Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure-Induced Tuning of Optoelectronic Properties in Semiconducting Transition Metal Chalcogenides and Their Heterostructures

LI Chenkai ZHU Jinglong

Citation:

Pressure-Induced Tuning of Optoelectronic Properties in Semiconducting Transition Metal Chalcogenides and Their Heterostructures

LI Chenkai, ZHU Jinglong
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Semiconducting transition metal chalcogenides exhibit layer-dependent bandgaps, strong excitonic effects, and spin-valley coupling, positioning them as promising candidates for optoelectronic applications. In heterostructures formed by van der Waals stacking, interlayer excitons and moiré superlattices have emerged as a unique platform for exploring quantum many-body physics and correlated electronic phases. Subjecting semiconducting transition metal dichalcogenides and their heterostructures to high pressure enables precise, continuous tuning of optoelectronic properties through anisotropic lattice compression-particularly the dramatic reduction of interlayer distances-which profoundly enhances interlayer orbital hybridization beyond conventional tuning methods. This review systematically presents diamond anvil cell techniques for in situ high-pressure characterization and analyzes the pressure-induced evolution in semiconducting transition metal dichalcogenides and their heterostructures. It focuses on four key aspects: (1) Atomic-scale structural phase transitions (e.g., layer sliding) and corresponding electronic band structure modifications, including direct-to-indirect bandgap transitions in monolayers (K-Λ crossover) and metallization/superconductivity; (2) Quantifiable enhancement of interlayer interactions revealed by layer-dependent phonon shifts and spin-orbit splitting amplification, along with their impact mechanisms on properties; (3) Modulation of exciton binding states and associated mechanisms, overing intralayer excitons, trions and interlayer excitons; (4) Moiré potential modulation where high pressure significantly deepens potentials via interlayer compression. The review particularly highlights the unique capability of high pressure in enhancing interlayer orbital hybridization, thereby inducing exotic quantum phases. Finally, future research directions in this field are outlined to advance quantum information devices design, strongly correlated electron system simulation, and the novel excitonic state exploration.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666

    [2]

    Chen H, Müller M B, Gilmore K J, Wallace G G, Li D 2008Adv. Mater. 20 3557

    [3]

    Geim A K, Novoselov K S 2007Nat. Mater. 6 183

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008Solid State Commun. 146 351

    [5]

    Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K, Liu Z 2019Nat. Photonics 13 754

    [6]

    Lee C, Wei X, Kysar J W, Hone J 2008Science 321 385

    [7]

    Lee C, Li Q, Kalb W, Liu X-Z, Berger H, Carpick R W, Hone J 2010Science 328 76

    [8]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018Nature 556 43

    [9]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018Nature 556 80

    [10]

    Hanlon D, Backes C, Doherty E, Cucinotta C S, Berner N C, Boland C, Lee K, Harvey A, Lynch P, Gholamvand Z, Zhang S, Wang K, Moynihan G, Pokle A, Ramasse Q M, McEvoy N, Blau W J, Wang J, Abellan G, Hauke F, Hirsch A, Sanvito S, O’Regan D D, Duesberg G S, Nicolosi V, Coleman J N 2015Nat. Commun. 6 8563

    [11]

    Qiao J, Kong X, Hu Z-X, Yang F, Ji W 2014Nat. Commun. 5 4475

    [12]

    Lebedev A V, Blatter G 2011Phys. Rev. Lett. 107 076803

    [13]

    Qian X, Liu J, Fu L, Li J 2014Science 346 1344

    [14]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012Phys. Rev. Lett. 108 155501

    [15]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L-M, Wen B, He J, Liu Z 2013Nature 493 385

    [16]

    Liu X, Chen X, Ma H-A, Jia X, Wu J, Yu T, Wang Y, Guo J, Petitgirard S, Bina C R, Jacobsen S D 2016Sci. Rep. 6 30518

    [17]

