Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow

Jiang Shuang-Shuang Zhu Li Liu Si-Nan Yang Zhan-Zhan Lan Si Wang Yin-Gang

Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang. Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow. Acta Phys. Sin., 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
Citation: Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang. Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow. Acta Phys. Sin., 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304

Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow

Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The atomic-scale structure and concomitant mechanical property evolution of a ribbon-shaped Fe78Si9B13 metallic glass after local plastic flow are investigated. By using abrasive papers as a medium to transport the pressure, the equivalent pressure on the ribbon surface is sufficiently magnified. Multiple shear bands pervading along their surface are generated simultaneously after deformation. The densification processes triggered by the cooperative atomic rearrangements in the short and medium-range are revealed by analyzing the synchrotron diffraction patterns in reciprocal space and real space. Meanwhile, the local plastic flow enhances the structural heterogeneity. In contrast to the strain-softening under uniaxial loading, these structural changes contribute to the improvement of resistance to subsequent deformation. As a result, the Vickers hardness of the deformed Fe78Si9B13 metallic glass increases compared with the undeformed sample, manifesting a local strain-hardening behavior.
      PACS:
      81.05.Kf(Glasses (including metallic glasses))
      62.20.F-(Deformation and plasticity)
      75.40.-s(Critical-point effects, specific heats, short-range order)
      41.60.Ap(Synchrotron radiation)
      Corresponding author: Wang Yin-Gang, yingang.wang@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51571115, 51871120) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China

    与晶体不同, 金属玻璃的塑性变形是以局部模式发生的, 而应变则主要通过剪切带承载[1]. 在大多数情况下, 剪切带会很快发展成裂纹, 并导致金属玻璃灾难性的破坏. 同时, 金属玻璃在塑性变形前后的力学性能也会表现出明显的差异. Pan等[2]发现剪切带中的结构膨胀会导致自由体积的突变, 从而引起应变软化现象. 然而, 研究表明当金属玻璃的特征长度足够小[3]或处于三轴应力约束下时[4]则会表现出应变硬化行为, 此外, 相分离结构的形成也有利于金属玻璃变形后的硬化[5]. Spaepen[6]指出, 当金属玻璃受到压力时, 存在着自由体积相互竞争的过程: 一方面, 压力促进自由体积的产生, 使材料趋于软化行为; 另一方面, 类似于扩散的原子重排反过来又会导致自由体积的湮灭. 因此, 金属玻璃是否软化或硬化取决于变形过程中自由体积的产生和湮灭之间的相互作用. 由于变形高度局限于剪切带中, 材料的其他部分基本保持不变形[7], 因此伴随的结构变化是微弱的, 难以通过实验手段进行检测, 目前大多数的研究主要还是围绕剪切带周围或内部进行[8]. 然而, 最近的一些研究结果显示, 对于金属玻璃, 受剪切带影响的区域远远超出了剪切带本身[9,10].

    目前, 普遍认为金属玻璃的结构不均匀性与合金的力学性能紧密关联[11,12], 通过对结构不均匀性的合理调控, 可以改变剪切带周围的应力场, 从而改善金属玻璃的力学行为[13-15]. 除了热处理[16,17]和微合金化[18,19]之外, 塑性预变形也可以作为一种很有效的方法来调整金属玻璃的结构不均匀性[20]. Bian等[21]发现, Zr-Cu-Ni-Al-Ti金属玻璃的结构不均匀性通过高压扭转(HPT)的严重塑性变形得到加强, 并最终提高了材料的拉伸应变. 然而, Zr-Ti-Cu-Ni-Be金属玻璃在玻璃转化温度(Tg)附近经HPT处理后, 纳米压痕测量的结果表明合金硬度得到显著提高, 硬度分布变得更广泛[22]. 鉴于此, 塑性变形如何影响金属玻璃的力学性能和结构不均匀性仍不清楚.

    本文采用了一种简单有效的途径, 通过砂纸作为传力的媒介来产生大量的剪切带, 即通过宏观的剪切变形来调节合金的结构不均匀性, 研究局部塑性变形产生的大量剪切带对金属玻璃在变形前后整体结构(而不仅限于剪切带周围或内部)的变化; 同时, 探究了这些结构的变化对非晶合金的热响应和机械响应的影响. 结果表明变形后的Fe78Si9B13金属玻璃的释放焓降低, 结构趋于致密化, 不均匀性增强, 但材料却呈现出局部硬化现象. 因此, 该局部塑形变形产生的独特结构异质性为理解非晶合金力学行为的结构起源提供证据.

