Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system

Zhou Yu-Zhi

Citation:

Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system

Zhou Yu-Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The concept of compliant substrate epitaxy was first proposed by the scientists engaged in crystal growth in the early 1990s. The core idea is to take advantage of such an ultra-thin substrate that the film and the substrate generate strain together to relieve the lattice mismatch during the epitaxy growth. The quality of the epitaxial film is improved due to the reduction of the mismatch dislocation density. However, the preparation of the artificial ultra-thin substrate with good quality requires rather complicated fabrication process. On the other hand, many transition metal dichalcogenides naturally form the compliant substrates, due to their layered structure and weak van der Waals interlayer interaction. In this paper, we introduce the transition metal dichalcogenides based compliant substrate epitaxy model and relevant applications. Through combining density functional theory, linear elasticity theory and dislocation theory, we introduce the model comprehensively by using the Au-MoS2 as a prototypical example. And we explain the experimental results of Au growing on MoS2 from the early transition electron microscopy. In addition, we introduce the experimental work related to the model, especially the Au-mediated exfoliation of large, monolayer and high-quality MoS2. Future directions and relevant important problems to be solved are also discussed.
      Corresponding author: Zhou Yu-Zhi, zhou_yuzhi@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91730302).

    [1] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
    [2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
    [3] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
    [4] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788
    [5] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898
    [6] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)[魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103]
    [7] Jacobs M H, Stowell M J 1965 Philos. Mag. 11 591
    [8] Jesser W A, Kuhlmann-Wilsdorf D 1967 J. Appl. Phys. 38 5128
    [9] Honjo G, Yagi K 1969 J. Vac. Sci. Technol. 6 576
    [10] Pashley D W, Stowell M J, Jacobs M H, Law T J 1964 Philos. Mag. 10 127
    [11] Jacobs M H, Pashley D W, Stowell M J 1966 Philos. Mag. 13 129
    [12] Jesser W A, Kuhlmann-Wilsdorf D 1967 Phys. Stat. Sol. 19 95
    [13] Zhou Y, Kiriya D, Haller E E, Ager J W, Javey A, Chrzan D C 2016 Phys. Rev. B 93 054106
    [14] Kiriya D, Zhou Y, Nelson C, Hettick M, Madhvapathy S R, Chen K, Zhao P, Tosun M, Minor A M, Chrzan D C, Javey A 2015 Adv. Funct. Mater. 25 6257
    [15] Zhu X, Song K, Tang K, Bai W, Bai J, Zhu L, Yang J, Zhang Y, Qi R, Huang R, Tang X, Chu J 2017 J. Alloys Compd. 729 95
    [16] Borodinova T I, Styopkin V I, Vasko A A, Kutsenko V, Marchenko O A 2018 J. Nano- Electron. Phys. 10 03017
    [17] Desai S, Madhvapathy S, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y, Dubey M, Ager J, Chrzan D, Javey A 2016 Adv. Mater. 28 4053
    [18] Lo Y H 1991 Appl. Phys. Lett. 59 2311
    [19] Woltersdorf J, Pippel E 1983 Phys. Status Solidi A 78 475
    [20] Pippel E, Woltersdorf J 1983 Phys. Status Solidi A 79 189
    [21] Chua C L, Hsu W Y, Lin C H, Christenson G, Lo Y H 1994 Appl. Phys. Lett. 64 3640
    [22] Jones A M, Jewell J L, Mabon J C, Reuter E E, Bishop S G, Roh S D, Coleman J J 1999 Appl. Phys. Lett. 74 1000
    [23] Bourret A 2000 Appl. Surf. Sci. 164 3
    [24] Powell A R, Iyer S S, LeGoues F K 1994 Appl. Phys. Lett. 64 1856
    [25] Hansen D, Moran P, Dunn K, Babcock S, Matyi R, Kuech T 1998 J. Cryst. Growth 195 144
    [26] Carter-Coman C, Bicknell-Tassius R, Brown A S, Jokerst N M 1997 Appl. Phys. Lett. 70 1754
    [27] Ejeckam F E, Seaford M L, Lo Y H, Hou H Q, Hammons B E 1997 Appl. Phys. Lett. 71 776
    [28] Ayers J 2008 J. Electron. Mater. 37 1511
    [29] Grimme S 2006 J. Comput. Chem. 27 1787
    [30] Hirth J P, Lothe J 1991 Theory of Dislocations (Florida, USA: Krieger Publishing Company)
    [31] Grönbeck H, Curioni A, Andreoni W 2000 J. Am. Chem. Soc. 122 3839
    [32] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225
    [33] Lin Z, McCreary A, Briggs N, Subramanian S, Zhang K, Sun Y, Li X, Borys N J, Yuan H, Fullerton-Shirey S K, Chernikov A, Zhao H, McDonnell S, Lindenberg A M, Xiao K, LeRoy B J, Drndić M, Hwang J C M, Park J, Chhowalla M, Schaak R E, Javey A, Hersam M C, Robinson J, Terrones M 2016 2D Mater. 3 042001
    [34] McDonnell S J, Wallace R M 2016 Thin Solid Films 616 482
    [35] Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110
    [36] Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903
    [37] Stewart J A, Spearot D E 2013 Model. Simul. Mater. Sci. Eng. 21 045003
    [38] Sun H, Sirott E W, Mastandrea J, Gramling H M, Zhou Y, Poschmann M, Taylor H K, Ager J W, Chrzan D C 2018 Phys. Rev. Mater. 2 094004
    [39] Komsa H P, Krasheninnikov A V 2013 Phys. Rev. B 88 085318
    [40] Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603
    [41] Koda D S, Bechstedt F, Marques M, Teles L K 2016 J. Phys. Chem. C 120 10895