    Watanabe K, Taniguchi T, Kanda H 2004Nat. Mater. 3 404

    [18]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007Science 317 932

    [19]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010Phys. Rev. Lett. 105 136805

    [20]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012Nat. Commun. 3 887

    [21]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012Nat. Nanotechnol. 7 699

    [22]

    Xiao D, Liu G-B, Feng W, Xu X, Yao W 2012Phys. Rev. Lett. 108 196802

    [23]

    Song I, Park C, Choi H C 2015RSC Adv. 5 7495

    [24]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017Nat. Rev. Mater. 2 17033

    [25]

    He K, Poole C, Mak K F, Shan J 2013Nano Lett. 13 2931

    [26]

    Xu M, Liang T, Shi M, Chen H 2013Chem. Rev. 113 3766

    [27]

    Geim A K, Grigorieva I V 2013Nature 499 419

    [28]

    Chen X, Lian Z, Meng Y, Ma L, Shi S-F 2023Nat. Commun. 14 8233

    [29]

    Regan E C, Wang D, Paik E Y, Zeng Y, Zhang L, Zhu J, MacDonald A H, Deng H, Wang F 2022Nat. Rev. Mater. 7 778

    [30]

    Du L 2024Nat. Rev. Phys. 6 157

    [31]

    Wilson N P, Yao W, Shan J, Xu X 2021Nature 599 383

    [32]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019Nature 567 76

    [33]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019Nature 567 66

    [34]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020Nature 579 359

    [35]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020Nature 579 353

    [36]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020Nature 587 214

    [37]

    Guo Y, Pack J, Swann J, Holtzman L, Cothrine M, Watanabe K, Taniguchi T, Mandrus D G, Barmak K, Hone J, Millis A J, Pasupathy A, Dean C R 2025Nature 637 839

    [38]

    Liu Z 2024Acta Phys. Sin. 73 207303(in Chinese) [刘钊2024物理学报 73207303]

    [39]

    Tang Y-H 2023Acta Phys. Sin. 72 027802(in Chinese) [杨衍浩2023物理学报 72027802]

    [40]

    Pei S, Wang Z, Xia J 2022Mater. Des. 213 110363

    [41]

    Cheng X, Li Y, Shang J, Hu C, Ren Y, Liu M, Qi Z 2018Nano Res. 11 855

    [42]

    Chi Z-H, Zhao X-M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X-J 2014Phys. Rev. Lett. 113 036802

    [43]

    Dou X, Ding K, Jiang D, Sun B 2014ACS Nano 8 7458

    [44]

    Fu L, Wan Y, Tang N, Ding Y-m, Gao J, Yu J, Guan H, Zhang K, Wang W, Zhang C, Shi J-j, Wu X, Shi S-F, Ge W, Dai L, Shen B 2017Sci. Adv. 3 e1700162

    [45]

    Hromadová L, Martoňák R, Tosatti E 2013Phys. Rev. B 87 144105

    [46]

    Li F, Yan Y, Han B, Li L, Huang X, Yao M, Gong Y, Jin X, Liu B, Zhu C, Zhou Q, Cui T 2015Nanoscale 7 9075

    [47]

    Nayak A P, Pandey T, Voiry D, Liu J, Moran S T, Sharma A, Tan C, Chen C-H, Li L-J, Chhowalla M, Lin J-F, Singh A K, Akinwande D 2015Nano Lett. 15 346

    [48]

    Okajima M, Endo S, Akahama Y, Narita S-i 1984Jpn. J. Appl. Phys. 23 15

    [49]

    Li Q, Wang Y, Pan W, Yang W, Zou B, Tang J, Quan Z 2017Angew. Chem., Int. Ed. 56 15969

    [50]

    Errandonea D, Bandiello E, Segura A, Hamlin J J, Maple M B, Rodriguez-Hernandez P, Muñoz A 2014J. Alloys Compd. 587 14

    [51]

