Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optoelectronic properties of high pressure regulated transition metal chalcogenides and their heterostructures

LI Chenkai ZHU Jinlong

Citation:

Optoelectronic properties of high pressure regulated transition metal chalcogenides and their heterostructures

LI Chenkai, ZHU Jinlong
cstr: 32037.14.aps.74.20250498
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Semiconducting transition metal chalcogenides exhibit layer-dependent bandgaps, strong excitonic effects, and spin-valley coupling, positioning them as promising candidates for optoelectronic applications. In heterostructures formed by van der Waals stacking, interlayer excitons and moiré superlattices have emerged as a unique platform for exploring quantum many-body physics and correlated electronic phases. Subjecting semiconducting transition metal dichalcogenides and their heterostructures to high pressure enables precise, continuous tuning of optoelectronic properties through anisotropic lattice compression, particularly the dramatic reduction of interlayer distances, which greatly enhances interlayer orbital hybridization over traditional tuning methods. This review systematically presents diamond anvil cell techniques for in situ high-pressure characterization and analyzes the pressure-induced evolution in semiconducting transition metal dichalcogenides and their heterostructures. It focuses on four key aspects: 1) Atomic-scale structural phase transitions (e.g., layer sliding) and corresponding electronic band structure modifications, including direct-to-indirect bandgap transitions in monolayers (K-Λ crossover) and metallization/superconductivity; 2) Quantifiable enhancement of interlayer interactions revealed by layer-dependent phonon shifts and spin-orbit splitting amplification, along with the mechanisms of their influence on properties; 3) Modulation of exciton binding states and related mechanisms, covering intralayer excitons, trions and interlayer excitons; 4) Moiré potential modulation where high pressure significantly deepens potentials via interlayer compression. This review particularly highlights the unique capability of high pressure in enhancing interlayer orbital hybridization, thereby inducing exotic quantum phases. Finally, the future research directions in this field are outlined to advance quantum information device design, strongly correlated electron system simulation, and the novel excitonic state exploration.
      Corresponding author: ZHU Jinlong, zhujl@sustech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274193, 12461160274), the Quantum Science Strategic Initiative of Guangdong Province, China (Grant No. GDZX2201001), the Basic Research Program of Shenzhen Natural Science Foundation, China (Grant No. K24205001), and the Major Science and Technology Infrastructure Program of Material Genome Big-science Facilities Platform supported by Municipal Development and Reform Commission of Shenzhen, China (Grant No. 2017-440300-82-01-293281/Historical Grant No. Z12017JY0012).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Chen H, Müller M B, Gilmore K J, Wallace G G, Li D 2008 Adv. Mater. 20 3557Google Scholar

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [5]

    Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H, Liu Z F 2019 Nat. Photonics 13 754Google Scholar

    [6]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [7]

    Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar

    [8]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [9]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [10]

    Hanlon D, Backes C, Doherty E, Cucinotta C S, Berner N C, Boland C, Lee K, Harvey A, Lynch P, Gholamvand Z, Zhang S, Wang K, Moynihan G, Pokle A, Ramasse Q M, McEvoy N, Blau W J, Wang J, Abellan G, Hauke F, Hirsch A, Sanvito S, O’Regan D D, Duesberg G S, Nicolosi V, Coleman J N 2015 Nat. Commun. 6 8563Google Scholar

    [11]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [12]

    Lebedev A V, Blatter G 2011 Phys. Rev. Lett. 107 076803Google Scholar

    [13]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar

    [14]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [15]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385Google Scholar

    [16]

    Liu X B, Chen X, Ma H A, Jia X P, Wu J S, Yu T, Wang Y B, Guo J G, Petitgirard S, Bina C R, Jacobsen S D 2016 Sci. Rep. 6 30518Google Scholar

    [17]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [18]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932Google Scholar

    [19]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [20]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [21]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [22]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [23]

    Song I, Park C, Choi H C 2015 RSC Adv. 5 7495Google Scholar

    [24]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [25]

    He K L, Poole C, Mak K F, Shan J 2013 Nano Lett. 13 2931Google Scholar

    [26]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [27]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [28]

    Chen X T, Lian Z, Meng Y Z, Ma L, Shi S F 2023 Nat. Commun. 14 8233Google Scholar

    [29]

    Regan E C, Wang D, Paik E Y, Zeng Y, Zhang L, Zhu J, MacDonald A H, Deng H, Wang F 2022 Nat. Rev. Mater. 7 778Google Scholar

    [30]

    Du L 2024 Nat. Rev. Phys. 6 157Google Scholar

    [31]

    Wilson N P, Yao W, Shan J, Xu X 2021 Nature 599 383Google Scholar

    [32]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [33]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [34]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [35]

    Tang Y H, Li L Z, Li T X, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [36]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [37]

    Guo Y, Pack J, Swann J, Holtzman L, Cothrine M, Watanabe K, Taniguchi T, Mandrus D G, Barmak K, Hone J, Millis A J, Pasupathy A, Dean C R 2025 Nature 637 839Google Scholar

    [38]

    刘钊 2024 物理学报 73 207303Google Scholar

    Liu Z 2024 Acta Phys. Sin. 73 207303Google Scholar

    [39]

    汤衍浩 2023 物理学报 72 027802Google Scholar

    Tang Y H 2023 Acta Phys. Sin. 72 027802Google Scholar

    [40]

    Pei S H, Wang Z H, Xia J 2022 Mater. Des. 213 110363Google Scholar

    [41]

    Cheng X R, Li Y Y, Shang J M, Hu C S, Ren Y F, Liu M, Qi Z M 2018 Nano Res. 11 855Google Scholar

    [42]

    Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X J 2014 Phys. Rev. Lett. 113 036802Google Scholar

    [43]

    Dou X M, Ding K, Jiang D S, Sun B Q 2014 ACS Nano 8 7458Google Scholar

    [44]

    Fu L, Wan Y, Tang N, Ding Y M, Gao J, Yu J C, Guan H M, Zhang K, Wang W Y, Zhang C F, Shi J J, Wu X, Shi S F, Ge W K, Dai L, Shen B 2017 Sci. Adv. 3 e1700162Google Scholar

    [45]

    Hromadová L, Martoňák R, Tosatti E 2013 Phys. Rev. B 87 144105Google Scholar

    [46]

    Li F F, Yan Y L, Han B, Li L, Huang X L, Yao M G, Gong Y B, Jin X L, Liu B L, Zhu C R, Zhou Q, Cui T 2015 Nanoscale 7 9075Google Scholar

    [47]

    Nayak A P, Pandey T, Voiry D, Liu J, Moran S T, Sharma A, Tan C, Chen C H, Li L J, Chhowalla M, Lin J F, Singh A K, Akinwande D 2015 Nano Lett. 15 346Google Scholar

    [48]

    Okajima M, Endo S, Akahama Y, Narita S I 1984 Jpn. J. Appl. Phys. 23 15Google Scholar

    [49]

    Li Q, Wang Y G, Pan W C, Yang W, Zou B, Tang J, Quan Z W 2017 Angew. Chem. , Int. Ed. 56 15969Google Scholar

    [50]

    Errandonea D, Bandiello E, Segura A, Hamlin J J, Maple M B, Rodriguez-Hernandez P, Muñoz A 2014 J. Alloys Compd. 587 14Google Scholar

    [51]

    Zhou Y H, Chen X L, Li N, Zhang R R, Wang X, F An C, Zhou Y, Pan X C, Song F Q, Wang B G, Yang W G, Yang Z R, Zhang Y H 2016 AIP Adv. 6 075008Google Scholar

    [52]

    Vellinga M B, de Jonge R, Haas C 1970 J. Solid State Chem. 2 299Google Scholar

    [53]

    徐济安, 毛河光, Bell P 1987 物理学报 36 501Google Scholar

    XU J A, Mao H G, Bell L P 1987 Acta Phys. Sin. 36 501Google Scholar

    [54]