  • [1] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
    [2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
    [3] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
    [4] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788
    [5] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898
    [6] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)[魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103]
    [7] Jacobs M H, Stowell M J 1965 Philos. Mag. 11 591
    [8] Jesser W A, Kuhlmann-Wilsdorf D 1967 J. Appl. Phys. 38 5128
    [9] Honjo G, Yagi K 1969 J. Vac. Sci. Technol. 6 576
    [10] Pashley D W, Stowell M J, Jacobs M H, Law T J 1964 Philos. Mag. 10 127
    [11] Jacobs M H, Pashley D W, Stowell M J 1966 Philos. Mag. 13 129
    [12] Jesser W A, Kuhlmann-Wilsdorf D 1967 Phys. Stat. Sol. 19 95
    [13] Zhou Y, Kiriya D, Haller E E, Ager J W, Javey A, Chrzan D C 2016 Phys. Rev. B 93 054106
    [14] Kiriya D, Zhou Y, Nelson C, Hettick M, Madhvapathy S R, Chen K, Zhao P, Tosun M, Minor A M, Chrzan D C, Javey A 2015 Adv. Funct. Mater. 25 6257
    [15] Zhu X, Song K, Tang K, Bai W, Bai J, Zhu L, Yang J, Zhang Y, Qi R, Huang R, Tang X, Chu J 2017 J. Alloys Compd. 729 95
    [16] Borodinova T I, Styopkin V I, Vasko A A, Kutsenko V, Marchenko O A 2018 J. Nano- Electron. Phys. 10 03017
    [17] Desai S, Madhvapathy S, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y, Dubey M, Ager J, Chrzan D, Javey A 2016 Adv. Mater. 28 4053
    [18] Lo Y H 1991 Appl. Phys. Lett. 59 2311
    [19] Woltersdorf J, Pippel E 1983 Phys. Status Solidi A 78 475
    [20] Pippel E, Woltersdorf J 1983 Phys. Status Solidi A 79 189
    [21] Chua C L, Hsu W Y, Lin C H, Christenson G, Lo Y H 1994 Appl. Phys. Lett. 64 3640
    [22] Jones A M, Jewell J L, Mabon J C, Reuter E E, Bishop S G, Roh S D, Coleman J J 1999 Appl. Phys. Lett. 74 1000
    [23] Bourret A 2000 Appl. Surf. Sci. 164 3
    [24] Powell A R, Iyer S S, LeGoues F K 1994 Appl. Phys. Lett. 64 1856
    [25] Hansen D, Moran P, Dunn K, Babcock S, Matyi R, Kuech T 1998 J. Cryst. Growth 195 144
    [26] Carter-Coman C, Bicknell-Tassius R, Brown A S, Jokerst N M 1997 Appl. Phys. Lett. 70 1754
    [27] Ejeckam F E, Seaford M L, Lo Y H, Hou H Q, Hammons B E 1997 Appl. Phys. Lett. 71 776
    [28] Ayers J 2008 J. Electron. Mater. 37 1511
    [29] Grimme S 2006 J. Comput. Chem. 27 1787
    [30] Hirth J P, Lothe J 1991 Theory of Dislocations (Florida, USA: Krieger Publishing Company)
    [31] Grönbeck H, Curioni A, Andreoni W 2000 J. Am. Chem. Soc. 122 3839
    [32] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225
    [33] Lin Z, McCreary A, Briggs N, Subramanian S, Zhang K, Sun Y, Li X, Borys N J, Yuan H, Fullerton-Shirey S K, Chernikov A, Zhao H, McDonnell S, Lindenberg A M, Xiao K, LeRoy B J, Drndić M, Hwang J C M, Park J, Chhowalla M, Schaak R E, Javey A, Hersam M C, Robinson J, Terrones M 2016 2D Mater. 3 042001
    [34] McDonnell S J, Wallace R M 2016 Thin Solid Films 616 482
    [35] Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110
    [36] Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903
    [37] Stewart J A, Spearot D E 2013 Model. Simul. Mater. Sci. Eng. 21 045003
    [38] Sun H, Sirott E W, Mastandrea J, Gramling H M, Zhou Y, Poschmann M, Taylor H K, Ager J W, Chrzan D C 2018 Phys. Rev. Mater. 2 094004
    [39] Komsa H P, Krasheninnikov A V 2013 Phys. Rev. B 88 085318
    [40] Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603
    [41] Koda D S, Bechstedt F, Marques M, Teles L K 2016 J. Phys. Chem. C 120 10895