    Zhou Y, Chen X, Li N, Zhang R, Wang X, An C, Zhou Y, Pan X, Song F, Wang B, Yang W, Yang Z, Zhang Y 2016AIP Adv. 6 075008

    [52]

    Vellinga M B, de Jonge R, Haas C 1970J. Solid State Chem. 2 299

    [53]

    XU J-A, MAO H-G, BELL P 1987Acta Phys. Sin. 36 501(in Chinese) [徐济安, 毛河光, BELL P 1987物理学报 36501]

    [54]

    Ana B G, Gábor M, Aurelian R, Helena J S 2018C. R. Chim. 21 1095

    [55]

    Akahama Y, Kawamura H 2006J. Appl. Phys. 100

    [56]

    Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019Nat. Mater. 18 1303

    [57]

    Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D, Dean C R 2018Nature 557 404

    [58]

    Yao X, Bai Y, Jin C, Zhang X, Zheng Q, Xu Z, Chen L, Wang S, Liu Y, Wang J, Zhu J 2023Nat. Commun. 14 4301

    [59]

    Shen G, Wang Y, Dewaele A, Wu C, Fratanduono D E, Eggert J, Klotz S, Dziubek K F, Loubeyre P, Fat’yanov O V, Asimow P D, Mashimo T, Wentzcovitch R M M 2020High Pressure Res. 40 299

    [60]

    Yamaoka H, Zekko Y, Jarrige I, Lin J-F, Hiraoka N, Ishii H, Tsuei K-D, Mizuki J i 2012J. Appl. Phys. 112

    [61]

    Noack R A, Holzapfel W B (Timmerhaus K D, Barber M S ed) 1979High-Pressure Science and Technology: Volume 1: Physical Properties and Material Synthesis / Volume 2: Applications and Mechanical Properties (Boston, MA: Springer US) pp748-753

    [62]

    Yen J, Nicol M 1992J. Appl. Phys. 72 5535

    [63]

    Tardieu A, Cansell F, Petitet J P 1990J. Appl. Phys. 68 3243

    [64]

    Wang X, Chen X, Zhou Y, Park C, An C, Zhou Y, Zhang R, Gu C, Yang W, Yang Z 2017Sci. Rep. 7 46694

    [65]

    Duwal S, Yoo C-S 2016J. Phys. Chem. C 120 5101

    [66]

    Zhao Z, Zhang H, Yuan H, Wang S, Lin Y, Zeng Q, Xu G, Liu Z, Solanki G K, Patel K D, Cui Y, Hwang H Y, Mao W L 2015Nat. Commun. 6 7312

    [67]

    Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S 2010ACS Nano 4 2695

    [68]

    Zhao W, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H, Eda G 2013Nanoscale 5 9677

    [69]

    Molina-Sánchez A, Wirtz L 2011Phys. Rev. B 84 155413

    [70]

    Li C, Liu Y, Yang Q, Zheng Q, Yan Z, Han J, Lin J, Wang S, Qi J, Liu Y, Zhu J 2022J. Phys. Chem. Lett. 13 161

    [71]

    Luo J, Li C, Liu J, Liu Y, Xiao W, Zheng R, Zheng Q, Han J, Zou T, Cheng W, Yao X, Liu Y, Zhu J 2024Appl. Phys. Lett. 124 033104

    [72]

    Du G, Zhao L, Li S, Huang J, Fang S, Han W, Li J, Du Y, Ming J, Zhang T, Zhang J, Kang J, Li X, Xu W, Chen Y 2025Nat. Commun. 16 4901

    [73]

    Wieting T J 1973Solid State Commun. 12 931

    [74]

    Xie X, Ding J, Wu B, Zheng H, Li S, He J, Liu Z, Wang J-T, Liu Y 2023Phys. Rev. B 108 155302

    [75]

    Liang L, Zhang J, Sumpter B G, Tan Q-H, Tan P-H, Meunier V 2017ACS Nano 11 11777

    [76]

    Zhao Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y, Dresselhaus M S, Xiong Q 2013Nano Lett. 13 1007

