-
Recent studies have shown that introducing metal elements into nitrogen matrix can induce more stable poly-nitrogen structures than the pure nitrogen phase due to the ionic interaction between metal elements and nitrogen matrix. Many types of poly-nitrogen structures have been reported by using the alkaline earth metal elements (M = Be, Mg, Ca, Sr, Ba) as the coordinate elements. For example, the one-dimensional (1D) infinite armchair poly-nitrogen chain (N∞) structure and N6 ring structure are obtained for the MN4 and MN3 chemical stoichiometry, respectively. Interestingly, the stabilities of theses MNx structures are enhanced 2–3 times compared with that of the pure nitrogen. Therefore, exploring the novel and stable poly-nitrogen structure by introducing alkaline earth metal elements under high pressure is a great significant job. As an alkaline earth element, Ca is abundant in the earth. Its ionization energy (I1 = 590 kJ/mol) is far lower than that of Be (900 kJ/mol) and Mg (738 kJ/mol), which means that Ca can form calcium nitrides more easily. Zhu et al. (Zhu S, Peng F, Liu H, Majumdar A, Gao T, Yao Y 2016Inorg. Chem. 55 7550) proposed that the Ca-N system can obtain poly-nitrogen structures under high pressure, such as CaN4 structure with armchair nitrogen chain, CaN5 and CaN3 consisting of pentazolate “N5” and benzene-like “N6” anions. These poly-nitrogen structures have potential applications in the field of high energy density materials. Here, we report the prediction of Ca-N system at 100 GPa by using particle swarm optimization algorithm technique for crystal structure prediction. A new thermal stable phase with P 21/c-Ca5N4 space group is found at 100 GPa, which enriches the phase of Ca-N system under high pressure. The dynamic stability and mechanical stability of new phase are confirmed by phono dispersion spectrum and elastic constant calculations. The electron localization function analysis shows that the nitrogen atoms in P 21/c-Ca5N4 are bonded by N—N single bond and electron transfer from Ca atom to N atom enables Ca5N4 to serve as an ionic-bonding interaction structure. Band structure calculation shows that the Ca5N4 has a semiconductor structure with a direct band gap of 1.447 eV. The PDOS calculation shows the valence band near Fermi energy is mainly contributed by N_p electrons, while the conduction band is mainly contributed by Ca_d electrons, indicating that electrons are transferred from Ca atom to N atom. Bader calculation shows that each N atom obtains 1.26e from Ca atom in P 21/c-Ca5N4. The Raman spectrum and X-ray diffraction spectrum are calculated and detailed Raman vibration modes are identified, which provides theoretical guidance for experimental synthesis.
-
Keywords:
- high pressure /
- alkaline earth metal /
- calcium nitrides
[1] Pickard C J, Needs R J 2009 Phys. Rev. Lett. 102 125702Google Scholar
[2] Erba A, Maschio L, Pisani C, Casassa S 2011 Phys. Rev. B 84 012101Google Scholar
[3] Hirshberg B, Gerber R B, Krylov A I 2014 Nat. Chem. 6 52Google Scholar
[4] Özçelik V O, Aktürk O Ü, Durgun E, Ciraci S 2015 Phys. Rev. B 92 125420Google Scholar