    Ana B G, Gábor M, Aurelian R, Helena J S 2018 C. R. Chim. 21 1095Google Scholar

    [55]

    Akahama Y, Kawamura H 2006 J. Appl. Phys. 100 043516

    [56]

    Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [57]

    Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D, Dean C R 2018 Nature 557 404Google Scholar

    [58]

    Yao X D, Bai Y X, Jin C, Zhang X Y, Zheng Q F, Xu Z D, Chen L, Wang S M, Liu Y, Wang J L, Zhu J L 2023 Nat. Commun. 14 4301Google Scholar

    [59]

    Shen G, Wang Y, Dewaele A, Wu C, Fratanduono D E, Eggert J, Klotz S, Dziubek K F, Loubeyre P, Fat’yanov O V, Asimow P D, Mashimo T, Wentzcovitch R M M 2020 High Pressure Res. 40 299Google Scholar

    [60]

    Yamaoka H, Zekko Y, Jarrige I, Lin J F, Hiraoka N, Ishii H, Tsuei K D, Mizuki J i 2012 J. Appl. Phys. 112 124503

    [61]

    Noack R A, Holzapfel W B (Timmerhaus K D, Barber M S ed) 1979 High-Pressure Science and Technology: Volume 1: Physical Properties and Material Synthesis/Volume 2: Applications and Mechanical Properties (Boston, MA: Springer US) pp748–753

    [62]

    Yen J, Nicol M 1992 J. Appl. Phys. 72 5535Google Scholar

    [63]

    Tardieu A, Cansell F, Petitet J P 1990 J. Appl. Phys. 68 3243Google Scholar

    [64]

    Wang X F, Chen X L, Zhou Y H, Park C Y, An C, Zhou Y, Zhang R R, Gu C C, Yang W, Yang Z R 2017 Sci. Rep. 7 46694Google Scholar

    [65]

    Duwal S, Yoo C S 2016 J. Phys. Chem. C 120 5101Google Scholar

    [66]

    Zhao Z, Zhang H J, Yuan H T, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y, Mao W L 2015 Nat. Commun. 6 7312Google Scholar

    [67]

    Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S 2010 ACS Nano 4 2695Google Scholar

    [68]

    Zhao W, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H, Eda G 2013 Nanoscale 5 9677Google Scholar

    [69]

    Molina-Sánchez A, Wirtz L 2011 Phys. Rev. B 84 155413Google Scholar

    [70]

    Li C K, Liu Y Y, Yang Q S, Zheng Q F, Yan Z P, Han J, Lin J H, Wang S M, Qi J B, Liu Y, Zhu J L 2022 J. Phys. Chem. Lett. 13 161Google Scholar

    [71]

    Luo J H, Li C K, Liu J Y, Liu Y Y, Xiao W H, Zheng R H, Zheng Q F, Han J, Zou T, Cheng W J, Yao X D, Liu Y, Zhu J L 2024 Appl. Phys. Lett. 124 033104Google Scholar

    [72]

    Du G S, Zhao L L, Li S C, Huang J, Fang S S, Han W X, Li J Y, Du Y B, Ming J X, Zhang T S, Zhang J, Kang J, Li X Y, Xu W G, Chen Y B 2025 Nat. Commun. 16 4901Google Scholar

    [73]

    Wieting T J 1973 Solid State Commun. 12 931Google Scholar

    [74]

    Xie X, Ding J N, Wu B, Zheng H H, Li S F, He J, Liu Z W, Wang J T, Liu Y P 2023 Phys. Rev. B 108 155302Google Scholar

    [75]

    Liang L B, Zhang J, Sumpter B G, Tan Q H, Tan P H, Meunier V 2017 ACS Nano 11 11777Google Scholar

    [76]

    Zhao Y Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y, Dresselhaus M S, Xiong Q H 2013 Nano Lett. 13 1007Google Scholar

    [77]

    Dong J S, Ouyang G 2020 Chin. Phys. B 29 086403Google Scholar

    [78]

    Han B, Li F F, Li L, Huang X L, Gong Y B, Fu X P, Gao H X, Zhou Q, Cui T 2017 J. Phys. Chem. Lett. 8 941Google Scholar

    [79]

    Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu S Q, Li Y C, Zhao J G, Kagayama T, Ma Y M, Yang Z R 2018 Phys. Rev. Lett. 120 037002Google Scholar

    [80]

    Zhao W J, Ghorannevis Z, Chu L Q, Toh M L, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [81]

    Pandey S K, Das R, Mahadevan P 2020 ACS Omega 5 15169Google Scholar

    [82]

    Fan X, Chang C H, Zheng W T, Kuo J L, Singh D J 2015 J. Phys. Chem. C 119 10189Google Scholar

    [83]

    Kuc A, Zibouche N, Heine T 2011 Phys. Rev. B 83 245213Google Scholar

    [84]

    Bussolotti F, Kawai H, Ooi Z E, Chellappan V, Thian D, Pang A L C, Goh K E J 2018 Nano Futures 2 032001Google Scholar

    [85]

    Ye Y X, Dou X M, Ding K, Jiang D S, Yang F H, Sun B Q 2016 Nanoscale 8 10843Google Scholar

    [86]

    Fu X P, Li F F, Lin J F, Gong Y B, Huang X L, Huang Y P, Han B, Zhou Q, Cui T 2017 J. Phys. Chem. Lett. 8 3556Google Scholar

    [87]

    Pimenta Martins L G, Carvalho B R, Occhialini C A, Neme N P, Park J H, Song Q, Venezuela P, Mazzoni M S C, Matos M J S, Kong J, Comin R 2022 ACS Nano 16 8064Google Scholar

    [88]

    Qiao W, Sun H, Fan X Y, Jin M L, Liu H Y, Tang T H, Xiong L, Niu B H, Li X, Wang G 2022 Crystals 12 693

    [89]

    Li Q Y, Sui L Z, Niu G M, Jiang J T, Zhang Y T, Wu G R, Jin M X, Yuan K J 2020 J. Phys. Chem. C 124 11183Google Scholar

    [90]

    Dou X M, Ding K, Jiang D S, Fan X F, Sun B Q 2016 ACS Nano 10 1619Google Scholar

    [91]

    Hsu W T, Quan J, Pan C R, Chen P J, Chou M Y, Chang W H, MacDonald A H, Li X, Lin J F, Shih C K 2022 Phys. Rev. B 106 125302Google Scholar

    [92]

    Steeger P, Graalmann J H, Schmidt R, Kupenko I, Sanchez-Valle C, Marauhn P, Deilmann T, de Vasconcellos S M, Rohlfing M, Bratschitsch R 2023 Nano Lett. 23 8947Google Scholar

    [93]

    Bai Z Y, Zhang H, He J Q, He D W, Wang J R, Li G L, Bai J X, Zhao K, Yu X H, Wang Y S, Zhang X X 2023 Nano Res. 16 12738Google Scholar

    [94]

    Chen Y B, Ke F, Ci P H, Ko C, Park T, Saremi S, Liu H L, Lee Y, Suh J, Martin L W, Ager J W, Chen B, Wu J Q 2017 Nano Lett. 17 194Google Scholar

    [95]

    Qin X X, Zhang G Z, Chen L, Wang Q L, Wang G Y, Zhang H W, Li Y W, Liu C L 2024 Ultrafast Sci. 4 0044Google Scholar

    [96]

    Tu H Y, Pan L Y, Qi H J, Zhang S H, Li F F, Sun C L, Wang X, Cui T 2023 J. Phys. : Condens. Matter 35 253002Google Scholar

    [97]

    Bai Z, Zhang H, He J, He D, Wang J, Wu W, Zhang Y, Wang W, Wang Y, Yu X, Zhang X 2025 Adv. Electron. Mater. 11 2400333Google Scholar

    [98]

    Li Z Y, Qin F, Ong C S, Huang J W, Xu Z A, Chen P, Qiu C Y, Zhang X, Zhang C R, Zhang X X, Eriksson O, Rubio A, Tang P Z, Yuan H T 2023 Nano Lett. 23 10282Google Scholar