    [77]

    Dong J, Ouyang G 2020Chin. Phys. B 29 086403

    [78]

    Han B, Li F, Li L, Huang X, Gong Y, Fu X, Gao H, Zhou Q, Cui T 2017J. Phys. Chem. Lett. 8 941

    [79]

    Chi Z, Chen X, Yen F, Peng F, Zhou Y, Zhu J, Zhang Y, Liu X, Lin C, Chu S, Li Y, Zhao J, Kagayama T, Ma Y, Yang Z 2018Phys. Rev. Lett. 120 037002

    [80]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P-H, Eda G 2013ACS Nano 7 791

    [81]

    Pandey S K, Das R, Mahadevan P 2020ACS Omega 5 15169

    [82]

    Fan X, Chang C H, Zheng W T, Kuo J-L, Singh D J 2015J. Phys. Chem. C 119 10189

    [83]

    Kuc A, Zibouche N, Heine T 2011Phys. Rev. B 83 245213

    [84]

    Bussolotti F, Kawai H, Ooi Z E, Chellappan V, Thian D, Pang A L C, Goh K E J 2018Nano Futures 2 032001

    [85]

    Ye Y, Dou X, Ding K, Jiang D, Yang F, Sun B 2016Nanoscale 8 10843

    [86]

    Fu X, Li F, Lin J-F, Gong Y, Huang X, Huang Y, Han B, Zhou Q, Cui T 2017J. Phys. Chem. Lett. 8 3556

    [87]

    Pimenta Martins L G, Carvalho B R, Occhialini C A, Neme N P, Park J-H, Song Q, Venezuela P, Mazzoni M S C, Matos M J S, Kong J, Comin R 2022ACS Nano 16 8064

    [88]

    Qiao W, Sun H, Fan X, Jin M, Liu H, Tang T, Xiong L, Niu B, Li X, Wang G 2022Crystals 12

    [89]

    Li Q, Sui L, Niu G, Jiang J, Zhang Y, Wu G, Jin M, Yuan K 2020J. Phys. Chem. C 124 11183

    [90]

    Dou X, Ding K, Jiang D, Fan X, Sun B 2016ACS Nano 10 1619

    [91]

    Hsu W-T, Quan J, Pan C-R, Chen P-J, Chou M-Y, Chang W-H, MacDonald A H, Li X, Lin J-F, Shih C-K 2022Phys. Rev. B 106 125302

    [92]

    Steeger P, Graalmann J-H, Schmidt R, Kupenko I, Sanchez-Valle C, Marauhn P, Deilmann T, de Vasconcellos S M, Rohlfing M, Bratschitsch R 2023Nano Lett. 23 8947

    [93]

    Bai Z, Zhang H, He J, He D, Wang J, Li G, Bai J, Zhao K, Yu X, Wang Y, Zhang X 2023Nano Res. 16 12738

    [94]

    Chen Y, Ke F, Ci P, Ko C, Park T, Saremi S, Liu H, Lee Y, Suh J, Martin L W, Ager J W, Chen B, Wu J 2017Nano Lett. 17 194

    [95]

    Qin X, Zhang G, Chen L, Wang Q, Wang G, Zhang H, Li Y, Liu C 2024Ultrafast Sci. 4 0044

    [96]

    Tu H, Pan L, Qi H, Zhang S, Li F, Sun C, Wang X, Cui T 2023J. Phys.: Condens. Matter 35 253002

    [97]

    Bai Z, Zhang H, He J, He D, Wang J, Wu W, Zhang Y, Wang W, Wang Y, Yu X, Zhang X 2025Adv. Electron. Mater. 11 2400333

    [98]

    Li Z, Qin F, Ong C S, Huang J, Xu Z, Chen P, Qiu C, Zhang X, Zhang C, Zhang X, Eriksson O, Rubio A, Tang P, Yuan H 2023Nano Lett. 23 10282

    [99]