    通过我们以前报道的单辊旋淬工艺[23]制备了厚度约30 μm的Fe78Si9B13金属玻璃带材. 将得到的非晶带材剪成2 mm宽和40 mm长的小段, 放于两片金相砂纸(粒度W28)之间, 形成一个“三明治”结构; 然后采用电动液压机(型号: DY-60)分别在0, 1, 3, 5和7 tf (1 tf = 9.80665 kN)的载荷下加压3 min, 即施加的压强分别为0, 4.9, 14.7, 24.5和34.3 MPa (样品简记为FSB-0, FSB-5, FSB-15, FSB-25和FSB-35), 随后在低于居里温度(623 K)约50 K的温度下将样品退火60 min, 以释放残余应力.

    样品的热行为通过差示扫描量热法(DSC, 型号: Netzsch DSC404F3)进行测量, 采用20 K/min的加热速率和30 mL/min的氩气流速. 样品的同步辐射X射线测量是在美国阿贡国家实验室先进光子源的11-ID-C线站上进行, 测试所用X射线的能量为105.7 keV, 对应于0.1173 Å (1 Å = 0.1 nm)的波长, 光斑大小为0.5 mm × 0.5 mm, 使用Perkin Elmer非晶Si探测器获取二维衍射图谱, 可获得波矢q高达30 Å–1的衍射数据; 获得的同步辐射数据使用Fit2D和PDFgetX2软件确定结构因子(即S(Q), Qmax 约30 Å–1), 然后通过傅里叶变换得出相应的约化对分布函数(PDF). 此外, 采用高分辨透射电子显微镜(HRTEM, 型号: FEI Talos F200X)来表征样品变形前后的微观结构. 采用数字显微硬度计(型号: HVS-1000A)来测量样品的硬度变化, 载荷的大小为1.96 N, 加载时间为10 s. 通过金相显微镜(型号: LWD200-4XC)和扫描电子显微镜(SEM, 型号: Hitachi S-4800)观察非晶带材变形前后的表面形貌.

    图1(a)为在电动液压机设备上对Fe78Si9B13非晶带材施加压力的示意图, 为了保证样品和砂纸的良好接触, 每一次加压前先用手轮进行预压. 图1(b)为选用的金相砂纸的金相显微图, 可发现嵌入在砂纸中的氧化铝颗粒的直径在10—30 μm之间, 当对样品施压时, 每个颗粒相当于一个微型压头, 根据加压的不同, 在样品表面的等效压力可以达到几兆帕到几十兆帕, 从而导致局部塑性变形. 如图1(c)所示, 变形前的非晶带表面光滑有金属光泽, 变形后非晶条出现了轻微的褶皱, 说明产生了明显的塑性应变.

    图 1 (a) Fe78Si9B13非晶带施加载荷的示意图; (b) 砂纸的金相显微图像; (c) 样品变形前后的光学图片\r\nFig. 1. (a) Schematic diagram for the stress applying procedure of the Fe78Si9B13 amorphous ribbon; (b) metallographic microscope images of the abrasive paper; (c) optical picture of samples before and after deformation.
    图 1  (a) Fe78Si9B13非晶带施加载荷的示意图; (b) 砂纸的金相显微图像; (c) 样品变形前后的光学图片
    Fig. 1.  (a) Schematic diagram for the stress applying procedure of the Fe78Si9B13 amorphous ribbon; (b) metallographic microscope images of the abrasive paper; (c) optical picture of samples before and after deformation.