    [99]

    Fu X P, Li F F, Lin J F, Gong Y B, Huang X L, Huang Y P, Gao H X, Zhou Q, Cui T 2018 J. Phys. Chem. C 122 5820

    [100]

    Yan W, Meng L, Meng Z S, Weng Y K, Kang L L, Li X A 2019 J. Phys. Chem. C 123 30684Google Scholar

    [101]

    Villafañe V, Kremser M, Hübner R, Petrić M M, Wilson N P, Stier A V, Müller K, Florian M, Steinhoff A, Finley J J 2023 Phys. Rev. Lett. 130 026901Google Scholar

    [102]

    Huang S, Liang L, Ling X, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 1435Google Scholar

    [103]

    Puretzky A A, Liang L, Li X, Xiao K, Sumpter B G, Meunier V, Geohegan D B 2016 ACS Nano 10 2736Google Scholar

    [104]

    Fan W, Zhu X, Ke F, Chen Y, Dong K, Ji J, Chen B, Tongay S, Ager J W, Liu K, Su H, Wu J 2015 Phys. Rev. B 92 241408Google Scholar

    [105]

    Xie X, Ding J, Wu B, Zheng H, Li S, Wang C T, He J, Liu Z, Wang J T, Liu Y 2023 Nano Lett. 23 8833Google Scholar

    [106]

    Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024 Appl. Phys. Rev. 11 031417Google Scholar

    [107]

    Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024 Sci. China: Phys., Mech. Astron. 67 288211Google Scholar

    [108]

    Li C, Cheng W, Zhang X, Zhang P, Zheng Q, Yan Z, Han J, Dai G, Wang S, Quan Z, Liu Y, Zhu J 2023 J. Phys. Chem. C 127 7784Google Scholar

    [109]

    Yan Y, Feng D, Zhu J, Li F 2025 J. Alloys Compd. 1014 178651Google Scholar

    [110]

    Li S, Zheng H, Ding J, Wu B, He J, Liu Z, Liu Y 2022 Nano Res. 15 7688Google Scholar

    [111]

    Xia J, Yan J, Wang Z, He Y, Gong Y, Chen W, Sum T C, Liu Z, Ajayan P M, Shen Z 2021 Nat. Phys. 17 92Google Scholar

    [112]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111Google Scholar

    [113]

    Tebyetekerwa M, Zhang J, Saji S E, Wibowo A A, Rahman S, Truong T N, Lu Y, Yin Z, Macdonald D, Nguyen H T 2021 Cell Rep. Phys. Sci. 2 100509Google Scholar

    [114]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal’ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [115]

    Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G, Reichman D R, Korn T 2018 Nat. Phys. 14 801Google Scholar

    [116]

    Li Y, Song Z 2023 J. Phys. : Conf. Ser. 2566 012105Google Scholar

    [117]

    Zhu M, Zhang Z, Zhang T, Liu D, Zhang H, Zhang Z, Li Z, Cheng Y, Huang W 2022 Nano Lett. 22 4528Google Scholar

    [118]

    Ma X, Fu S, Ding J, Liu M, Bian A, Hong F, Sun J, Zhang X, Yu X, He D 2021 Nano Lett. 21 8035Google Scholar

    [119]

    Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U 2017 Nano Lett. 17 5229Google Scholar

    [120]

    Jiang C, Xu W, Rasmita A, Huang Z, Li K, Xiong Q, Gao W-B 2018 Nat. Commun. 9 753Google Scholar

    [121]

    Zhang W, Wang Q, Chen Y, Wang Z, Wee A T S 2016 2D Mater. 3 022001

    [122]

    Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay Beng K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135Google Scholar

    [123]

    Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J, Mandrus D G, Yao W, Xu X 2015 Nat. Commun. 6 6242Google Scholar

    [124]

    Choudhary N, Park J, Hwang J Y, Chung H S, Dumas K H, Khondaker S I, Choi W, Jung Y 2016 Sci. Rep. 6 25456Google Scholar

    [125]

    Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021 Light: Sci. Appl. 10 72Google Scholar

    [126]

    Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093Google Scholar

    [127]

    Li H, Li S, Naik M H, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang F, Crommie M F 2021 Nat. Mater. 20 945Google Scholar

    [128]

    Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y, Shih C K 2017 Sci. Adv. 3 e1601459Google Scholar

    [129]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [130]

    Baek H, Brotons-Gisbert M, Koong Z X, Campbell A, Rambach M, Watanabe K, Taniguchi T, Gerardot B D 2020 Sci. Adv. 6 eaba8526Google Scholar

    [131]

    Soltero I, Kaliteevski M A, McHugh J G, Enaldiev V, Fal’ko V I 2024 Nano Lett. 24 1996Google Scholar

    [132]

    Pimenta Martins L G, Ruiz-Tijerina D A, Occhialini C A, Park J H, Song Q, Lu A Y, Venezuela P, Cançado L G, Mazzoni M S C, Matos M J S, Kong J, Comin R 2023 Nat. Nanotechnol. 18 1147Google Scholar

    [133]

    Enaldiev V V, Ferreira F, Magorrian S J, Fal’ko V I 2021 2D Mater. 8 025030Google Scholar

    [134]

    Xie X, Chen J Y, Li S F, Ding J N, He J, Liu Z W, Wang J T, Liu Y P 2025 Nano Lett. 25 8571Google Scholar

    [135]

    Zhao W Y, Regan E C, Wang D, Jin C, Hsieh S, Wang Z L, Wang J L, Wang Z, Yumigeta K, Blei M, Watanabe K, Taniguchi T, Tongay S, Yao N Y, Wang F 2021 Nano Lett. 21 8910Google Scholar

    [136]

    Jo S, Costanzo D, Berger H, Morpurgo A F 2015 Nano Lett. 15 1197Google Scholar

    [137]

    Shi W, Ye J T, Zhang Y J, Suzuki R, Yoshida M, Miyazaki J, Inoue N, Saito Y, Iwasa Y 2015 Sci. Rep. 5 12534Google Scholar

    [138]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar

    [139]

    Ding D D, Qu Z Z, Han X Y, Han C R, Zhuang Q, Yu X L, Niu R R, Wang Z Y, Li Z X, Gan Z, Wu J S, Lu J M 2022 Nano Lett. 22 7919Google Scholar

    [140]

    Piatti E, De Fazio D, Daghero D, Tamalampudi S R, Yoon D, Ferrari A C, Gonnelli R S 2018 Nano Lett. 18 4821Google Scholar

    [141]

    Wang L, Shih E M, Ghiotto A, Xian L D, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [142]

    Huang X, Wang T M, Miao S N, Wang C, Li Z P, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [143]

    Xiong R C, Nie J H, Brantly S L, Hays P, Sailus R, Watanabe K, Taniguchi T, Tongay S, Jin C H 2023 Science 380 860Google Scholar

    [144]

    Bai Y, Li Y, Liu S, Guo Y, Pack J, Wang J, Dean C R, Hone J, Zhu X 2023 Nano Lett. 23 11621Google Scholar

    [145]

    Wang Z F, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2019 Nature 574 76Google Scholar

    [146]

    Nguyen P X, Ma L G, Chaturvedi R, Watanabe K, Taniguchi T, Shan J, Mak K F 2025 Science 388 274Google Scholar

    [147]

    Gao Y F, Xu Q L, Farooq M U, Xian L D, Huang L 2023 Nano Lett. 23 7921Google Scholar

    [148]

    Brzezińska M, Grytsiuk S, Rösner M, Gibertini M, Rademaker L 2025 2D Mater. 12 015003Google Scholar

    [149]

    Arovas D P, Berg E, Kivelson S A, Raghu S 2022 Annu. Rev. Condens. Matter Phys. 13 239Google Scholar

    [150]

    Giuliani A, Mastropietro V 2010 Commun. Math. Phys. 293 301Google Scholar

  • 图 1  (a) 2H, 1T和1T'相单层TMD中原子结构示意图[24]; (b) 已知的层状TMD的“周期表”, 根据所涉及的过渡金属元素进行组织, 总结了它们现有的结构, 并注明存在扭曲的结构和观察到的电子态[24]; (c) 建立范德瓦耳斯异质结构的示意图[27]

    Figure 1.  (a) Atomic structure of monolayer of TMDs in their trigonal prismatic (2H), distorted octahedral (1T) and dimerized (1T') phases[24]; (b)“periodic table” of known layered TMDs, organized based on the transition metal element involved, summarizing their existing structural phases and indicating the presence of distorted structural phases and observed electronic phases[24]; (c) schematic diagram of building van der Waals heterostructures[27].