    Fu X, Li F, Lin J-F, Gong Y, Huang X, Huang Y, Gao H, Zhou Q, Cui T 2018J. Phys. Chem. C 122 5820

    [100]

    Yan W, Meng L, Meng Z, Weng Y, Kang L, Li X-a 2019J. Phys. Chem. C 123 30684

    [101]

    Villafañe V, Kremser M, Hübner R, Petrić M M, Wilson N P, Stier A V, Müller K, Florian M, Steinhoff A, Finley J J 2023Phys. Rev. Lett. 130 026901

    [102]

    Huang S, Liang L, Ling X, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V, Dresselhaus M S 2016Nano Lett. 16 1435

    [103]

    Puretzky A A, Liang L, Li X, Xiao K, Sumpter B G, Meunier V, Geohegan D B 2016ACS Nano 10 2736

    [104]

    Fan W, Zhu X, Ke F, Chen Y, Dong K, Ji J, Chen B, Tongay S, Ager J W, Liu K, Su H, Wu J 2015Phys. Rev. B 92 241408

    [105]

    Xie X, Ding J, Wu B, Zheng H, Li S, Wang C-T, He J, Liu Z, Wang J-T, Liu Y 2023Nano Lett. 23 8833

    [106]

    Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024Appl. Phys. Rev. 11 031417

    [107]

    Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024Sci. China: Phys., Mech. Astron. 67 288211

    [108]

    Li C, Cheng W, Zhang X, Zhang P, Zheng Q, Yan Z, Han J, Dai G, Wang S, Quan Z, Liu Y, Zhu J 2023J. Phys. Chem. C 127 7784

    [109]

    Yan Y, Feng D, Zhu J, Li F 2025J. Alloys Compd. 1014 178651

    [110]

    Li S, Zheng H, Ding J, Wu B, He J, Liu Z, Liu Y 2022Nano Res. 15 7688

    [111]

    Xia J, Yan J, Wang Z, He Y, Gong Y, Chen W, Sum T C, Liu Z, Ajayan P M, Shen Z 2021Nat. Phys. 17 92

    [112]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013Appl. Phys. Lett. 102 012111

    [113]

    Tebyetekerwa M, Zhang J, Saji S E, Wibowo A A, Rahman S, Truong T N, Lu Y, Yin Z, Macdonald D, Nguyen H T 2021Cell Rep. Phys. Sci. 2 100509

    [114]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal’ko V I, Tartakovskii A I 2019Nature 567 81

    [115]

    Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G, Reichman D R, Korn T 2018Nat. Phys. 14 801

    [116]

    Li Y, Song Z 2023J. Phys.: Conf. Ser. 2566 012105

    [117]

    Zhu M, Zhang Z, Zhang T, Liu D, Zhang H, Zhang Z, Li Z, Cheng Y, Huang W 2022Nano Lett. 22 4528

    [118]

    Ma X, Fu S, Ding J, Liu M, Bian A, Hong F, Sun J, Zhang X, Yu X, He D 2021Nano Lett. 21 8035

    [119]

    Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U 2017Nano Lett. 17 5229

    [120]

    Jiang C, Xu W, Rasmita A, Huang Z, Li K, Xiong Q, Gao W-b 2018Nat. Commun. 9 753

    [121]

    Zhang W, Wang Q, Chen Y, Wang Z, Wee A T S 20162D Mater. 3 022001

    [122]

    Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay Beng K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014Nat. Mater. 13 1135

    [123]

    Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J, Mandrus D G, Yao W, Xu X 2015Nat. Commun. 6 6242

    [124]

    Choudhary N, Park J, Hwang J Y, Chung H-S, Dumas K H, Khondaker S I, Choi W, Jung Y 2016Sci. Rep. 6 25456

    [125]

    Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021Light:Sci. Appl. 10 72

    [126]

    Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020Nat. Phys. 16 1093

    [127]

    Li H, Li S, Naik M H, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang F, Crommie M F 2021Nat. Mater. 20 945