    图2(a)(c)为施加不同压力后Fe78Si9B13金属玻璃带表面的金相显微镜图像, 图中的绿色箭头标出了剪切带的位置. FSB-0样品表面平整且光亮, 随着所施加载荷的增大, 剪切带数量密度增大的同时, 单条剪切带也不断向两端延伸. 这表明本文工艺提供了一种简单易行且十分有效的方法, 能够在条带状金属玻璃中同时生成大量剪切带, 为探究剪切带诱导的金属玻璃结构演变提供了契机. 与单轴压缩金属玻璃棒材的情况不同, 图2(a)(c)所示的剪切带遍布整个金属玻璃带表面并且单条剪切带总是局限在特定的区域, 而前者产生的剪切带沿着一个方向传播并跨越整个样品截面[2,24]. 利用SEM进一步观察带材表面的形貌差异, 相应结果如图2(d)(f)所示. 当Fe78Si9B13金属玻璃受到5 MPa的较低压力时(即FSB-5样品), 剪切带均匀分布, 各剪切带的间距约为2—3 μm. 随着所施加载荷的增大至15 MPa, 样品的剪切带开始出现分支, 如图2(e)中的插图所示. 当压力进一步增大到35 MPa后, 可以在金属玻璃带材的表面观察到主剪切带与次生剪切带间明显的相互作用与交叉, 而主剪切带之间仍保持相对平行的分布. 上述剪切带形貌随所施加载荷逐渐变化, 这意味着Fe78Si9B13金属玻璃在发生塑性变形后, 局域结构也处于不断演变的过程中.

    图 2 (a)—(c) Fe78Si9B13金属玻璃在约5, 15和35 MPa载荷下的金相显微图像; (d)—(f) SEM图像, 插图为高倍放大的SEM图像\r\nFig. 2. (a)–(c) Metallographic microscope images and (d)–(f) SEM images of the Fe78Si9B13 metallic glasses subjected to about 5, 15, and 35 MPa, respectively. The insets are the SEM images with high magnification.
    图 2  (a)—(c) Fe78Si9B13金属玻璃在约5, 15和35 MPa载荷下的金相显微图像; (d)—(f) SEM图像, 插图为高倍放大的SEM图像
    Fig. 2.  (a)–(c) Metallographic microscope images and (d)–(f) SEM images of the Fe78Si9B13 metallic glasses subjected to about 5, 15, and 35 MPa, respectively. The insets are the SEM images with high magnification.

    图3(a)所示为Fe78Si9B13金属玻璃在施加不同压力后的DSC曲线, 其中插图为Tc的局部放大, 可发现, 变形前后样品的特征温度, 包括起始晶化温度(Tx)和居里温度(Tc), 在实验误差内几乎保持不变, 这与低温退火诱导铁/钴基金属玻璃弛豫所观察到的Tc向高温方向移动截然不同[25,26]. 然而, 如图3(b)所示, 总的释放焓(ΔH)随着压力的增加呈现出轻微的下降趋势, 相对于FSB-0样品的ΔH值(–110.8 J/g), 变形后样品的ΔH依次降低, 从FSB-5样品的–107.5 J/g, 分别降为FSB-15的–101.6 J/g, FSB-25的–99.4 J/g和FSB-35的–97.9 J/g. 在金属玻璃中, 较低的能量通常对应于原子较密排的状态[27], 在这种情况下, 较小的总释放焓意味着样品结构上的致密化得到增强. 此外, 放热峰的位置受基体材料结构变化的影响很大[22], 可发现, 随着压力的增加, 第二放热峰的位置向低温方向移动(如图3(c)所示), 这些预示了样品在受到不同载荷的变形过程中, 发生了短程或长程的原子扩散现象.

    图 3 (a) 样品变形前后的DSC曲线, 插图是样品Tc附近的放大图; (b) 不同样品总的释放焓的比较; (c) 各样品上所对应第二峰的位置\r\nFig. 3. (a) DSC curves of the samples before and after deformation, the inset is the enlargement near the Tc of samples; (b) comparison of the total enthalpy release on various samples; (c) the position of the corresponding second peak on various samples.
    图 3  (a) 样品变形前后的DSC曲线, 插图是样品Tc附近的放大图; (b) 不同样品总的释放焓的比较; (c) 各样品上所对应第二峰的位置
    Fig. 3.  (a) DSC curves of the samples before and after deformation, the inset is the enlargement near the Tc of samples; (b) comparison of the total enthalpy release on various samples; (c) the position of the corresponding second peak on various samples.