[5] Plašienka D, Martoňák R 2015 J. Chem. Phys. 142 094505Google Scholar
[6] Yakub L N 2016 Low Temp. Phys. 42 1Google Scholar
[7] Martin R M, Needs R J 1986 Phys. Rev. B 34 5082Google Scholar
[8] Mailhiot C, Yang L H, McMahan A K 1992 Phys. Rev. B 46 14419Google Scholar
[9] Wang X, Wang Y, Miao M, Zhong X, Lv J, Cui T, Li J, Chen L, Pickard C J, Ma Y 2012 Phys. Rev. Lett. 109 175502Google Scholar
[10] Ma Y, Oganov A R, Li Z, Xie Y, Kotakoski J 2009 Phys. Rev. Lett. 102 065501Google Scholar
[11] Bondarchuk S V, Minaev B F 2017 Comput. Mater. Sci. 133 122Google Scholar
[12] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar
[13] Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502Google Scholar
[14] Zhao J F, Li N, Li Q S 2003 Theor. Chem. Acc. 110 10Google Scholar
[15] Steele B A, Oleynik I I 2016 Chem. Phys.Lett. 643 21Google Scholar
[16] Zhang M, Yin K, Zhang X, Wang H, Li Q, Wu Z 2013 Solid State Commun. 161 13Google Scholar
[17] Peng F, Yao Y, Liu H, Ma Y 2015 J. Phys. Chem. Lett. 6 2363Google Scholar
[18] Zhang J, Zeng Z, Lin H Q, Li Y L 2015 Sci. Rep. 4 4358Google Scholar
[19] Wang X, Li J, Zhu H, Chen L, Lin H 2014 J. Chem. Phys. 141 044717Google Scholar
[20] Williams A S, Steele B A, Oleynik I I 2017 J. Chem. Phys. 147 234701Google Scholar
[21] Wei S, Li D, Liu Z, Wang W, Tian F, Bao K, Duan D, Liu B, Cui T 2017 J. Phys. Chem. C 121 9766Google Scholar
[22] Yu S, Huang B, Zeng Q, Oganov A R, Zhang L, Frapper G 2017 J. Phys. Chem. C 121 11037Google Scholar
[23] Wei S, Li D, Liu Z, Li X, Tian F, Duan D, Liu B, Cui T 2017 Phys. Chem. Chem. Phys. 19 9246Google Scholar
[24] Hou P, Lian L, Cai Y, Liu B, Wang B, Wei S, Li D 2018 RSC Adv. 8 4314Google Scholar
[25] Braun C, Börger S L, Boyko T D, Miehe G, Ehrenberg H, Höhn P, Moewes A, Schnick W 2011 J. Am. Chem. Soc. 133 4307Google Scholar
[26] Hao J, Li Y, Wang J, Ma C, Huang L, Liu R, Cui Q, Zou G, Liu J, Li X 2010 J. Phys. Chem. C 114 16750Google Scholar
[27] Römer S R, Schnick W, Kroll P 2009 J. Phys. Chem. C 113 2943Google Scholar
[28] Gregory D H, Bowman A, Baker C F, Weston D P 2000 J. Mater. Chem. 10 1635Google Scholar
[29] Zhu S, Peng F, Liu H, Majumdar A, Gao T, Yao Y 2016 Inorg. Chem. 55 7550Google Scholar
[30] Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L, Dronskowski R, Zhou X F, Prakapenka V B, Konôpková Z, Popov I A, Boldyrev A I, Wang H T 2017 Nat. Chem. 9 440Google Scholar
[31] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182Google Scholar
[32] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835Google Scholar
[33] Wang Y, Lv J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063Google Scholar
[34] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[35] Chaput L, Togo A, Tanaka I, Hug G 2011 Phys. Rev. B 84 094302Google Scholar
[36] Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar
[37] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[38] Hammer B, Hansen L B, Nørskov J K 1999 Phys. Rev. B 59 7413Google Scholar
-
-
[1] Pickard C J, Needs R J 2009 Phys. Rev. Lett. 102 125702Google Scholar
[2] Erba A, Maschio L, Pisani C, Casassa S 2011 Phys. Rev. B 84 012101Google Scholar
[3] Hirshberg B, Gerber R B, Krylov A I 2014 Nat. Chem. 6 52Google Scholar