    图 2  (a) DAC横截面(左图)以及金刚石高压腔放大的示意图(右图) [40]; (b) 室温下红宝石在常压和2 GPa的荧光光谱[54]; (c) 223—286 GPa的金刚石拉曼光谱, 上图纵轴为拉曼强度的一阶导数, 下图纵轴为拉曼强度, 上图中箭头指示拉曼峰的高频边缘, 定义为斜率最小处[55]

    Figure 2.  (a) Schematic illustration of the cross-section of a DAC (left) , andthe zoom-in on the diamond/gasket assembly (right)[40]; (b) illustration of the shift in position of the R1 fluorescence line of ruby on increasing pressure from ambient pressure to 2 GPa at room temperature[54]; (c) (top) typical Raman spectra from the center of the diamond anvil culet at various pressures in 223–286 GPa range and (bottom) the differential spectrum at 286 GPa, the high-frequency edge of the Raman band was defined as a minimum of the differential[55].

    图 3  (a) 2Hc和2Ha结构的MX2的侧视图(投影在ac平面上)和俯视图(投影在ab平面上), M表示Mo或W, X表示S或Se, 红色箭头表示2Hc形成2Ha的层间滑移方向, 其中一个X-M-X单元(由蓝色框标记)在ab平面中移动[66]; (b) 归一化的WSe2晶格常数a/a0, c/c0和晶胞体积V随压力的演化[64]; (c) 在压缩过程中, WSe2的室温拉曼光谱[64]; (d) WSe2中A1g和${\text{E}}_{{\text{2g}}}^{1} $模式峰位随压力的演化, 插图为A1g和${\text{E}}_{{\text{2g}}}^{1} $模式振动示意图[64]

    Figure 3.  (a) The side view (projected on ac plane) and top view (projected on ab plane) of 2Hc and 2Ha structure in MX2, M represents Mo and W, X represents S and Se, the red arrows represent one sliding path for the 2Hc to 2Ha transition, where one unit of X-M-X triple layers (marked by a blue box) shifts in ab plane[66]; (b) the normalized cell parameters a/a0, c/c0, and the volume V of WSe2 as a function of pressure[64]; (c) room temperature Raman spectra of WSe2 in the compression[64]; (d) peak frequencies of A1g and ${\text{E}}_{{\text{2g}}}^{1} $ modes as a function of pressure of WSe2, respectively, inset shows scheme of the Raman modes A1g and ${\text{E}}_{{\text{2g}}}^{1} $[64].

    图 4  (a) 少层和块体MoS2的拉曼光谱[67]; (b) $ {\text{E}}_{{\text{2g}}}^{1} $和A1g拉曼模式的频率(左轴)及其差值(右轴)与层数的关系[67]; (c) 不同层数N的MoS2中A1g和$ {\text{E}}_{{\text{2g}}}^{1} $模式随压强的演化, 插图为MoS2的DCM模型[72]; (d) 不同层数N中获得的$C_{\text{b}}^{\text{S}}/C_{\text{w}}^{\text{S}}$比值随压强的演化[72]

    Figure 4.  (a) Raman spectra of thin and bulk MoS2 films[67]; (b) frequencies of $ {\text{E}}_{{\text{2g}}}^{1} $ and A1g Raman modes (left vertical axis) and their difference (right vertical axis) as a function of layer thickness[67]; (c) pressure-dependence of Raman shift of A1g and $ {\text{E}}_{{\text{2g}}}^{1} $ with various N, and N changed from 2 to 9, and bulk, inset shows the DCM of MoS2[72]; (d) pressure-dependence of $C_{\text{b}}^{\text{S}}/C_{\text{w}}^{\text{S}}$ with various N[72].

    图 5  (a) 层间呼吸模式和剪切模式示意图[76]; (b) 衬底上的MCM模型[72]; (c) 少层和块体MoS2的斯托克斯和反斯托克斯拉曼散射光谱, 虚线和箭头用来指引特定拉曼峰[72]; (d) 常压下MoS2的拉曼峰位与层数N的关系[72]; (e) MoS2中的LB和S模式在高压下的蓝移速率与层数N的关系[72]

    Figure 5.  (a) Schematics of interlayer breathing mode and shear mode[76]; (b) MCM of MoS2 on a solid substrate[72]; (c) Stokes and anti-Stokes Raman spectra of the few-layer and bulk MoS2 on a diamond surface, the dashed lines and arrows are used for guide[72]; (d) Raman shifts of few-layer MoS2 as a function of N[72]; (e) N-dependence of Raman shifting rates of LB and S of MoS2[72].

    图 6  2H-MoS2的压力-温度(P-T)相图[79]

    Figure 6.  Pressure-temperature (P-T) phase diagram of 2H-MoS2[79].

    图 7  (a) 不同层数的少层MoS2, WS2, MoSe2和WSe2的能带结构图[84]; (b) (上图)根据A峰强度归一化的MoS2的PL光谱; (下图)单双层MoS2的PL光谱, 插图为不同层数的PL量子产率[19]

    Figure 7.  (a) Band structures of MoS2, WS2, MoSe2, and WSe2 with different thicknesses[84]; (b) (top) normalized PL spectra by the intensity of peak A of thin layers of MoS2; (bottom) PL spectra for mono- and bilayer MoS2 samples. Inset: PL quantum yield in different layer[19].

    图 8  计算得到的分别在(a) 0, (b) 2.1和(c) 2.5 GPa下的单层MoS2的能带结构[44]; (d) 基于计算的单层MoS2带隙随压力的演化[44]; (e) 单层TMD的能带结构和环境压力下单层MoS2和WSe2的双声子DRR过程的示意图, K-QK-K' 谷之间可能发生谷间散射, K-Q散射主要由M附近的声子介导, 而K-K' 散射涉及K附近的声子[87]; (f) 高压下双层MoS2样品的PL光谱图[43]; (g) 双层MoS2的PL峰位随压力的演化[43]; (h) 当P = 0 GPa, 0 < P < 1.5 GPa和1.5 < P < 2.34 GPa时双层MoS2能带结构的示意图[43]

    Figure 8.  (a)–(c) Calculated band structures of monolayer MoS2 at 0, 2.1, and 2.5 GPa, respectively[44]; (d) functional relationships of bandgap versus pressure on monolayer MoS2[44]; (e) band structure of monolayer TMDs and schematic representation of the two-phonon DRR processes for monolayer MoS2 and WSe2 at ambient pressure, intervalley scattering between K-Q as well as K-K' valleys can occur, the K-Q scattering is mostly mediated by phonons near M, while K-K' scattering involves phonons near K[87]; (f) PL spectra of the bilayer MoS2 sample under high pressure[43]; (g) photon energies of the PL peaks of the bilayer MoS2 as a function of pressure[43]; (h) schematic representations of the band structure for bilayer MoS2 when P = 0 GPa, 0 GPa < P < 1.5 GPa, and 1.5 GPa < P < 2.34 GPa[43].