    [128]

    Zhang C, Chuu C-P, Ren X, Li M-Y, Li L-J, Jin C, Chou M-Y, Shih C-K 2017Sci. Adv. 3 e1601459

    [129]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019Nature 567 71

    [130]

    Baek H, Brotons-Gisbert M, Koong Z X, Campbell A, Rambach M, Watanabe K, Taniguchi T, Gerardot B D 2020Sci. Adv. 6 eaba8526

    [131]

    Soltero I, Kaliteevski M A, McHugh J G, Enaldiev V, Fal’ko V I 2024Nano Lett. 24 1996

    [132]

    Pimenta Martins L G, Ruiz-Tijerina D A, Occhialini C A, Park J-H, Song Q, Lu A-Y, Venezuela P, Cançado L G, Mazzoni M S C, Matos M J S, Kong J, Comin R 2023Nat. Nanotechnol. 18 1147

    [133]

    Enaldiev V V, Ferreira F, Magorrian S J, Fal’ko V I 20212D Mater. 8 025030

    [134]

    Xie X, Chen J, Li S, Ding J, He J, Liu Z, Wang J-T, Liu Y 2025Nano Lett. 25 8571

    [135]

    Zhao W, Regan E C, Wang D, Jin C, Hsieh S, Wang Z, Wang J, Wang Z, Yumigeta K, Blei M, Watanabe K, Taniguchi T, Tongay S, Yao N Y, Wang F 2021Nano Lett. 21 8910

    [136]

    Jo S, Costanzo D, Berger H, Morpurgo A F 2015Nano Lett. 15 1197

    [137]

    Shi W, Ye J, Zhang Y, Suzuki R, Yoshida M, Miyazaki J, Inoue N, Saito Y, Iwasa Y 2015Sci. Rep. 5 12534

    [138]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012Science 338 1193

    [139]

    Ding D, Qu Z, Han X, Han C, Zhuang Q, Yu X-L, Niu R, Wang Z, Li Z, Gan Z, Wu J, Lu J 2022Nano Lett. 22 7919

    [140]

    Piatti E, De Fazio D, Daghero D, Tamalampudi S R, Yoon D, Ferrari A C, Gonnelli R S 2018Nano Lett. 18 4821

    [141]

    Wang L, Shih E-M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020Nat. Mater. 19 861

    [142]

    Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S-F, Cui Y-T 2021Nat. Phys. 17 715

    [143]

    Xiong R, Nie J H, Brantly S L, Hays P, Sailus R, Watanabe K, Taniguchi T, Tongay S, Jin C 2023Science 380 860

    [144]

    Bai Y, Li Y, Liu S, Guo Y, Pack J, Wang J, Dean C R, Hone J, Zhu X 2023Nano Lett. 23 11621

    [145]

    Wang Z, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2019Nature 574 76

    [146]

    Nguyen P X, Ma L, Chaturvedi R, Watanabe K, Taniguchi T, Shan J, Mak K F 2025Science 388 274

    [147]

    Gao Y, Xu Q, Farooq M U, Xian L, Huang L 2023Nano Lett. 23 7921

    [148]

    Brzezińska M, Grytsiuk S, Rösner M, Gibertini M, Rademaker L 20252D Mater. 12 015003

    [149]

    Arovas D P, Berg E, Kivelson S A, Raghu S 2022Annu. Rev. Condens. Matter Phys. 13 239

    [150]

