-
The concept of compliant substrate epitaxy was first proposed by the scientists engaged in crystal growth in the early 1990s. The core idea is to take advantage of such an ultra-thin substrate that the film and the substrate generate strain together to relieve the lattice mismatch during the epitaxy growth. The quality of the epitaxial film is improved due to the reduction of the mismatch dislocation density. However, the preparation of the artificial ultra-thin substrate with good quality requires rather complicated fabrication process. On the other hand, many transition metal dichalcogenides naturally form the compliant substrates, due to their layered structure and weak van der Waals interlayer interaction. In this paper, we introduce the transition metal dichalcogenides based compliant substrate epitaxy model and relevant applications. Through combining density functional theory, linear elasticity theory and dislocation theory, we introduce the model comprehensively by using the Au-MoS2 as a prototypical example. And we explain the experimental results of Au growing on MoS2 from the early transition electron microscopy. In addition, we introduce the experimental work related to the model, especially the Au-mediated exfoliation of large, monolayer and high-quality MoS2. Future directions and relevant important problems to be solved are also discussed.
-
Keywords:
- compliant substrate systems /
- transition metal dichalcogenides /
- first principle calculations /
- linear elasticity theory
[1] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
[4] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788
[5] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898
[6] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)[魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103]
[7] Jacobs M H, Stowell M J 1965 Philos. Mag. 11 591
[8] Jesser W A, Kuhlmann-Wilsdorf D 1967 J. Appl. Phys. 38 5128
[9] Honjo G, Yagi K 1969 J. Vac. Sci. Technol. 6 576
[10] Pashley D W, Stowell M J, Jacobs M H, Law T J 1964 Philos. Mag. 10 127
[11] Jacobs M H, Pashley D W, Stowell M J 1966 Philos. Mag. 13 129
[12] Jesser W A, Kuhlmann-Wilsdorf D 1967 Phys. Stat. Sol. 19 95
[13] Zhou Y, Kiriya D, Haller E E, Ager J W, Javey A, Chrzan D C 2016 Phys. Rev. B 93 054106
[14] Kiriya D, Zhou Y, Nelson C, Hettick M, Madhvapathy S R, Chen K, Zhao P, Tosun M, Minor A M, Chrzan D C, Javey A 2015 Adv. Funct. Mater. 25 6257
[15] Zhu X, Song K, Tang K, Bai W, Bai J, Zhu L, Yang J, Zhang Y, Qi R, Huang R, Tang X, Chu J 2017 J. Alloys Compd. 729 95
[16] Borodinova T I, Styopkin V I, Vasko A A, Kutsenko V, Marchenko O A 2018 J. Nano- Electron. Phys. 10 03017
[17] Desai S, Madhvapathy S, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y, Dubey M, Ager J, Chrzan D, Javey A 2016 Adv. Mater. 28 4053
[18] Lo Y H 1991 Appl. Phys. Lett. 59 2311
[19] Woltersdorf J, Pippel E 1983 Phys. Status Solidi A 78 475
[20] Pippel E, Woltersdorf J 1983 Phys. Status Solidi A 79 189
[21] Chua C L, Hsu W Y, Lin C H, Christenson G, Lo Y H 1994 Appl. Phys. Lett. 64 3640
[22] Jones A M, Jewell J L, Mabon J C, Reuter E E, Bishop S G, Roh S D, Coleman J J 1999 Appl. Phys. Lett. 74 1000
[23] Bourret A 2000 Appl. Surf. Sci. 164 3
[24] Powell A R, Iyer S S, LeGoues F K 1994 Appl. Phys. Lett. 64 1856
[25] Hansen D, Moran P, Dunn K, Babcock S, Matyi R, Kuech T 1998 J. Cryst. Growth 195 144
[26] Carter-Coman C, Bicknell-Tassius R, Brown A S, Jokerst N M 1997 Appl. Phys. Lett. 70 1754
[27] Ejeckam F E, Seaford M L, Lo Y H, Hou H Q, Hammons B E 1997 Appl. Phys. Lett. 71 776
[28] Ayers J 2008 J. Electron. Mater. 37 1511
[29] Grimme S 2006 J. Comput. Chem. 27 1787
[30] Hirth J P, Lothe J 1991 Theory of Dislocations (Florida, USA: Krieger Publishing Company)
[31] Grönbeck H, Curioni A, Andreoni W 2000 J. Am. Chem. Soc. 122 3839
[32] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225
[33] Lin Z, McCreary A, Briggs N, Subramanian S, Zhang K, Sun Y, Li X, Borys N J, Yuan H, Fullerton-Shirey S K, Chernikov A, Zhao H, McDonnell S, Lindenberg A M, Xiao K, LeRoy B J, Drndić M, Hwang J C M, Park J, Chhowalla M, Schaak R E, Javey A, Hersam M C, Robinson J, Terrones M 2016 2D Mater. 3 042001