    图 9  (a) 高压下单层MoSe2的归一化差分反射光谱[97]; (b) 在未压缩和压缩条件下, 单层MoSe2在不同泵浦功率下的快、慢组分的荧光寿命τ1τ2的平均值[97]; (c) 高压-栅极电压调控的h-BN/MoSe2/h-BN异质结器件的示意图[98]; (d) 不同压力下单层MoSe2的归一化PL光谱, 红色(蓝色)曲线表示栅极电压VG = –3 V (3 V)[98]; (e) 通过PL测量获得的单层MoSe2的激子和三激子能量, 和三激子结合能$ E_{\text{b}}^{{\text{trion}}} $随压力的演化[98]

    Figure 9.  (a) Normalized differential reflection signals under high pressure in monolayer MoSe2[97]; (b) the average values of fluorescence lifetime of two decay component τ1 and τ2 at different pump powers in monolayer MoSe2 under uncompressed and compressed conditions[97]; (c) schematic illustration of the high-pressure gating h-BN/MoSe2/h-BN heterostructure setup[98]; (d) normalized PL spectra of monolayer MoSe2 under various pressures, the red (or blue) curve was obtained at VG = –3 V (or 3 V)[98]; (e) pressure-dependent exciton and trion states of MoSe2 obtained by PL measurements and $ E_{\text{b}}^{{\text{trion}}} $ as a function of pressure[98].

    图 10  (a) MoS2/WS2中$ {\text{A}}_{1}' $和$ {{\text{E}}'} $振动模式的拉曼峰位随压力的演化[104]; (b) 转角为θ的垂直堆叠TMD示意图[100]; (c) 层间间距和(d) 层间结合能与转角的关系, 以转角WS2同质结为例[100]; (e) 以转角MoS2同质结为例, 模拟的5个在0°和60°下的高对称堆叠的拉曼光谱[102]; (f) 3R和2H堆叠双层WS2在0和17 GPa下的低频拉曼光谱[107]; (g) 3R和2H堆叠双层WS2中压力引起的层间压缩示意图[107]

    Figure 10.  (a) Raman peak positions of the $ {\text{A}}_{1}' $ and $ {{\text{E}}'} $ vibration modes as a function of pressure on MoS2/WS2[104]; (b) schematic diagram of vertically stacked TMD with a twist angle of θ[100]; (c) the interlayer spacing, and (d) binding energy between two monolayers versus twist angles, as an example of WS2[100]; (e) simulated Raman spectra of the five high-symmetry stackings at 0° and 60°, as an example of twist bilayer MoS2[102]; (f) Raman spectra in 3R- and 2H-stacked bilayer WS2 under 0 and 17 GPa.[107]; (g) schematic of pressure induced interlayer compressing in 3R- and 2H-stacked bilayer WS2[107].

    图 11  (a) 单层MX2[112]、(b) MoS2/WSe2异质结[115]和(c) MoS2/WS2异质结的能带示意图[113]; (d) (上图)单层MoSe2(黑线)、WS2(粉线)和2°-MoSe2/WS2异质结(蓝线)的荧光光谱; (下图)MoSe2/WS2异质结中荧光峰峰位随转角的变化[114]; (e) 不同转角的MoSe2/WS2异质结的归一化荧光光谱[114]; (f)—(h) 计算的不同压力(0—2.8 GPa)下2H-WSe2/MoSe2异质结的能带结构[111]

    Figure 11.  Band alignment for (a) MX2 monolayers[112], (b) MoS2/WSe2[115] and (c) MoS2/WS2 heterostructures[113]; (d) (top) PL spectra measured in MoSe2 (black), WS2 (pink) monolayers and MoSe2/WS2 heterostructure with a twist angle of 2° between the layers (blue); (bottom) Variation of the PL peak energy with twist angle in MoSe2/WS2; (e) normalized PL spectra in MoSe2/WS2 with interlayer twist angles ranging from 1° to 59°[114]; (f)–(h) first-principles calculation results of electronic band structure of 2H-WSe2/MoSe2 heterostructures as a function of pressure in the 0–2.8 GPa range.[111]

    图 12  (a) 随着层间相互作用强度的增大, Ⅱ型2D异质结中激子行为的演化[111]; (b), (c) 高压下的归一化的WS2/MoSe2异质结的荧光光谱[118]

    Figure 12.  (a) Evolution of the behavior of exciton in type-Ⅱ-alignment 2D heterostructures with increasing interlayer interaction strengths[111]; (b), (c) normalized PL spectra on WS2/MoSe2 heterostructure under different pressures[118].

    图 13  (a) (上图)R型MoSe2/WSe2异质结中的莫尔图案; (下图) 3个R型高对称点(A, BC点)的侧视图和俯视图[129]; (b) R型MoSe2/WSe2异质结中莫尔势与位置的关系[129]; (c) 单层(绿色和橙色)的布里渊区和超晶格的mBZ的示意图[29]; (d) 在mBZ中折叠的单层能带(绿色)的示意图, 莫尔势在mBZ边界处打开间隙, 产生平带(灰色)[29]; (e) DFT计算的MoS2在常压下沿Γ-M方向的声子色散谱, 垂直虚线表示莫尔矢量, 蓝色点表示常压下的拉曼光谱获得的莫尔声子M1, M2和M3的频率[132]; (f) 归一化强度的莫尔声子强度与压强的关系[132]; (g) 计算出的莫尔势深度和单层MoS2带隙与压力的关系[132]

    Figure 13.  (a) (Top) Moiré pattern in an R-type MoSe2/WSe2 heterostructure, (bottom) side-views and top-views of the three R-type local atomic registries (A, B, and C sites)[129]; (b) the moiré potential of the interlayer exciton transition in an R-type MoSe2/WSe2 heterostructure[129]; (c) schematic of the Brillouin zones of each monolayer (green and orange) and the mBZ of the superlattice[29]; (d) schematic of monolayer bands (green) folded in the mBZ, the moiré potential opens a gap at the mBZ boundary, which produces flatter electronic bands (grey)[29]; (e) DFT-calculated phonon dispersion of MoS2 at ambient pressure along the Γ-M direction, the vertical dashed line indicates the moiré vector. The blue symbols represent the moiré phonon M1-, M2- and M3-peak frequencies obtained from the Raman spectra at ambient pressure[132]; (f) pressure evolution of the normalized intensities of moiré phonons[132]; (g) calculated moiré potential amplitude and MoS2 bandgap in the heterostructure as functions of pressure[132].

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Chen H, Müller M B, Gilmore K J, Wallace G G, Li D 2008 Adv. Mater. 20 3557Google Scholar

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [5]

    Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H, Liu Z F 2019 Nat. Photonics 13 754Google Scholar

    [6]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [7]

    Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar

    [8]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [9]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [10]

    Hanlon D, Backes C, Doherty E, Cucinotta C S, Berner N C, Boland C, Lee K, Harvey A, Lynch P, Gholamvand Z, Zhang S, Wang K, Moynihan G, Pokle A, Ramasse Q M, McEvoy N, Blau W J, Wang J, Abellan G, Hauke F, Hirsch A, Sanvito S, O’Regan D D, Duesberg G S, Nicolosi V, Coleman J N 2015 Nat. Commun. 6 8563Google Scholar

    [11]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [12]

    Lebedev A V, Blatter G 2011 Phys. Rev. Lett. 107 076803Google Scholar

    [13]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar

    [14]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [15]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385Google Scholar

    [16]

    Liu X B, Chen X, Ma H A, Jia X P, Wu J S, Yu T, Wang Y B, Guo J G, Petitgirard S, Bina C R, Jacobsen S D 2016 Sci. Rep. 6 30518Google Scholar

    [17]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [18]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932Google Scholar

    [19]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [20]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [21]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [22]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [23]

    Song I, Park C, Choi H C 2015 RSC Adv. 5 7495Google Scholar

    [24]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [25]

    He K L, Poole C, Mak K F, Shan J 2013 Nano Lett. 13 2931Google Scholar

    [26]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [27]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [28]

    Chen X T, Lian Z, Meng Y Z, Ma L, Shi S F 2023 Nat. Commun. 14 8233Google Scholar

    [29]