    Giuliani A, Mastropietro V 2010Commun. Math. Phys. 293 301

  • [1] Liu Zhao. Fractionalized topological states in moiré superlattices. Acta Physica Sinica, doi: 10.7498/aps.73.20241029
    [2] Guo Lin, Yang Xiao-Fan, Cheng Er-Jian, Pan Bing-Lin, Zhu Chu-Chu, Li Shi-Yan. Pressure-induced superconductivity in triangular lattice spin liquid candidate NaYbSe2. Acta Physica Sinica, doi: 10.7498/aps.72.20230730
    [3] Wu Ze-Fei, Huang Mei-Zhen, Wang Ning. Nonlinear Hall effects in two-dimensional moiré superlattices. Acta Physica Sinica, doi: 10.7498/aps.72.20231324
    [4] Guo Rui-Ping, Yu Hong-Yi. Position- and momentum-dependent interlayer couplings in two-dimensional semiconductor moiré superlattices. Acta Physica Sinica, doi: 10.7498/aps.72.20222046
    [5] Li Ting-Xin. Recent experimental research progress of two-dimensional van der Waals semiconductor moiré superlattices. Acta Physica Sinica, doi: 10.7498/aps.71.20220347
    [6] Wang Zhong-Rui, Jiang Yu-Hang. Physical properties of novel electronic states related to flat band in twisted two-dimensional quantum materials. Acta Physica Sinica, doi: 10.7498/aps.71.20220064
    [7] Zhan Zhen, Zhang Ya-Lei, Yuan Sheng-Jun. Lattice relaxation and substrate effects of graphene moiré superlattice. Acta Physica Sinica, doi: 10.7498/aps.71.20220872
    [8] Hoo Qian-Ying, Xu Yang. Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application. Acta Physica Sinica, doi: 10.7498/aps.71.20220054
    [9] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, doi: 10.7498/aps.70.20210859
    [10] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, doi: 10.7498/aps.68.20191317
    [11] Zhou Yu-Zhi. Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system. Acta Physica Sinica, doi: 10.7498/aps.67.20181571
    [12] Li Wei-Sheng, Zhou Jian, Wang Han-Chen, Wang Shu-Xian, Yu Zhi-Hao, Li Song-Lin, Shi Yi, Wang Xin-Ran. Logical integration device for two-dimensional semiconductor transition metal sulfide. Acta Physica Sinica, doi: 10.7498/aps.66.218503
    [13] Duan De-Fang, Ma Yan-Bin, Shao Zi-Ji, Xie Hui, Huang Xiao-Li, Liu Bing-Bing, Cui Tian. Structures and novel superconductivity of hydrogen-rich compounds under high pressures. Acta Physica Sinica, doi: 10.7498/aps.66.036102
    [14] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, doi: 10.7498/aps.64.077305
    [15] Zhou Da-Wei, Lu Cheng, Li Gen-Quan, Song Jin-Fan, Song Yu-Ling, Bao Gang. First principles investigations of the structural stability and thermal dynamical properties of metal Ba under high pressure. Acta Physica Sinica, doi: 10.7498/aps.61.146301
    [16] Ma Li, Gao Yong. Semi-super junction SiGe high voltage fast and soft recovery switching diodes. Acta Physica Sinica, doi: 10.7498/aps.58.529
    [17] Liang Yong-Cheng, Guo Wan-Lin, Fang Zhong. First principles studies of low-compressibility of transition-metal compounds OsB2 and OsO2. Acta Physica Sinica, doi: 10.7498/aps.56.4847
    [18] Sun Bo, Liu Shao-Jun, Zhu Wen-Jun. The division of iron's core and valence states under high pressures via first-principles calculation. Acta Physica Sinica, doi: 10.7498/aps.55.6589
    [19] Gao Kun, Liu Xiao-Jing, Liu De-Sheng, Xie Shi-Jie. Inversed polarization of the single excited state of polaron. Acta Physica Sinica, doi: 10.7498/aps.54.5324
    [20] Wang Xiu-Ying, Sun Li-Ling, Liu Ri-Ping, Yao Yu-Shu , Zhang Jun, Wang Wen-Kui. Diffusion of Co in Zr_46.75Ti_8.25Cu_7.5Ni_10Be_27.5 bulk metallic glass in supercooled liquid region under high pressure. Acta Physica Sinica, doi: 10.7498/aps.53.3845
Metrics
  • Abstract views:  22
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  25 July 2025
  • /

    返回文章
    返回