-
In the production of SiC electronic devices, one of the main challenges is the fabrication of good Ohmic contacts due to the difficulty in finding the metals with low Schottky barriers of wide band gap SiC. Therefore, reducing the Schottky barrier height (SBH) at the metal/SiC interface is of great importance. In this paper, the effects of graphene intercalation on the SBH in different metals (Ag, Ti, Cu, Pd, Ni, Pt)/4H-SiC interfaces are studied by combining the average electrostatic potential and local density of states calculation methods based on first-principles plane wave pseudopotential density functional theory. The calculation results show that single-layer graphene intercalation can reduce the SBH of metal/4H-SiC contact. When the two layers of graphene are inserted, the SBH are further reduced. Especially, the contact between Ni and Ti exhibits negative SBH values, inferring that good Ohmic contacts are formed. When layers of graphene continue to increase, the SBH no longer changes obviously. By analyzing the differential charge density and the local density of states of the interface, the mechanism of SBH reduction may be that the dangling bonds on the SiC surface are saturated by the graphene C atoms and the influence of the metal-induced energy gap state at the interface is reduced, thereby reducing the interface state density. In addition, graphene and the corresponding new phases at the interface have low work functions. Moreover, an interfacial electric dipole layer may be formed at the SiC/graphene interface which also contributes to barrier reduction.
-
Keywords:
- SiC /
- graphene /
- Schottky barrier heights /
- first principle study
[1] Tian R, Ma C, Wu J, Guo Z, Yang X, Fan Z 2021 J. Semicond. 42 061801Google Scholar
[2] Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar
[3] Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar
[4] Kuchuk A V, Borowicz P, Wzorek M, Borysiewicz M, Ratajczak R, Golaszewska K, Kaminska E, Kladko V, Piotrowska A 2016 Adv. Cond. Matter. Phys. 2016 9273702Google Scholar
[5] Al-Ahmadi N A 2020 Mater. Res. Express 7 032001Google Scholar
[6] Nikitina I P, Vassilevski K V, Wright N G, Horsfall A B, O’Neill A G, Johnson C M 2005 J. Appl. Phys. 97 083709Google Scholar
[7] Liu F, Hsia B, Carraro C, Pisano A P, Maboudian R 2010 Appl. Phys. Lett. 97 262107Google Scholar
[8] Seyller T, Emtsev K V, Speck F, Gao K Y, Ley L 2006 Appl. Phys. Lett. 88 242103Google Scholar
[9] Lundberg N, Östling M 1993 Appl. Phys. Lett. 63 3069Google Scholar
[10] Reshanov S A, Emtsev K V, Speck F, Gao K Y, Seyller T K, Pensl G, Ley L 2008 Phys. Status Solidi B 245 1369Google Scholar
[11] 黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢 2021 物理学报 70 207302Google Scholar
Huang L Q, Zhu J, Ma Y, Liang T, Lei C, Li Y W, Gu X G 2021 Acta Phys. Sin. 70 207302Google Scholar
[12] Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 25301Google Scholar
[13] Nagashio K, Nishimura T, Kita K, Toriumi A 2009 International Electron Devices Meeting (IEDM) Baltimore, MD December 7–9, 2009 p527
[14] Røst H I, Chellappan R K, Strand F S, Grubišić-Čabo A, Reed B P, Prieto M J, Tǎnase L C, Caldas L D S, Wongpinij T, Euaruksakul C, Schmidt T, Tadich A, Cowie B C C, Li Z, Cooil S P, Wells J W 2021 J. Phys. Chem. C 125 4243Google Scholar