    Regan E C, Wang D, Paik E Y, Zeng Y, Zhang L, Zhu J, MacDonald A H, Deng H, Wang F 2022 Nat. Rev. Mater. 7 778Google Scholar

    [30]

    Du L 2024 Nat. Rev. Phys. 6 157Google Scholar

    [31]

    Wilson N P, Yao W, Shan J, Xu X 2021 Nature 599 383Google Scholar

    [32]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [33]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [34]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [35]

    Tang Y H, Li L Z, Li T X, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [36]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [37]

    Guo Y, Pack J, Swann J, Holtzman L, Cothrine M, Watanabe K, Taniguchi T, Mandrus D G, Barmak K, Hone J, Millis A J, Pasupathy A, Dean C R 2025 Nature 637 839Google Scholar

    [38]

    刘钊 2024 物理学报 73 207303Google Scholar

    Liu Z 2024 Acta Phys. Sin. 73 207303Google Scholar

    [39]

    汤衍浩 2023 物理学报 72 027802Google Scholar

    Tang Y H 2023 Acta Phys. Sin. 72 027802Google Scholar

    [40]

    Pei S H, Wang Z H, Xia J 2022 Mater. Des. 213 110363Google Scholar

    [41]

    Cheng X R, Li Y Y, Shang J M, Hu C S, Ren Y F, Liu M, Qi Z M 2018 Nano Res. 11 855Google Scholar

    [42]

    Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X J 2014 Phys. Rev. Lett. 113 036802Google Scholar

    [43]

    Dou X M, Ding K, Jiang D S, Sun B Q 2014 ACS Nano 8 7458Google Scholar

    [44]

    Fu L, Wan Y, Tang N, Ding Y M, Gao J, Yu J C, Guan H M, Zhang K, Wang W Y, Zhang C F, Shi J J, Wu X, Shi S F, Ge W K, Dai L, Shen B 2017 Sci. Adv. 3 e1700162Google Scholar

    [45]

    Hromadová L, Martoňák R, Tosatti E 2013 Phys. Rev. B 87 144105Google Scholar

    [46]

    Li F F, Yan Y L, Han B, Li L, Huang X L, Yao M G, Gong Y B, Jin X L, Liu B L, Zhu C R, Zhou Q, Cui T 2015 Nanoscale 7 9075Google Scholar

    [47]

    Nayak A P, Pandey T, Voiry D, Liu J, Moran S T, Sharma A, Tan C, Chen C H, Li L J, Chhowalla M, Lin J F, Singh A K, Akinwande D 2015 Nano Lett. 15 346Google Scholar

    [48]

    Okajima M, Endo S, Akahama Y, Narita S I 1984 Jpn. J. Appl. Phys. 23 15Google Scholar

    [49]

    Li Q, Wang Y G, Pan W C, Yang W, Zou B, Tang J, Quan Z W 2017 Angew. Chem. , Int. Ed. 56 15969Google Scholar

    [50]

    Errandonea D, Bandiello E, Segura A, Hamlin J J, Maple M B, Rodriguez-Hernandez P, Muñoz A 2014 J. Alloys Compd. 587 14Google Scholar

    [51]

    Zhou Y H, Chen X L, Li N, Zhang R R, Wang X, F An C, Zhou Y, Pan X C, Song F Q, Wang B G, Yang W G, Yang Z R, Zhang Y H 2016 AIP Adv. 6 075008Google Scholar

    [52]

    Vellinga M B, de Jonge R, Haas C 1970 J. Solid State Chem. 2 299Google Scholar

    [53]

    徐济安, 毛河光, Bell P 1987 物理学报 36 501Google Scholar

    XU J A, Mao H G, Bell L P 1987 Acta Phys. Sin. 36 501Google Scholar

    [54]

    Ana B G, Gábor M, Aurelian R, Helena J S 2018 C. R. Chim. 21 1095Google Scholar

    [55]

    Akahama Y, Kawamura H 2006 J. Appl. Phys. 100 043516

    [56]

    Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [57]

    Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D, Dean C R 2018 Nature 557 404Google Scholar

    [58]

    Yao X D, Bai Y X, Jin C, Zhang X Y, Zheng Q F, Xu Z D, Chen L, Wang S M, Liu Y, Wang J L, Zhu J L 2023 Nat. Commun. 14 4301Google Scholar

    [59]

    Shen G, Wang Y, Dewaele A, Wu C, Fratanduono D E, Eggert J, Klotz S, Dziubek K F, Loubeyre P, Fat’yanov O V, Asimow P D, Mashimo T, Wentzcovitch R M M 2020 High Pressure Res. 40 299Google Scholar

    [60]

    Yamaoka H, Zekko Y, Jarrige I, Lin J F, Hiraoka N, Ishii H, Tsuei K D, Mizuki J i 2012 J. Appl. Phys. 112 124503

    [61]

    Noack R A, Holzapfel W B (Timmerhaus K D, Barber M S ed) 1979 High-Pressure Science and Technology: Volume 1: Physical Properties and Material Synthesis/Volume 2: Applications and Mechanical Properties (Boston, MA: Springer US) pp748–753

    [62]

    Yen J, Nicol M 1992 J. Appl. Phys. 72 5535Google Scholar

    [63]

    Tardieu A, Cansell F, Petitet J P 1990 J. Appl. Phys. 68 3243Google Scholar

    [64]

    Wang X F, Chen X L, Zhou Y H, Park C Y, An C, Zhou Y, Zhang R R, Gu C C, Yang W, Yang Z R 2017 Sci. Rep. 7 46694Google Scholar

    [65]

    Duwal S, Yoo C S 2016 J. Phys. Chem. C 120 5101Google Scholar

    [66]

    Zhao Z, Zhang H J, Yuan H T, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y, Mao W L 2015 Nat. Commun. 6 7312Google Scholar

    [67]

    Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S 2010 ACS Nano 4 2695Google Scholar

    [68]

    Zhao W, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H, Eda G 2013 Nanoscale 5 9677Google Scholar

    [69]

    Molina-Sánchez A, Wirtz L 2011 Phys. Rev. B 84 155413Google Scholar

    [70]

    Li C K, Liu Y Y, Yang Q S, Zheng Q F, Yan Z P, Han J, Lin J H, Wang S M, Qi J B, Liu Y, Zhu J L 2022 J. Phys. Chem. Lett. 13 161Google Scholar

    [71]

    Luo J H, Li C K, Liu J Y, Liu Y Y, Xiao W H, Zheng R H, Zheng Q F, Han J, Zou T, Cheng W J, Yao X D, Liu Y, Zhu J L 2024 Appl. Phys. Lett. 124 033104Google Scholar

    [72]

    Du G S, Zhao L L, Li S C, Huang J, Fang S S, Han W X, Li J Y, Du Y B, Ming J X, Zhang T S, Zhang J, Kang J, Li X Y, Xu W G, Chen Y B 2025 Nat. Commun. 16 4901Google Scholar

    [73]

    Wieting T J 1973 Solid State Commun. 12 931Google Scholar

    [74]

    Xie X, Ding J N, Wu B, Zheng H H, Li S F, He J, Liu Z W, Wang J T, Liu Y P 2023 Phys. Rev. B 108 155302Google Scholar

    [75]

    Liang L B, Zhang J, Sumpter B G, Tan Q H, Tan P H, Meunier V 2017 ACS Nano 11 11777Google Scholar

    [76]

    Zhao Y Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y, Dresselhaus M S, Xiong Q H 2013 Nano Lett. 13 1007Google Scholar

    [77]

    Dong J S, Ouyang G 2020 Chin. Phys. B 29 086403Google Scholar

    [78]

    Han B, Li F F, Li L, Huang X L, Gong Y B, Fu X P, Gao H X, Zhou Q, Cui T 2017 J. Phys. Chem. Lett. 8 941Google Scholar

    [79]

    Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu S Q, Li Y C, Zhao J G, Kagayama T, Ma Y M, Yang Z R 2018 Phys. Rev. Lett. 120 037002Google Scholar