[34] McDonnell S J, Wallace R M 2016 Thin Solid Films 616 482
[35] Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110
[36] Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903
[37] Stewart J A, Spearot D E 2013 Model. Simul. Mater. Sci. Eng. 21 045003
[38] Sun H, Sirott E W, Mastandrea J, Gramling H M, Zhou Y, Poschmann M, Taylor H K, Ager J W, Chrzan D C 2018 Phys. Rev. Mater. 2 094004
[39] Komsa H P, Krasheninnikov A V 2013 Phys. Rev. B 88 085318
[40] Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603
[41] Koda D S, Bechstedt F, Marques M, Teles L K 2016 J. Phys. Chem. C 120 10895 -
[1] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
[4] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788
[5] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898
[6] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)[魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103]
[7] Jacobs M H, Stowell M J 1965 Philos. Mag. 11 591
[8] Jesser W A, Kuhlmann-Wilsdorf D 1967 J. Appl. Phys. 38 5128
[9] Honjo G, Yagi K 1969 J. Vac. Sci. Technol. 6 576
[10] Pashley D W, Stowell M J, Jacobs M H, Law T J 1964 Philos. Mag. 10 127
[11] Jacobs M H, Pashley D W, Stowell M J 1966 Philos. Mag. 13 129
[12] Jesser W A, Kuhlmann-Wilsdorf D 1967 Phys. Stat. Sol. 19 95
[13] Zhou Y, Kiriya D, Haller E E, Ager J W, Javey A, Chrzan D C 2016 Phys. Rev. B 93 054106
[14] Kiriya D, Zhou Y, Nelson C, Hettick M, Madhvapathy S R, Chen K, Zhao P, Tosun M, Minor A M, Chrzan D C, Javey A 2015 Adv. Funct. Mater. 25 6257
[15] Zhu X, Song K, Tang K, Bai W, Bai J, Zhu L, Yang J, Zhang Y, Qi R, Huang R, Tang X, Chu J 2017 J. Alloys Compd. 729 95
[16] Borodinova T I, Styopkin V I, Vasko A A, Kutsenko V, Marchenko O A 2018 J. Nano- Electron. Phys. 10 03017
[17] Desai S, Madhvapathy S, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y, Dubey M, Ager J, Chrzan D, Javey A 2016 Adv. Mater. 28 4053
[18] Lo Y H 1991 Appl. Phys. Lett. 59 2311
[19] Woltersdorf J, Pippel E 1983 Phys. Status Solidi A 78 475
[20] Pippel E, Woltersdorf J 1983 Phys. Status Solidi A 79 189
[21] Chua C L, Hsu W Y, Lin C H, Christenson G, Lo Y H 1994 Appl. Phys. Lett. 64 3640
[22] Jones A M, Jewell J L, Mabon J C, Reuter E E, Bishop S G, Roh S D, Coleman J J 1999 Appl. Phys. Lett. 74 1000
[23] Bourret A 2000 Appl. Surf. Sci. 164 3
[24] Powell A R, Iyer S S, LeGoues F K 1994 Appl. Phys. Lett. 64 1856
[25] Hansen D, Moran P, Dunn K, Babcock S, Matyi R, Kuech T 1998 J. Cryst. Growth 195 144
[26] Carter-Coman C, Bicknell-Tassius R, Brown A S, Jokerst N M 1997 Appl. Phys. Lett. 70 1754
[27] Ejeckam F E, Seaford M L, Lo Y H, Hou H Q, Hammons B E 1997 Appl. Phys. Lett. 71 776
[28] Ayers J 2008 J. Electron. Mater. 37 1511
[29] Grimme S 2006 J. Comput. Chem. 27 1787
[30] Hirth J P, Lothe J 1991 Theory of Dislocations (Florida, USA: Krieger Publishing Company)
[31] Grönbeck H, Curioni A, Andreoni W 2000 J. Am. Chem. Soc. 122 3839
[32] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225
[33] Lin Z, McCreary A, Briggs N, Subramanian S, Zhang K, Sun Y, Li X, Borys N J, Yuan H, Fullerton-Shirey S K, Chernikov A, Zhao H, McDonnell S, Lindenberg A M, Xiao K, LeRoy B J, Drndić M, Hwang J C M, Park J, Chhowalla M, Schaak R E, Javey A, Hersam M C, Robinson J, Terrones M 2016 2D Mater. 3 042001
[34] McDonnell S J, Wallace R M 2016 Thin Solid Films 616 482
[35] Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110
[36] Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903
[37] Stewart J A, Spearot D E 2013 Model. Simul. Mater. Sci. Eng. 21 045003
[38] Sun H, Sirott E W, Mastandrea J, Gramling H M, Zhou Y, Poschmann M, Taylor H K, Ager J W, Chrzan D C 2018 Phys. Rev. Mater. 2 094004
[39] Komsa H P, Krasheninnikov A V 2013 Phys. Rev. B 88 085318
[40] Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603
[41] Koda D S, Bechstedt F, Marques M, Teles L K 2016 J. Phys. Chem. C 120 10895
Catalog
Metrics
- Abstract views: 6844
- PDF Downloads: 165
- Cited By: 0