[15] Yoon H H, Song W, Jung S, Kim J, Mo K, Choi G, Jeong H Y, Lee J H, Park K 2019 ACS Appl. Mater. Inter. 11 47182Google Scholar
[16] Wu Y, Ji L, Lin Z, Hong M, Wang S, Zhang Y 2019 Curr. Appl. Phys. 19 521Google Scholar
[17] Jia Y, Sun X, Shi Z, Jiang K, Wu T, Liang H, Cui X, Lü W, Li D 2021 Diamond. Relat. Mater. 115 108355Google Scholar
[18] Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar
[19] Perdew J P, Kieron B, Matthias E 1996 Phys. Rev. Lett. 77 3865Google Scholar
[20] Ceperley D M, Berni J A 1980 Phys. Rev. Lett. 45 566Google Scholar
[21] Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar
[22] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳 2019 物理学报 68 077101Google Scholar
Wang Q, Tang F W, Hou C, Lv H, Song X Y 2019 Acta Phys. Sin. 68 077101Google Scholar
[23] Mattausch A, Pankratov O 2007 Phys. Rev. Lett. 99 076802Google Scholar
[24] Xu B, Zhu C, He X, Zang Y, Lin S, Li L, Feng S, Lei Q 2018 Adv. Condens. Matter Phys. 2018 8010351
[25] Li L, Jin W, Yang H, Gao K, Guo P, Pang X, Volinsky A A. 2018 Microelectron. Reliab. 83 119Google Scholar
[26] Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar
[27] Oh Y J, Lee A T, Noh H K, Chang K J 2013 Phys. Rev. B 87 075325Google Scholar
[28] Kohyama M, Hoekstra J 2000 Phys. Rev. B 61 2672Google Scholar
[29] Tanaka S, Tamura T, Okazaki K, Ishibashi S, Kohyama M 2006 Mater. Trans. 47 2690Google Scholar
[30] Profeta G, Blasetti A, Picozzi S, Continenza A, Freeman A. J 2001 Phys. Rev. B 64 235312Google Scholar
[31] Kozlov S M, Vines F, Görling A 2012 J. Phys. Chem. C 116 7360Google Scholar
[32] Cicek A, Bülent U L U Ğ 2021 Balkan J. Electr. Comput. Eng. 9 171
[33] 王菁, 李美成 2000 半导体光电 21 261Google Scholar
Wang J, Li M C 2000 Semicond. Opt. 21 261Google Scholar
[34] Chen Y, Xu X, Liu P 2019 J. Phys. Chem. C 124 1362
[35] Li J B, Wang X H, Wang W J 2020 J. Infrared Millimeter Waves 39 401
[36] Song S M, Park J K, Sul O J, Cho B J 2012 Nano Lett. 12 3887Google Scholar
[37] Heine V 1965 Phys. Rev. 138 A1689Google Scholar
[38] Sajjad M, Yang X, Altermatt P, Singh N, Schwingenschlögl U, Wolf D S 2019 Appl. Phys. Lett. 114 071601Google Scholar
-
表 1 Cu不同切面与4H-SiC(0001)接触体系的
$ {E_{{\text{M/SiC}}}} $ ,$ {E_{\text{M}}} $ ,$ {E_{{\text{SiC}}}} $ 和$ {W_{{\text{ad}}}} $ Table 1.
$ {E_{{\text{M/SiC}}}} $ ,$ {E_{\text{M}}} $ ,$ {E_{{\text{SiC}}}} $ and$ {W_{{\text{ad}}}} $ values for the different Cu planes contact to 4H-SiC(0001).界面体系 $ {E_{{\text{M/SiC}}}} $/eV $ {E_{\text{M}}} $/eV $ {E_{{\text{SiC}}}} $/eV $ {W_{{\text{ad}}}} $/$(\rm J {\cdot} c{m^{ - 2} })$ Cu(111)/4H-SiC(0001) –154329.42 –134459.95 –19851.12 0.0562 Cu(110)/4H-SiC(0001) –164264.27 –134455.87 –29790.06 0.0279 Cu(001)/4H-SiC(0001) –154340.26 –134456.34 –19865.27 0.0515 表 2 晶格失配后各金属超胞的Wm与理论值和文献[26]中实验值对比
Table 2. The calculated Wm values of the metal supercells after lattice mismatching, compared with the theoretical and the experimental values in reference [26].
Metal Wm/eV 理论值/eV 实验值[26]/eV Ag 4.52 4.19 4.26 Ti 4.43 4.38 4.33 Cu 4.68 4.51 4.65 Pd 5.16 4.89 5.12 Ni 5.12 4.92 5.15 Pt 5.76 5.31 5.65 表 3 平均静电势与局域态密度计算方法计算的各接触体系
${\phi _{{\text{Bn}}}}$ 值 (单位: eV)Table 3.
