Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow

Jiang Shuang-Shuang Zhu Li Liu Si-Nan Yang Zhan-Zhan Lan Si Wang Yin-Gang

Citation:

Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow

Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang
PDF
HTML
Get Citation
  • The atomic-scale structure and concomitant mechanical property evolution of a ribbon-shaped Fe78Si9B13 metallic glass after local plastic flow are investigated. By using abrasive papers as a medium to transport the pressure, the equivalent pressure on the ribbon surface is sufficiently magnified. Multiple shear bands pervading along their surface are generated simultaneously after deformation. The densification processes triggered by the cooperative atomic rearrangements in the short and medium-range are revealed by analyzing the synchrotron diffraction patterns in reciprocal space and real space. Meanwhile, the local plastic flow enhances the structural heterogeneity. In contrast to the strain-softening under uniaxial loading, these structural changes contribute to the improvement of resistance to subsequent deformation. As a result, the Vickers hardness of the deformed Fe78Si9B13 metallic glass increases compared with the undeformed sample, manifesting a local strain-hardening behavior.
      Corresponding author: Wang Yin-Gang, yingang.wang@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51571115, 51871120) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
    [1]

    Greer A L, Cheng Y Q, Ma E 2013 Mat. Sci. Eng. R 74 71Google Scholar

    [2]

    Pan J, Chen Q, Liu L, Li Y 2011 Acta Mater. 59 5146Google Scholar

    [3]

    Jang D, Greer J R 2010 Nat. Mater. 9 215Google Scholar

    [4]

    Pan J, Ivanov Y P, Zhou W H, Li Y, Greer A L 2020 Nature 578 559Google Scholar

    [5]

    Wang T, Si J J, Wu Y D, Lv K, Liu Y H, Hui X D 2018 Scripta Mater. 150 106Google Scholar

    [6]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [7]

    Dmowski W, Yokoyama Y, Chuang A, Ren Y, Umemoto M, Tsuchiya K, Inoue A, Egami T 2010 Acta Mater. 58 429Google Scholar

    [8]

    Rosner H, Peterlechner M, Kubel C, Schmidt V, Wilde G 2014 Ultramicroscopy 142 1Google Scholar

    [9]

    Shen L Q, Luo P, Hu Y C, Bai H Y, Sun Y H, Sun B A, Liu Y H, Wang W H 2018 Nat. Commun. 9 4414Google Scholar

    [10]

    Shahabi H S, Scudino S, Kaban I, Stoica M, Escher B, Menzel S, Vaughan G B M, Kühn U, Eckert J 2016 Acta Mater. 111 187Google Scholar

    [11]

    Ma E, Ding J 2016 Mater. Today 19 568Google Scholar

    [12]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [13]

    Cubuk E D, Ivancic R J S, Schoenholz S S, et al. 2017 Science 358 1033Google Scholar

    [14]

    Wei D, Yang J, Jiang M Q, Wei B C, Wang Y J, Dai L H 2019 Phys. Rev. B 99 014115Google Scholar

    [15]

    Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 9 3965Google Scholar

    [16]

    Li B S, Xie S H, Kruzic J J 2019 Acta Mater. 176 278Google Scholar

    [17]

    Wakeda M, Saida J 2019 Sci. Technol. Adv. Mater. 20 632Google Scholar

    [18]

    Kim H K, Ahn J P, Lee B J, Park K W, Lee J C 2018 Acta Mater. 157 209Google Scholar

    [19]

    Luo L S, Wang B B, Dong F Y, Su Y Q, Guo E Y, Xu Y J, Wang M Y, Wang L, Yu J X, Ritchie R O, Guo J J, Fu H Z 2019 Acta Mater. 171 216Google Scholar

    [20]

    Ebner C, Escher B, Gammer C, Eckert J, Pauly S, Rentenberger C 2018 Acta Mater. 160 147Google Scholar

    [21]

    Bian X L, Zhao D, Kim J T, Sopu D, Wang G, Pippan R, Eckert J 2019 Mater. Sci. Eng. A 752 36Google Scholar