    为进一步确定样品结构随压力的演变, 采用同步辐射XRD分析. 图4(a)为在不同压力下Fe78Si9B13金属玻璃的结构因子S(q). 可发现, S(q)曲线在q = 3.3 Å附近出现主峰, 随着q值的增大, 出现一个劈裂的第二峰, 在高q区域, 曲线则在S(q) = 1附近振荡, 表明所有样品均处于非晶态. 当样品发生塑性变形后, 第一峰的峰位值q1向右移动(见图4(a)插图). 用pseudo-Voigt函数拟合S(q)的第一峰, 据此获取峰位值q1与半高宽(FWHM)随压力的变化, 如图4(b)所示. 由于q1与金属玻璃的平均原子体积成幂次率关系[28,29], q1的单调递增表明变形后Fe78Si9B13金属玻璃的结构变得致密, 然而, FWHM(与玻璃/液体的相关长度有关[30])在实验误差范围内几乎没有变化.

    图 4 (a) Fe78Si9B13金属玻璃的结构因子S(q), 插图是第一峰附近的局部放大曲线(数据沿S(q)轴进行了移动); (b) S(q)中第一个峰的峰位和FWHM; (c) Fe78Si9B13金属玻璃的约化对分布函数G(r), 其中虚线标记了特征峰的位置; (d) 通过减去未变形样品的数据得到的G(r)的差异; (e)获取随方位角变化的衍射图谱的示意图; (f) 由pseudo-Voigt函数拟合S(q)中第一个峰的峰位与方位角的函数, 插图是由正弦函数拟合得出的振幅\r\nFig. 4. (a) Structure factor S(q) of the Fe78Si9B13 metallic glasses, and the inset is the enlarged curves around the first peak (The data is shifted along S(q) axis for clarification); (b) peak position and FWHM of the first peak in S(q); (c) reduced pair distribution function G(r) of the Fe78Si9B13 metallic glasses, in which the dashed lines label the positions of characteristic peaks; (d) the difference in G(r) obtained by subtracting the data of the undeformed sample as a reference; (e) schematic diagram illustrating the acquisition of angular-dependent diffraction patterns; (f) position of the first peak in S(q) obtained from pseudo-Voigt function fitting as a function of angle, and the inset is the amplitude of oscillation derived from the sinusoidal function fitting.
    图 4  (a) Fe78Si9B13金属玻璃的结构因子S(q), 插图是第一峰附近的局部放大曲线(数据沿S(q)轴进行了移动); (b) S(q)中第一个峰的峰位和FWHM; (c) Fe78Si9B13金属玻璃的约化对分布函数G(r), 其中虚线标记了特征峰的位置; (d) 通过减去未变形样品的数据得到的G(r)的差异; (e)获取随方位角变化的衍射图谱的示意图; (f) 由pseudo-Voigt函数拟合S(q)中第一个峰的峰位与方位角的函数, 插图是由正弦函数拟合得出的振幅
    Fig. 4.  (a) Structure factor S(q) of the Fe78Si9B13 metallic glasses, and the inset is the enlarged curves around the first peak (The data is shifted along S(q) axis for clarification); (b) peak position and FWHM of the first peak in S(q); (c) reduced pair distribution function G(r) of the Fe78Si9B13 metallic glasses, in which the dashed lines label the positions of characteristic peaks; (d) the difference in G(r) obtained by subtracting the data of the undeformed sample as a reference; (e) schematic diagram illustrating the acquisition of angular-dependent diffraction patterns; (f) position of the first peak in S(q) obtained from pseudo-Voigt function fitting as a function of angle, and the inset is the amplitude of oscillation derived from the sinusoidal function fitting.

    此外, 通过傅里叶变换将S(q)转换为约化对分布函数(PDF), 在实空间内对结构演变进行更为深入的研究. 图4(c)显示了Fe78Si9B13金属玻璃的约化对分布函数G(r)曲线, 其中虚线标注了特征峰的位置, 通过将所有的峰位ri (i = 2—7)归一到r1, 计算出ri/r1分别为1.65, 1.97, 2.50, 3.35, 4.15和4.92, 这些值与在体心立方结构中发现的值相吻合, 表明铁基金属玻璃具有隐藏的拓扑序[31]. 当Fe78Si9B13金属玻璃塑性变形后, G(r)曲线的变化十分细微, 为了获取样品结构演变更为直观的图像, 通过减去未变形的FSB-0样品的数据得到ΔG(r)的相对变化, 如图4(d)所示. 可发现, ΔG(r)中峰的高度随着压力的增加呈现出上升的趋势; 此外, 这种变化并不局限于最近邻的原子壳层, 而是通过团簇间的连接不断拓展到更高的配位层. 对比FSB-0和FSB-35样品, G(r)第一峰的差异拥有最大的绝对值(约0.24 Å–2), 这约等于第一峰峰高的2.53%. 然而, 对应于Fe78Si9B13金属玻璃的中程有序结构的特征峰, 峰强度的变化幅度事实上更为明显, 以箭头标记的r4处的峰值为例, 其高度达到参考数据的6.05%, 换言之, 短程和中程尺度的原子协同重排促成了Fe78Si9B13金属玻璃变形后的致密化.