${\phi _{{\text{Bn}}}}$ values for the contacts obtained from planar averaged electrostatic potential and local density of states calculation methods (in eV).计算方法 GR layers Ag Ti Cu Pd Ni Pt 平均静电势法 0 1.2 1.5 1.2 1.5 1.1 1.6 1 0.25 0.5 0.7 0.6 0.25 1.4 2 0.1 –0.1 0.6 0.5 –0.45 0.8 3 0.1 –0.1 0.6 0.5 –0.45 0.8 局域态密度法 0 1 1.2 1 1.3 1 1.3 1 0.2 0.3 0.5 0.4 0.2 1 2 0.1 –0.15 0.4 0.3 –0.5 0.9 3 0.1 –0.15 0.4 0.3 –0.5 0.9 -
[1] Tian R, Ma C, Wu J, Guo Z, Yang X, Fan Z 2021 J. Semicond. 42 061801Google Scholar
[2] Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar
[3] Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar
[4] Kuchuk A V, Borowicz P, Wzorek M, Borysiewicz M, Ratajczak R, Golaszewska K, Kaminska E, Kladko V, Piotrowska A 2016 Adv. Cond. Matter. Phys. 2016 9273702Google Scholar
[5] Al-Ahmadi N A 2020 Mater. Res. Express 7 032001Google Scholar
[6] Nikitina I P, Vassilevski K V, Wright N G, Horsfall A B, O’Neill A G, Johnson C M 2005 J. Appl. Phys. 97 083709Google Scholar
[7] Liu F, Hsia B, Carraro C, Pisano A P, Maboudian R 2010 Appl. Phys. Lett. 97 262107Google Scholar
[8] Seyller T, Emtsev K V, Speck F, Gao K Y, Ley L 2006 Appl. Phys. Lett. 88 242103Google Scholar
[9] Lundberg N, Östling M 1993 Appl. Phys. Lett. 63 3069Google Scholar
[10] Reshanov S A, Emtsev K V, Speck F, Gao K Y, Seyller T K, Pensl G, Ley L 2008 Phys. Status Solidi B 245 1369Google Scholar
[11] 黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢 2021 物理学报 70 207302Google Scholar
Huang L Q, Zhu J, Ma Y, Liang T, Lei C, Li Y W, Gu X G 2021 Acta Phys. Sin. 70 207302Google Scholar
[12] Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 25301Google Scholar
[13] Nagashio K, Nishimura T, Kita K, Toriumi A 2009 International Electron Devices Meeting (IEDM) Baltimore, MD December 7–9, 2009 p527
[14] Røst H I, Chellappan R K, Strand F S, Grubišić-Čabo A, Reed B P, Prieto M J, Tǎnase L C, Caldas L D S, Wongpinij T, Euaruksakul C, Schmidt T, Tadich A, Cowie B C C, Li Z, Cooil S P, Wells J W 2021 J. Phys. Chem. C 125 4243Google Scholar
[15] Yoon H H, Song W, Jung S, Kim J, Mo K, Choi G, Jeong H Y, Lee J H, Park K 2019 ACS Appl. Mater. Inter. 11 47182Google Scholar
[16] Wu Y, Ji L, Lin Z, Hong M, Wang S, Zhang Y 2019 Curr. Appl. Phys. 19 521Google Scholar
[17] Jia Y, Sun X, Shi Z, Jiang K, Wu T, Liang H, Cui X, Lü W, Li D 2021 Diamond. Relat. Mater. 115 108355Google Scholar
[18] Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar
[19] Perdew J P, Kieron B, Matthias E 1996 Phys. Rev. Lett. 77 3865Google Scholar
[20] Ceperley D M, Berni J A 1980 Phys. Rev. Lett. 45 566Google Scholar
[21] Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar
[22] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳 2019 物理学报 68 077101Google Scholar
Wang Q, Tang F W, Hou C, Lv H, Song X Y 2019 Acta Phys. Sin. 68 077101Google Scholar
[23] Mattausch A, Pankratov O 2007 Phys. Rev. Lett. 99 076802Google Scholar
[24] Xu B, Zhu C, He X, Zang Y, Lin S, Li L, Feng S, Lei Q 2018 Adv. Condens. Matter Phys. 2018 8010351
[25] Li L, Jin W, Yang H, Gao K, Guo P, Pang X, Volinsky A A. 2018 Microelectron. Reliab. 83 119Google Scholar
[26] Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar
[27] Oh Y J, Lee A T, Noh H K, Chang K J 2013 Phys. Rev. B 87 075325Google Scholar
[28] Kohyama M, Hoekstra J 2000 Phys. Rev. B 61 2672Google Scholar
[29] Tanaka S, Tamura T, Okazaki K, Ishibashi S, Kohyama M 2006 Mater. Trans. 47 2690Google Scholar
[30] Profeta G, Blasetti A, Picozzi S, Continenza A, Freeman A. J 2001 Phys. Rev. B 64 235312Google Scholar
[31] Kozlov S M, Vines F, Görling A 2012 J. Phys. Chem. C 116 7360Google Scholar
[32] Cicek A, Bülent U L U Ğ 2021 Balkan J. Electr. Comput. Eng. 9 171
[33] 王菁, 李美成 2000 半导体光电 21 261Google Scholar
Wang J, Li M C 2000 Semicond. Opt. 21 261Google Scholar
[34] Chen Y, Xu X, Liu P 2019 J. Phys. Chem. C 124 1362
[35] Li J B, Wang X H, Wang W J 2020 J. Infrared Millimeter Waves 39 401
[36] Song S M, Park J K, Sul O J, Cho B J 2012 Nano Lett. 12 3887Google Scholar
[37] Heine V 1965 Phys. Rev. 138 A1689Google Scholar
[38] Sajjad M, Yang X, Altermatt P, Singh N, Schwingenschlögl U, Wolf D S 2019 Appl. Phys. Lett. 114 071601Google Scholar
Catalog
Metrics
- Abstract views: 7606
- PDF Downloads: 214
- Cited By: 0