    [80]

    Zhao W J, Ghorannevis Z, Chu L Q, Toh M L, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [81]

    Pandey S K, Das R, Mahadevan P 2020 ACS Omega 5 15169Google Scholar

    [82]

    Fan X, Chang C H, Zheng W T, Kuo J L, Singh D J 2015 J. Phys. Chem. C 119 10189Google Scholar

    [83]

    Kuc A, Zibouche N, Heine T 2011 Phys. Rev. B 83 245213Google Scholar

    [84]

    Bussolotti F, Kawai H, Ooi Z E, Chellappan V, Thian D, Pang A L C, Goh K E J 2018 Nano Futures 2 032001Google Scholar

    [85]

    Ye Y X, Dou X M, Ding K, Jiang D S, Yang F H, Sun B Q 2016 Nanoscale 8 10843Google Scholar

    [86]

    Fu X P, Li F F, Lin J F, Gong Y B, Huang X L, Huang Y P, Han B, Zhou Q, Cui T 2017 J. Phys. Chem. Lett. 8 3556Google Scholar

    [87]

    Pimenta Martins L G, Carvalho B R, Occhialini C A, Neme N P, Park J H, Song Q, Venezuela P, Mazzoni M S C, Matos M J S, Kong J, Comin R 2022 ACS Nano 16 8064Google Scholar

    [88]

    Qiao W, Sun H, Fan X Y, Jin M L, Liu H Y, Tang T H, Xiong L, Niu B H, Li X, Wang G 2022 Crystals 12 693

    [89]

    Li Q Y, Sui L Z, Niu G M, Jiang J T, Zhang Y T, Wu G R, Jin M X, Yuan K J 2020 J. Phys. Chem. C 124 11183Google Scholar

    [90]

    Dou X M, Ding K, Jiang D S, Fan X F, Sun B Q 2016 ACS Nano 10 1619Google Scholar

    [91]

    Hsu W T, Quan J, Pan C R, Chen P J, Chou M Y, Chang W H, MacDonald A H, Li X, Lin J F, Shih C K 2022 Phys. Rev. B 106 125302Google Scholar

    [92]

    Steeger P, Graalmann J H, Schmidt R, Kupenko I, Sanchez-Valle C, Marauhn P, Deilmann T, de Vasconcellos S M, Rohlfing M, Bratschitsch R 2023 Nano Lett. 23 8947Google Scholar

    [93]

    Bai Z Y, Zhang H, He J Q, He D W, Wang J R, Li G L, Bai J X, Zhao K, Yu X H, Wang Y S, Zhang X X 2023 Nano Res. 16 12738Google Scholar

    [94]

    Chen Y B, Ke F, Ci P H, Ko C, Park T, Saremi S, Liu H L, Lee Y, Suh J, Martin L W, Ager J W, Chen B, Wu J Q 2017 Nano Lett. 17 194Google Scholar

    [95]

    Qin X X, Zhang G Z, Chen L, Wang Q L, Wang G Y, Zhang H W, Li Y W, Liu C L 2024 Ultrafast Sci. 4 0044Google Scholar

    [96]

    Tu H Y, Pan L Y, Qi H J, Zhang S H, Li F F, Sun C L, Wang X, Cui T 2023 J. Phys. : Condens. Matter 35 253002Google Scholar

    [97]

    Bai Z, Zhang H, He J, He D, Wang J, Wu W, Zhang Y, Wang W, Wang Y, Yu X, Zhang X 2025 Adv. Electron. Mater. 11 2400333Google Scholar

    [98]

    Li Z Y, Qin F, Ong C S, Huang J W, Xu Z A, Chen P, Qiu C Y, Zhang X, Zhang C R, Zhang X X, Eriksson O, Rubio A, Tang P Z, Yuan H T 2023 Nano Lett. 23 10282Google Scholar

    [99]

    Fu X P, Li F F, Lin J F, Gong Y B, Huang X L, Huang Y P, Gao H X, Zhou Q, Cui T 2018 J. Phys. Chem. C 122 5820

    [100]

    Yan W, Meng L, Meng Z S, Weng Y K, Kang L L, Li X A 2019 J. Phys. Chem. C 123 30684Google Scholar

    [101]

    Villafañe V, Kremser M, Hübner R, Petrić M M, Wilson N P, Stier A V, Müller K, Florian M, Steinhoff A, Finley J J 2023 Phys. Rev. Lett. 130 026901Google Scholar

    [102]

    Huang S, Liang L, Ling X, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 1435Google Scholar

    [103]

    Puretzky A A, Liang L, Li X, Xiao K, Sumpter B G, Meunier V, Geohegan D B 2016 ACS Nano 10 2736Google Scholar

    [104]

    Fan W, Zhu X, Ke F, Chen Y, Dong K, Ji J, Chen B, Tongay S, Ager J W, Liu K, Su H, Wu J 2015 Phys. Rev. B 92 241408Google Scholar

    [105]

    Xie X, Ding J, Wu B, Zheng H, Li S, Wang C T, He J, Liu Z, Wang J T, Liu Y 2023 Nano Lett. 23 8833Google Scholar

    [106]

    Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024 Appl. Phys. Rev. 11 031417Google Scholar

    [107]

    Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024 Sci. China: Phys., Mech. Astron. 67 288211Google Scholar

    [108]

    Li C, Cheng W, Zhang X, Zhang P, Zheng Q, Yan Z, Han J, Dai G, Wang S, Quan Z, Liu Y, Zhu J 2023 J. Phys. Chem. C 127 7784Google Scholar

    [109]

    Yan Y, Feng D, Zhu J, Li F 2025 J. Alloys Compd. 1014 178651Google Scholar

    [110]

    Li S, Zheng H, Ding J, Wu B, He J, Liu Z, Liu Y 2022 Nano Res. 15 7688Google Scholar

    [111]

    Xia J, Yan J, Wang Z, He Y, Gong Y, Chen W, Sum T C, Liu Z, Ajayan P M, Shen Z 2021 Nat. Phys. 17 92Google Scholar

    [112]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111Google Scholar

    [113]

    Tebyetekerwa M, Zhang J, Saji S E, Wibowo A A, Rahman S, Truong T N, Lu Y, Yin Z, Macdonald D, Nguyen H T 2021 Cell Rep. Phys. Sci. 2 100509Google Scholar

    [114]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal’ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [115]

    Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G, Reichman D R, Korn T 2018 Nat. Phys. 14 801Google Scholar

    [116]

    Li Y, Song Z 2023 J. Phys. : Conf. Ser. 2566 012105Google Scholar

    [117]

    Zhu M, Zhang Z, Zhang T, Liu D, Zhang H, Zhang Z, Li Z, Cheng Y, Huang W 2022 Nano Lett. 22 4528Google Scholar

    [118]

    Ma X, Fu S, Ding J, Liu M, Bian A, Hong F, Sun J, Zhang X, Yu X, He D 2021 Nano Lett. 21 8035Google Scholar

    [119]

    Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U 2017 Nano Lett. 17 5229Google Scholar

    [120]

    Jiang C, Xu W, Rasmita A, Huang Z, Li K, Xiong Q, Gao W-B 2018 Nat. Commun. 9 753Google Scholar

    [121]

    Zhang W, Wang Q, Chen Y, Wang Z, Wee A T S 2016 2D Mater. 3 022001

    [122]

    Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay Beng K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135Google Scholar

    [123]

    Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J, Mandrus D G, Yao W, Xu X 2015 Nat. Commun. 6 6242Google Scholar

    [124]

    Choudhary N, Park J, Hwang J Y, Chung H S, Dumas K H, Khondaker S I, Choi W, Jung Y 2016 Sci. Rep. 6 25456Google Scholar

    [125]

    Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021 Light: Sci. Appl. 10 72Google Scholar

    [126]

    Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093Google Scholar

    [127]

    Li H, Li S, Naik M H, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang F, Crommie M F 2021 Nat. Mater. 20 945Google Scholar