    [22]

    Kovács Z, Schafler E, Kis V K, Szommer P J, Révész Á 2018 J. Non-Cryst. Solids 498 25Google Scholar

    [23]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88Google Scholar

    [24]

    Wang J G, Hu Y C, Guan P F, Song K K, Wang L, Wang G, Pan Y, Sarac B, Eckert J 2017 Sci. Rep. 7 7076Google Scholar

    [25]

    Taghvaei A H, Shirazifard N G, Ramasamy P, Bednarčik J, Eckert J 2018 J. Alloy. Compd. 748 553Google Scholar

    [26]

    Yüce E, Sarac B, Ketov S, Reissner M, Eckert J 2021 J. Alloy. Compd. 872 159620Google Scholar

    [27]

    Huang B, Ge T P, Liu G L, Luan J H, He Q F, Yuan Q X, Huang W X, Zhang K, Bai H Y, Shek C H, Liu C T, Yang Y, Wang W H 2018 Acta Mater. 155 69Google Scholar

    [28]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30Google Scholar

    [29]

    Zeng Q S, Kono Y, Lin Y, Zeng Z D, Wang J Y, Sinogeikin S V, Park C, Meng Y, Yang W G, Mao H K, Mao W L 2014 Phys. Rev. Lett. 112 185502Google Scholar

    [30]

    Micoulaut M, Bauchy M 2013 Phys. Status Solidi B 250 976Google Scholar

    [31]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035Google Scholar

    [32]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar

    [33]

    Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42Google Scholar

    [34]

    Taghvaei A H, Shahabi H S, Bednarčik J, Eckert J 2015 J. Appl. Phys. 117 044902Google Scholar

    [35]

    Scudino S, Stoica M, Kaban I, Prashanth K G, Vaughan G B M, Eckert J 2015 J. Alloy. Compd. 639 465Google Scholar

    [36]

    Chen Z Q, Huang L, Wang F, Huang P, Lu T J, Xu K W 2016 Mater. Design 109 179Google Scholar

    [37]

    Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119 215501Google Scholar

    [38]

    Jaafari Z, Seifoddini A, Hasani S 2019 Metall. Mater. Trans. A 50 2875Google Scholar

    [39]

    Sarac B, Ivanov Y P, Chuvilin A, Schoberl T, Stoica M, Zhang Z L, Eckert J 2018 Nat. Commun. 9 1333Google Scholar

    [40]

    Wang Z T, Pan J, Li Y, Schuh C A 2013 Phys. Rev. Lett. 111 135504Google Scholar

    [41]

    Stolpe M, Kruzic J J, Busch R 2014 Acta Mater. 64 231Google Scholar

    [42]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501Google Scholar

    [43]

    Bhowmick R, Raghavan R, Chattopadhyay K, Ramamurty U 2006 Acta Mater. 54 4221Google Scholar

    [44]

    Tong Y, Iwashita T, Dmowski W, Bei H, Yokoyama Y, Egami T 2015 Acta Mater. 86 240Google Scholar

    [45]

    Küchemann S, Liu C Y, Dufresne E M, Shin J, Maaß R 2018 Phys. Rev. B 97 014204Google Scholar

  • 图 1  (a) Fe78Si9B13非晶带施加载荷的示意图; (b) 砂纸的金相显微图像; (c) 样品变形前后的光学图片

    Figure 1.  (a) Schematic diagram for the stress applying procedure of the Fe78Si9B13 amorphous ribbon; (b) metallographic microscope images of the abrasive paper; (c) optical picture of samples before and after deformation.

    图 2  (a)—(c) Fe78Si9B13金属玻璃在约5, 15和35 MPa载荷下的金相显微图像; (d)—(f) SEM图像, 插图为高倍放大的SEM图像

    Figure 2.  (a)–(c) Metallographic microscope images and (d)–(f) SEM images of the Fe78Si9B13 metallic glasses subjected to about 5, 15, and 35 MPa, respectively. The insets are the SEM images with high magnification.