    研究人员发现对金属玻璃进行变形(无论是弹性还是塑性)可以诱发结构不均匀性的变化[32,33]. 如图4(e)所示, 通过在 ± 5°的圆弧上对二维图谱进行方位角θ平均, 获得了一系列随方位角θ变化的衍射图谱. 同样使用pseudo-Voigt 函数拟合结构因子S(q)的第一峰, 获得峰位值q1随方位角θ变化的信息, 结果见图4(f). q1θ的曲线似乎是波浪形的, q1在90°左右达到最小值, 在270°左右达到最大值, 表明存在原子级的结构不均匀性(或各向异性). 引入正弦函数q1(θ)=k+Asin[π/ω(θθc)]拟合曲线, 其中k是反映q1平均值的常数, θc为相位角, Aω表示振动的振幅和频率, 拟合结果如图4(f)中插图所示, 除FSB-15样品外, 拟合得到的振幅A和施加的压力大小整体上呈正相关性, 这表明局部塑性变形加剧了Fe78Si9B13金属玻璃的结构不均匀性.

    据报道, 可以利用G(r)曲线峰位置的移动来描述体积应变ε(ε=(r/r0)31)[34,35]. 当塑性变形后, Fe78Si9B13金属玻璃从短程到中程尺度范围内的应变均为负的体积应变, 这与图5(a)中基于结构因子分析所得的材料结构致密化相吻合. 此外, |ε|随施加压力的增大而增大, 并且所有数据点整体上都落在同一条直线上, 即不具有长度尺度依赖性, 如图5(b)所示. 尽管Fe78Si9B13金属玻璃在更大的尺度范围内以不均匀的模式开展塑性变形(见图2), 但在短程及中程尺度, 其结构上的响应是相对均匀的, 这与热激发下的结构演化略有不同, 在热激发下, 金属玻璃的短程有序结构对热弛豫更为敏感[23]. 因此, 结合G(r)曲线的分析结果, 可认为Fe78Si9B13金属玻璃在发生塑性变形后的致密化是由发生在短程以及中程尺度的原子协同重排引起的.

    图 5 (a) 由G(r)曲线峰位置的相对位移确定的不同压力下Fe78Si9B13金属玻璃的体积应变ε; (b) ε随压力的变化\r\nFig. 5. (a) Volume strain ε of Fe78Si9B13 metallic glasses at various pressures determined from the relative displacement of the peak position of the G(r); (b) the variation of ε with pressure.
    图 5  (a) 由G(r)曲线峰位置的相对位移确定的不同压力下Fe78Si9B13金属玻璃的体积应变ε; (b) ε随压力的变化
    Fig. 5.  (a) Volume strain ε of Fe78Si9B13 metallic glasses at various pressures determined from the relative displacement of the peak position of the G(r); (b) the variation of ε with pressure.

    图6所示为Fe78Si9B13金属玻璃塑性变形前后的HRTEM图像, 插图是相对应的快速傅里叶变换(FFT)图案, 进一步说明样品处于非晶态. 图6(a)所示, 未变形FSB-0样品的HRTEM 图像呈现“迷宫状”的均匀图案, 而FSB-35样品中, 观察到大量特征尺寸约为3 nm的暗区, 如图6(b)中黄色圆圈所标注; 同时, 嵌入的放大图像显示没有晶格条纹, 这排除了由塑性变形引起的微小晶粒的存在. 因此可认为图像中的暗区对应于样品中密度较高的区域, 从拓扑结构的角度看, 此处含有较少的自由体积[36]. 此外, 也进行了FSB-0和FSB-35样品的环形暗场扫描TEM(ADF-STEM)测量, 如图6(c), (d)所示, 在纳米尺度上检测到由暗区和亮区交替形成的不均匀对比[37]; 与FSB-0样品相比, FSB-35样品的明暗区清晰可辨, 呈现出尺寸约2—3 nm的暗区, 这进一步表明塑性变形后样品的结构不均匀性程度增加.