    [128]

    Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y, Shih C K 2017 Sci. Adv. 3 e1601459Google Scholar

    [129]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [130]

    Baek H, Brotons-Gisbert M, Koong Z X, Campbell A, Rambach M, Watanabe K, Taniguchi T, Gerardot B D 2020 Sci. Adv. 6 eaba8526Google Scholar

    [131]

    Soltero I, Kaliteevski M A, McHugh J G, Enaldiev V, Fal’ko V I 2024 Nano Lett. 24 1996Google Scholar

    [132]

    Pimenta Martins L G, Ruiz-Tijerina D A, Occhialini C A, Park J H, Song Q, Lu A Y, Venezuela P, Cançado L G, Mazzoni M S C, Matos M J S, Kong J, Comin R 2023 Nat. Nanotechnol. 18 1147Google Scholar

    [133]

    Enaldiev V V, Ferreira F, Magorrian S J, Fal’ko V I 2021 2D Mater. 8 025030Google Scholar

    [134]

    Xie X, Chen J Y, Li S F, Ding J N, He J, Liu Z W, Wang J T, Liu Y P 2025 Nano Lett. 25 8571Google Scholar

    [135]

    Zhao W Y, Regan E C, Wang D, Jin C, Hsieh S, Wang Z L, Wang J L, Wang Z, Yumigeta K, Blei M, Watanabe K, Taniguchi T, Tongay S, Yao N Y, Wang F 2021 Nano Lett. 21 8910Google Scholar

    [136]

    Jo S, Costanzo D, Berger H, Morpurgo A F 2015 Nano Lett. 15 1197Google Scholar

    [137]

    Shi W, Ye J T, Zhang Y J, Suzuki R, Yoshida M, Miyazaki J, Inoue N, Saito Y, Iwasa Y 2015 Sci. Rep. 5 12534Google Scholar

    [138]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar

    [139]

    Ding D D, Qu Z Z, Han X Y, Han C R, Zhuang Q, Yu X L, Niu R R, Wang Z Y, Li Z X, Gan Z, Wu J S, Lu J M 2022 Nano Lett. 22 7919Google Scholar

    [140]

    Piatti E, De Fazio D, Daghero D, Tamalampudi S R, Yoon D, Ferrari A C, Gonnelli R S 2018 Nano Lett. 18 4821Google Scholar

    [141]

    Wang L, Shih E M, Ghiotto A, Xian L D, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [142]

    Huang X, Wang T M, Miao S N, Wang C, Li Z P, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [143]

    Xiong R C, Nie J H, Brantly S L, Hays P, Sailus R, Watanabe K, Taniguchi T, Tongay S, Jin C H 2023 Science 380 860Google Scholar

    [144]

    Bai Y, Li Y, Liu S, Guo Y, Pack J, Wang J, Dean C R, Hone J, Zhu X 2023 Nano Lett. 23 11621Google Scholar

    [145]

    Wang Z F, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2019 Nature 574 76Google Scholar

    [146]

    Nguyen P X, Ma L G, Chaturvedi R, Watanabe K, Taniguchi T, Shan J, Mak K F 2025 Science 388 274Google Scholar

    [147]

    Gao Y F, Xu Q L, Farooq M U, Xian L D, Huang L 2023 Nano Lett. 23 7921Google Scholar

    [148]

    Brzezińska M, Grytsiuk S, Rösner M, Gibertini M, Rademaker L 2025 2D Mater. 12 015003Google Scholar

    [149]

    Arovas D P, Berg E, Kivelson S A, Raghu S 2022 Annu. Rev. Condens. Matter Phys. 13 239Google Scholar

    [150]

    Giuliani A, Mastropietro V 2010 Commun. Math. Phys. 293 301Google Scholar

  • [1] LI Linhan, MEI Rui, LIU Xuelu, LIN Miaoling, TAN Pingheng. Room-temperature Raman detection of all Davydov components of the A1 mode in transition metal dichalcogenides. Acta Physica Sinica, 2025, 74(20): . doi: 10.7498/aps.74.20250960
    [2] Liu Zhao. Fractionalized topological states in moiré superlattices. Acta Physica Sinica, 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [3] Guo Lin, Yang Xiao-Fan, Cheng Er-Jian, Pan Bing-Lin, Zhu Chu-Chu, Li Shi-Yan. Pressure-induced superconductivity in triangular lattice spin liquid candidate NaYbSe2. Acta Physica Sinica, 2023, 72(15): 157401. doi: 10.7498/aps.72.20230730
    [4] Wu Ze-Fei, Huang Mei-Zhen, Wang Ning. Nonlinear Hall effects in two-dimensional moiré superlattices. Acta Physica Sinica, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [5] Guo Rui-Ping, Yu Hong-Yi. Position- and momentum-dependent interlayer couplings in two-dimensional semiconductor moiré superlattices. Acta Physica Sinica, 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [6] Li Ting-Xin. Recent experimental research progress of two-dimensional van der Waals semiconductor moiré superlattices. Acta Physica Sinica, 2022, 71(12): 127309. doi: 10.7498/aps.71.20220347
    [7] Wang Zhong-Rui, Jiang Yu-Hang. Physical properties of novel electronic states related to flat band in twisted two-dimensional quantum materials. Acta Physica Sinica, 2022, 71(12): 127202. doi: 10.7498/aps.71.20220064
    [8] Hoo Qian-Ying, Xu Yang. Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application. Acta Physica Sinica, 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [9] Zhan Zhen, Zhang Ya-Lei, Yuan Sheng-Jun. Lattice relaxation and substrate effects of graphene moiré superlattice. Acta Physica Sinica, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [10] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [11] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [12] Zhou Yu-Zhi. Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system. Acta Physica Sinica, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [13] Li Wei-Sheng, Zhou Jian, Wang Han-Chen, Wang Shu-Xian, Yu Zhi-Hao, Li Song-Lin, Shi Yi, Wang Xin-Ran. Logical integration device for two-dimensional semiconductor transition metal sulfide. Acta Physica Sinica, 2017, 66(21): 218503. doi: 10.7498/aps.66.218503
    [14] Duan De-Fang, Ma Yan-Bin, Shao Zi-Ji, Xie Hui, Huang Xiao-Li, Liu Bing-Bing, Cui Tian. Structures and novel superconductivity of hydrogen-rich compounds under high pressures. Acta Physica Sinica, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [15] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [16] Zhou Da-Wei, Lu Cheng, Li Gen-Quan, Song Jin-Fan, Song Yu-Ling, Bao Gang. First principles investigations of the structural stability and thermal dynamical properties of metal Ba under high pressure. Acta Physica Sinica, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [17] Ma Li, Gao Yong. Semi-super junction SiGe high voltage fast and soft recovery switching diodes. Acta Physica Sinica, 2009, 58(1): 529-535. doi: 10.7498/aps.58.529
    [18] Sun Bo, Liu Shao-Jun, Zhu Wen-Jun. The division of iron's core and valence states under high pressures via first-principles calculation. Acta Physica Sinica, 2006, 55(12): 6589-6594. doi: 10.7498/aps.55.6589
    [19] Gao Kun, Liu Xiao-Jing, Liu De-Sheng, Xie Shi-Jie. Inversed polarization of the single excited state of polaron. Acta Physica Sinica, 2005, 54(11): 5324-5328. doi: 10.7498/aps.54.5324
    [20] Wang Xiu-Ying, Sun Li-Ling, Liu Ri-Ping, Yao Yu-Shu , Zhang Jun, Wang Wen-Kui. Diffusion of Co in Zr_46.75Ti_8.25Cu_7.5Ni_10Be_27.5 bulk metallic glass in supercooled liquid region under high pressure. Acta Physica Sinica, 2004, 53(11): 3845-3848. doi: 10.7498/aps.53.3845
Metrics
  • Abstract views:  752
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2025
  • Accepted Date:  05 July 2025
  • Available Online:  25 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回