    图 3  (a) 样品变形前后的DSC曲线, 插图是样品Tc附近的放大图; (b) 不同样品总的释放焓的比较; (c) 各样品上所对应第二峰的位置

    Figure 3.  (a) DSC curves of the samples before and after deformation, the inset is the enlargement near the Tc of samples; (b) comparison of the total enthalpy release on various samples; (c) the position of the corresponding second peak on various samples.

    图 4  (a) Fe78Si9B13金属玻璃的结构因子S(q), 插图是第一峰附近的局部放大曲线(数据沿S(q)轴进行了移动); (b) S(q)中第一个峰的峰位和FWHM; (c) Fe78Si9B13金属玻璃的约化对分布函数G(r), 其中虚线标记了特征峰的位置; (d) 通过减去未变形样品的数据得到的G(r)的差异; (e)获取随方位角变化的衍射图谱的示意图; (f) 由pseudo-Voigt函数拟合S(q)中第一个峰的峰位与方位角的函数, 插图是由正弦函数拟合得出的振幅

    Figure 4.  (a) Structure factor S(q) of the Fe78Si9B13 metallic glasses, and the inset is the enlarged curves around the first peak (The data is shifted along S(q) axis for clarification); (b) peak position and FWHM of the first peak in S(q); (c) reduced pair distribution function G(r) of the Fe78Si9B13 metallic glasses, in which the dashed lines label the positions of characteristic peaks; (d) the difference in G(r) obtained by subtracting the data of the undeformed sample as a reference; (e) schematic diagram illustrating the acquisition of angular-dependent diffraction patterns; (f) position of the first peak in S(q) obtained from pseudo-Voigt function fitting as a function of angle, and the inset is the amplitude of oscillation derived from the sinusoidal function fitting.

    图 5  (a) 由G(r)曲线峰位置的相对位移确定的不同压力下Fe78Si9B13金属玻璃的体积应变ε; (b) ε随压力的变化

    Figure 5.  (a) Volume strain ε of Fe78Si9B13 metallic glasses at various pressures determined from the relative displacement of the peak position of the G(r); (b) the variation of ε with pressure.

    图 6  Fe78Si9B13金属玻璃未变形(a)和变形(b)的HRTEM图像, 插图是相对应的FFT模式, 黄色的圆圈标出了低亮度的区域; Fe78Si9B13金属玻璃未变形(c)和变形(d)的环形暗场扫描TEM (ADF-STEM)图像

    Figure 6.  HRTEM images of the undeformed (a) and deformed (b) Fe78Si9B13 metallic glasses. The insets are the corresponding FFT patterns, and the yellow circles mark the regions with low brightness. Annular dark-field scanning TEM (ADF-STEM) images of the undeformed (c) and deformed (d) Fe78Si9B13 metallic glasses.

    图 7  未变形(a)和变形(c) Fe78Si9B13金属玻璃压痕的金相显微镜图像; 未变形FSB-0试样(b)和FSB-35试样(d)的维氏硬度等值线图

    Figure 7.  Metallographic microscope images of the indentations for the undeformed (a) and deformed (c) Fe78Si9B13 metallic glasses; Vickers hardness contour plots of the undeformed FSB-0 sample (b) and the FSB-35 sample (d).

    图 8  施加压力前后Fe78Si9B13金属玻璃的原子结构示意图

    Figure 8.  Schematic of atomic structure for Fe78Si9B13 metallic glass before and after applying pressure.