[4] Özçelik V O, Aktürk O Ü, Durgun E, Ciraci S 2015 Phys. Rev. B 92 125420Google Scholar
[5] Plašienka D, Martoňák R 2015 J. Chem. Phys. 142 094505Google Scholar
[6] Yakub L N 2016 Low Temp. Phys. 42 1Google Scholar
[7] Martin R M, Needs R J 1986 Phys. Rev. B 34 5082Google Scholar
[8] Mailhiot C, Yang L H, McMahan A K 1992 Phys. Rev. B 46 14419Google Scholar
[9] Wang X, Wang Y, Miao M, Zhong X, Lv J, Cui T, Li J, Chen L, Pickard C J, Ma Y 2012 Phys. Rev. Lett. 109 175502Google Scholar
[10] Ma Y, Oganov A R, Li Z, Xie Y, Kotakoski J 2009 Phys. Rev. Lett. 102 065501Google Scholar
[11] Bondarchuk S V, Minaev B F 2017 Comput. Mater. Sci. 133 122Google Scholar
[12] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar
[13] Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502Google Scholar
[14] Zhao J F, Li N, Li Q S 2003 Theor. Chem. Acc. 110 10Google Scholar
[15] Steele B A, Oleynik I I 2016 Chem. Phys.Lett. 643 21Google Scholar
[16] Zhang M, Yin K, Zhang X, Wang H, Li Q, Wu Z 2013 Solid State Commun. 161 13Google Scholar
[17] Peng F, Yao Y, Liu H, Ma Y 2015 J. Phys. Chem. Lett. 6 2363Google Scholar
[18] Zhang J, Zeng Z, Lin H Q, Li Y L 2015 Sci. Rep. 4 4358Google Scholar
[19] Wang X, Li J, Zhu H, Chen L, Lin H 2014 J. Chem. Phys. 141 044717Google Scholar
[20] Williams A S, Steele B A, Oleynik I I 2017 J. Chem. Phys. 147 234701Google Scholar
[21] Wei S, Li D, Liu Z, Wang W, Tian F, Bao K, Duan D, Liu B, Cui T 2017 J. Phys. Chem. C 121 9766Google Scholar
[22] Yu S, Huang B, Zeng Q, Oganov A R, Zhang L, Frapper G 2017 J. Phys. Chem. C 121 11037Google Scholar
[23] Wei S, Li D, Liu Z, Li X, Tian F, Duan D, Liu B, Cui T 2017 Phys. Chem. Chem. Phys. 19 9246Google Scholar
[24] Hou P, Lian L, Cai Y, Liu B, Wang B, Wei S, Li D 2018 RSC Adv. 8 4314Google Scholar
[25] Braun C, Börger S L, Boyko T D, Miehe G, Ehrenberg H, Höhn P, Moewes A, Schnick W 2011 J. Am. Chem. Soc. 133 4307Google Scholar
[26] Hao J, Li Y, Wang J, Ma C, Huang L, Liu R, Cui Q, Zou G, Liu J, Li X 2010 J. Phys. Chem. C 114 16750Google Scholar
[27] Römer S R, Schnick W, Kroll P 2009 J. Phys. Chem. C 113 2943Google Scholar
[28] Gregory D H, Bowman A, Baker C F, Weston D P 2000 J. Mater. Chem. 10 1635Google Scholar
[29] Zhu S, Peng F, Liu H, Majumdar A, Gao T, Yao Y 2016 Inorg. Chem. 55 7550Google Scholar
[30] Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L, Dronskowski R, Zhou X F, Prakapenka V B, Konôpková Z, Popov I A, Boldyrev A I, Wang H T 2017 Nat. Chem. 9 440Google Scholar
[31] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182Google Scholar
[32] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835Google Scholar
[33] Wang Y, Lv J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063Google Scholar
[34] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[35] Chaput L, Togo A, Tanaka I, Hug G 2011 Phys. Rev. B 84 094302Google Scholar
[36] Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar
[37] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[38] Hammer B, Hansen L B, Nørskov J K 1999 Phys. Rev. B 59 7413Google Scholar
Catalog
Metrics
- Abstract views: 9410
- PDF Downloads: 306
- Cited By: 0