhain A, Li J, Lin J Y, Jiang H X 2008 Appl. Phys. Lett. 92 172101
Google Scholar
[11] Davydov V Y, Klochikhin A, Seisyan R, Emtsev V, Ivanov S, Bechstedt F, Furthmüller J, Harima H, Mudryi A, Aderhold J 2002 Phys. Status Solidi B 229 r1
Google Scholar
[12] Tansley T L, Foley C P 1986 J. Appl. Phys. 59 3241
Google Scholar
[13] Liu X K, Lin Z C, Lin Y H, Chen J J, Zou P, Zhou J, Li B, Shen L H, Zhu D L, Liu Q, Yu W J, Li X H, Zhu H, Wang X Z, Huang S W 2023 Chin. Phys. B 32 117701
Google Scholar
[14] Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967
Google Scholar
[15] Beladjal K, Kadri A, Zitouni K, Mimouni K 2021 Superlattices Microstruct. 155 106901
Google Scholar
[16] Guo Q G Q, Yoshida A Y A 1994 Jpn. J. Appl. Phys. 33 2453
Google Scholar
[17] Zhao F, Yao G R, Song J J, Ding B B, Xiong J Y, Su C, Zheng S W, Zhang T, Fan G H 2013 Chin. Phys. B 22 058503
Google Scholar
[18] Chen J J, Shen L H, Qi D L, Wu L J, Li X, Song J Y, Zhang X L 2022 Ceram. Int. 48 2802
Google Scholar
[19] Moussa R, Abdiche A, Khenata R, Wang X, Varshney D, Sun X W, Omran S B, Bouhemadou A, Rai D 2018 J. Phys. Chem. Solids 119 36
Google Scholar
[20] Mao W, Zhang J C, Xue J S, Hao Y, Ma X H, Wang C, Liu H X, Xu S R, Yang L A, Bi Z W, Liang X Z, Zhang J F, Kuang X W 2010 Chin. Phys. Lett. 27 128501
Google Scholar
[21] Wen X X, Yang X D, He M, Li Y, Wang G, Lu P Y, Qian W N, Li Y, Zhang W W, Wu W B, Chen F S, Ding L Z 2012 Chin. Phys. Lett. 29 097304
Google Scholar
[22] Zhang X F, Wang L, Liu J, Wei L, Xu J 2013 Chin. Phys. B 22 017202
Google Scholar
[23] Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301
Google Scholar
[24] Zhan X M, Hao M L, Wang Q, Li W, Xiao H L, Feng C, Jiang L J, Wang C M, Wang X L, Wang Z G 2017 Chin. Phys. Lett. 34 047301
Google Scholar
[25] Dong Y, Son D H, Dai Q, Lee J H, Won C H, Kim J G, Chen D, Lee J H, Lu H, Zhang R, Zheng Y 2018 Sensors 18 1314
[26] Li A, Wang C, Xu S, Zheng X, He Y, Ma X, Lu X, Zhang J, Liu K, Zhao Y Hao Y 2021 Appl. Phys. Lett. 119 122104
Google Scholar
[27] Robin Chang Y H, Yoon T L, Lim T L 2016 Curr. Appl. Phys. 16 1277
Google Scholar
[28] Borovac D, Sun W, Song R, Wierer J J, Tansu N 2020 J. Cryst. Growth 533 125469
Google Scholar
[29] Yonenaga I, Ohkubo Y, Deura M, Kutsukake K, Tokumoto Y, Ohno Y, Yoshikawa A, Wang X Q 2015 AIP Adv. 5 077131
Google Scholar
[30] Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Res. 2735 841
[31] Chen M, Guo G C, He L 2010 J. Phys. Condens. Matter 22 445501
Google Scholar
[32] Al-Khatatbeh Y, Lee K K M, Kiefer B 2009 Phys. Rev. B 79 134114
Google Scholar
[33] Man X X, Gong B C, Sun P H, Liu K, Lu Z Y 2022 Phys. Rev. B 106 035136
Google Scholar
[34] Yu F, Liu Y 2019 Computation 7 57
Google Scholar
[35] Velpula R T, Jain B, Philip M R, Nguyen H D, Wang R, Nguyen H P T 2020 Sci. Rep. 10 2547
Google Scholar
[36] Robin Chang Y H, Yoon T L, Lim T L, Rakitin M 2016 J. Alloys Compd. 682 338
Google Scholar
[37] Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713
Google Scholar
[38] Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227
Google Scholar
[39] Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172
Google Scholar
[40] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
Google Scholar
[41] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
Google Scholar
[42] Blöchl P E 1994 Phys. Rev. B 50 17953
Google Scholar
[43] Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116
Google Scholar
[44] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
Google Scholar
[45] Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106
Google Scholar
[46] Togo A, Tanaka I 2015 Scr. Mater. 108 1
Google Scholar
[47] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
Google Scholar
[48] Muscat J, Wander A, Harrison N M 2001 Chem. Phys. Lett. 342 397
Google Scholar
[49] Garza A J, Scuseria G E 2016 J. Phys. Chem. Lett. 7 4165
Google Scholar
[50] Sugita Y, Miyake T, Motome Y 2018 Phys. Rev. B 97 035125
Google Scholar
[51] Robin Chang Y H, Yoon T L, Lim T L, Tuh M H 2017 J. Alloys Compd. 704 160
Google Scholar
[52] Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104
Google Scholar
[53] Voigt W 1889 Ann. Phys. 274 573
Google Scholar
[54] Reuss A 1929 ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech. 9 49
[55] Hill R 1952 Proc. Phys. Soc. London, Sect. A 65 349
Google Scholar
[56] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic constants and elastic moduli of metals and insulators handbook (Kiev: Naukova Dumka) pp60–180
[57] Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93
Google Scholar
[58] Meng J, Sun L, Zhang Y, Xue F, Chu C, Bai J 2020 Materials 13 427
Google Scholar
Metrics
- Abstract views: 602
- PDF Downloads: 17
- Cited By: 0