  • [1]

    Greer A L, Cheng Y Q, Ma E 2013 Mat. Sci. Eng. R 74 71Google Scholar

    [2]

    Pan J, Chen Q, Liu L, Li Y 2011 Acta Mater. 59 5146Google Scholar

    [3]

    Jang D, Greer J R 2010 Nat. Mater. 9 215Google Scholar

    [4]

    Pan J, Ivanov Y P, Zhou W H, Li Y, Greer A L 2020 Nature 578 559Google Scholar

    [5]

    Wang T, Si J J, Wu Y D, Lv K, Liu Y H, Hui X D 2018 Scripta Mater. 150 106Google Scholar

    [6]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [7]

    Dmowski W, Yokoyama Y, Chuang A, Ren Y, Umemoto M, Tsuchiya K, Inoue A, Egami T 2010 Acta Mater. 58 429Google Scholar

    [8]

    Rosner H, Peterlechner M, Kubel C, Schmidt V, Wilde G 2014 Ultramicroscopy 142 1Google Scholar

    [9]

    Shen L Q, Luo P, Hu Y C, Bai H Y, Sun Y H, Sun B A, Liu Y H, Wang W H 2018 Nat. Commun. 9 4414Google Scholar

    [10]

    Shahabi H S, Scudino S, Kaban I, Stoica M, Escher B, Menzel S, Vaughan G B M, Kühn U, Eckert J 2016 Acta Mater. 111 187Google Scholar

    [11]

    Ma E, Ding J 2016 Mater. Today 19 568Google Scholar

    [12]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [13]

    Cubuk E D, Ivancic R J S, Schoenholz S S, et al. 2017 Science 358 1033Google Scholar

    [14]

    Wei D, Yang J, Jiang M Q, Wei B C, Wang Y J, Dai L H 2019 Phys. Rev. B 99 014115Google Scholar

    [15]

    Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 9 3965Google Scholar

    [16]

    Li B S, Xie S H, Kruzic J J 2019 Acta Mater. 176 278Google Scholar

    [17]

    Wakeda M, Saida J 2019 Sci. Technol. Adv. Mater. 20 632Google Scholar

    [18]

    Kim H K, Ahn J P, Lee B J, Park K W, Lee J C 2018 Acta Mater. 157 209Google Scholar

    [19]

    Luo L S, Wang B B, Dong F Y, Su Y Q, Guo E Y, Xu Y J, Wang M Y, Wang L, Yu J X, Ritchie R O, Guo J J, Fu H Z 2019 Acta Mater. 171 216Google Scholar

    [20]

    Ebner C, Escher B, Gammer C, Eckert J, Pauly S, Rentenberger C 2018 Acta Mater. 160 147Google Scholar

    [21]

    Bian X L, Zhao D, Kim J T, Sopu D, Wang G, Pippan R, Eckert J 2019 Mater. Sci. Eng. A 752 36Google Scholar

    [22]

    Kovács Z, Schafler E, Kis V K, Szommer P J, Révész Á 2018 J. Non-Cryst. Solids 498 25Google Scholar

    [23]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88Google Scholar

    [24]

    Wang J G, Hu Y C, Guan P F, Song K K, Wang L, Wang G, Pan Y, Sarac B, Eckert J 2017 Sci. Rep. 7 7076Google Scholar

    [25]

    Taghvaei A H, Shirazifard N G, Ramasamy P, Bednarčik J, Eckert J 2018 J. Alloy. Compd. 748 553Google Scholar

    [26]

    Yüce E, Sarac B, Ketov S, Reissner M, Eckert J 2021 J. Alloy. Compd. 872 159620Google Scholar

    [27]

    Huang B, Ge T P, Liu G L, Luan J H, He Q F, Yuan Q X, Huang W X, Zhang K, Bai H Y, Shek C H, Liu C T, Yang Y, Wang W H 2018 Acta Mater. 155 69Google Scholar

    [28]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30Google Scholar

    [29]

    Zeng Q S, Kono Y, Lin Y, Zeng Z D, Wang J Y, Sinogeikin S V, Park C, Meng Y, Yang W G, Mao H K, Mao W L 2014 Phys. Rev. Lett. 112 185502Google Scholar

    [30]

    Micoulaut M, Bauchy M 2013 Phys. Status Solidi B 250 976Google Scholar

    [31]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035Google Scholar

    [32]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar

    [33]

    Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42Google Scholar

    [34]

    Taghvaei A H, Shahabi H S, Bednarčik J, Eckert J 2015 J. Appl. Phys. 117 044902Google Scholar

    [35]

    Scudino S, Stoica M, Kaban I, Prashanth K G, Vaughan G B M, Eckert J 2015 J. Alloy. Compd. 639 465Google Scholar

    [36]

    Chen Z Q, Huang L, Wang F, Huang P, Lu T J, Xu K W 2016 Mater. Design 109 179Google Scholar

    [37]

    Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119 215501Google Scholar

    [38]

    Jaafari Z, Seifoddini A, Hasani S 2019 Metall. Mater. Trans. A 50 2875Google Scholar

    [39]

    Sarac B, Ivanov Y P, Chuvilin A, Schoberl T, Stoica M, Zhang Z L, Eckert J 2018 Nat. Commun. 9 1333Google Scholar

    [40]

    Wang Z T, Pan J, Li Y, Schuh C A 2013 Phys. Rev. Lett. 111 135504Google Scholar

    [41]

    Stolpe M, Kruzic J J, Busch R 2014 Acta Mater. 64 231Google Scholar

    [42]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501Google Scholar

    [43]

    Bhowmick R, Raghavan R, Chattopadhyay K, Ramamurty U 2006 Acta Mater. 54 4221Google Scholar

    [44]

    Tong Y, Iwashita T, Dmowski W, Bei H, Yokoyama Y, Egami T 2015 Acta Mater. 86 240Google Scholar

    [45]

    Küchemann S, Liu C Y, Dufresne E M, Shin J, Maaß R 2018 Phys. Rev. B 97 014204Google Scholar

  • [1] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [2] Densification and heterogeneity enhancement of a Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211304
    [3] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] Yu Hai-Bin, Yang Qun. Ultrastable glasses. Acta Physica Sinica, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [6] Wang Jun-Qiang, Ouyang Su. Extended elastic model for flow of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [7] Ma Jiang, Yang Can, Gong Feng, Wu Xiao-Yu, Liang Xiong. Thermoplastic forming of bulk metallic glasses. Acta Physica Sinica, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [8] Hu Li-Na, Zhao Xi, Zhang Chun-Zhi. Fragile-to-strong transition in metallic glass-forming liquids. Acta Physica Sinica, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [9] Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming. Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound. Acta Physica Sinica, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [10] Yuan Chen-Chen. Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [11] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [12] Chen Hua, Li Bao-Wei, Zhao Ming, Zhang Xue-Feng, Jia Xiao-Lin, Du Yong-Sheng. Effect of existence form of La3+ on the properties of the Bayan Obo Mine tailing glass ceramics. Acta Physica Sinica, 2015, 64(19): 196201. doi: 10.7498/aps.64.196201
    [13] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [14] Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [15] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [16] Chen Yan, Jiang Min-Qiang, Dai Lan-Hong. Temperature-dependent yield asymmetry between tension and compression in metallic glasses. Acta Physica Sinica, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [17] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [18] Zhang Qiang, Hiroyuki Toda. Synchrotron K-edge subtraction imaging and its application to metallic foams. Acta Physica Sinica, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [19] Yi Rong-Qing, Yang Guo-Hong, Cui Yan-Li, Du Hua-Bing, Wei Min-Xi, Dong Jian-Jun, Zhao Yi-Dong, Cui Ming-Qi, Zheng Lei. Study of X-ray detector system characteristics on the 3B3 medium energy beamline in BSRF. Acta Physica Sinica, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [20] Tong Cun-Zhu, Zheng Pjing, Bai Hai-Yang, Chen Zhao-Jia, Luo Jian-Lin, Zhang Jie, Lin De-Hua, Wang Wei-Hua. . Acta Physica Sinica, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
Metrics
  • Abstract views:  4453
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2021
  • Accepted Date:  29 October 2021
  • Available Online:  24 February 2022
  • Published Online:  05 March 2022

/

返回文章
返回