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Ding Li-Jie, Zhang Xiao-Tian, Guo Xin-Yi, Xue Yang, Lin Chang-Qing, Huang Dan. First-principles study of SrSnO3 as transparent conductive oxide. Acta Physica Sinica, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [3] Yang Shun-Jie, Li Chun-Mei, Zhou Jin-Ping. First-principles study of magnetic disordering and alloying effects on phase stability and elastic constants of Co2CrZ (Z = Ga, Si, Ge) alloys. Acta Physica Sinica, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [4] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [5] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [6] Hu Qian-Ku, Qin Shuang-Hong, Wu Qing-Hua, Li Dan-Dan, Zhang Bin, Yuan Wen-Feng, Wang Li-Bo, Zhou Ai-Guo. First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides. Acta Physica Sinica, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [7] Fan Hang, He Guan-Song, Yang Zhi-Jian, Nie Fu-De, Chen Peng-Wan. Theoretical study of interface thermodynamic properties of 1,3,5-triamino-2,4,6-trinitrobenzene based polymer bonded explosives. Acta Physica Sinica, 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [8] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [9] Li Wei-Sheng, Zhou Jian, Wang Han-Chen, Wang Shu-Xian, Yu Zhi-Hao, Li Song-Lin, Shi Yi, Wang Xin-Ran. Logical integration device for two-dimensional semiconductor transition metal sulfide. Acta Physica Sinica, 2017, 66(21): 218503. doi: 10.7498/aps.66.218503
    [10] Ma Shuang, Wu Ren-Tu-Ya, O Tegus, Wu Xiao-Xia, Guan Peng-Fei, Bai Narsu. First principles study of mechanical properties of FeMnP1-xTx (T=Si, Ga, Ge) compounds. Acta Physica Sinica, 2017, 66(12): 126301. doi: 10.7498/aps.66.126301
    [11] Qiu Wei, Zhang Qi-Peng, Li Qiu, Xu Chao-Chen, Guo Jian-Gang. Experimental study on interfacial mechanical behavior of single-layer monocrystalline graphene on a stretchable substrate. Acta Physica Sinica, 2017, 66(16): 166801. doi: 10.7498/aps.66.166801
    [12] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [13] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [14] Yu Dong-Qi, Zhang Zhao-Hui. First principles calculations of interaction between an armchair-edge graphene nanoribbon and its graphite substrate. Acta Physica Sinica, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [15] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [16] Yang Tian-Xing, Cheng Qiang, Xu Hong-Bin, Wang Yuan-Xu. First-principles study of elastic and electronic properties of several ternary transition-metal carbides. Acta Physica Sinica, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [17] Hu Fang, Ming Xing, Fan Hou-Gang, Chen Gang, Wang Chun-Zhong, Wei Ying-Jin, Huang Zu-Fei. First-principles study on the electronic structures of the ladder compound NaV2O4F. Acta Physica Sinica, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [18] Song Qing-Gong, Wang Yan-Feng, Song Qing-Long, Kang Jian-Hai, Chu Yong. First-principle study on the electronic structures of intercalation compound Ag1/4TiSe2. Acta Physica Sinica, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [19] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
Metrics
  • Abstract views:  6844
  • PDF Downloads:  165
  • Cited By: 0
Publishing process
  • Received Date:  22 August 2018
  • Accepted Date:  25 September 2018
  • Published Online:  05 November 2018

/

返回文章
返回