    图 6 Fe78Si9B13金属玻璃未变形(a)和变形(b)的HRTEM图像, 插图是相对应的FFT模式, 黄色的圆圈标出了低亮度的区域; Fe78Si9B13金属玻璃未变形(c)和变形(d)的环形暗场扫描TEM (ADF-STEM)图像\r\nFig. 6. HRTEM images of the undeformed (a) and deformed (b) Fe78Si9B13 metallic glasses. The insets are the corresponding FFT patterns, and the yellow circles mark the regions with low brightness. Annular dark-field scanning TEM (ADF-STEM) images of the undeformed (c) and deformed (d) Fe78Si9B13 metallic glasses.
    图 6  Fe78Si9B13金属玻璃未变形(a)和变形(b)的HRTEM图像, 插图是相对应的FFT模式, 黄色的圆圈标出了低亮度的区域; Fe78Si9B13金属玻璃未变形(c)和变形(d)的环形暗场扫描TEM (ADF-STEM)图像
    Fig. 6.  HRTEM images of the undeformed (a) and deformed (b) Fe78Si9B13 metallic glasses. The insets are the corresponding FFT patterns, and the yellow circles mark the regions with low brightness. Annular dark-field scanning TEM (ADF-STEM) images of the undeformed (c) and deformed (d) Fe78Si9B13 metallic glasses.

    上述倒空间和实空间的分析表明, Fe78Si9B13金属玻璃不仅使塑性变形样品的结构不均匀性得到增强, 而且结构趋于致密化, 这暗示材料此时将表现为加工硬化行为. 图7(a), (c)分别显示了变形前后样品的维氏硬度压痕阵列的金相显微镜图. 可发现, 在压头区域周围存在两种类型的局部塑性变形行为, 即半圆形的剪切带以及沿径向传播的裂纹[38]. 与未变形的FSB-0样品相比, FSB-35样品的局部塑性变形可以抑制径向裂纹, 使半圆形的剪切带占据主导. 此外, 将从36个不同位置获取的维氏硬度绘制成二维等值线图, 如图7(b), (d)所示, 每个压痕之间的距离为50 μm. 可发现, 未变形的Fe78Si9B13金属玻璃的硬度在580—680 HV之间波动, 反映样品在微米尺度的不均匀性, 相类似的现象在FeNiPC 非晶合金中也有报道[39], 相比之下, FSB-35样品的维氏硬度的波动范围则增大, 表明合金的不均匀程度加剧. 此外, 未变形的FSB-0样品的平均硬度值约为628 HV, 而发生塑性变形的FSB-35样品, 维氏硬度大约增大到720 HV, 平均硬度提高了14.6%, 表现出了加工硬化行为.

    图 7 未变形(a)和变形(c) Fe78Si9B13金属玻璃压痕的金相显微镜图像; 未变形FSB-0试样(b)和FSB-35试样(d)的维氏硬度等值线图\r\nFig. 7. Metallographic microscope images of the indentations for the undeformed (a) and deformed (c) Fe78Si9B13 metallic glasses; Vickers hardness contour plots of the undeformed FSB-0 sample (b) and the FSB-35 sample (d).
    图 7  未变形(a)和变形(c) Fe78Si9B13金属玻璃压痕的金相显微镜图像; 未变形FSB-0试样(b)和FSB-35试样(d)的维氏硬度等值线图
    Fig. 7.  Metallographic microscope images of the indentations for the undeformed (a) and deformed (c) Fe78Si9B13 metallic glasses; Vickers hardness contour plots of the undeformed FSB-0 sample (b) and the FSB-35 sample (d).

    上文观察到的Fe78Si9B13金属玻璃的局部加工硬化可以归因于结构致密化[40,41]和不均匀性增强[42], 其提高了剪切强度并阻碍了剪切带的径向传播, 这与之前报道的锆基金属玻璃在单轴压缩的情况下, 出现应变软化[43]和原子堆积致密度减小的现象[44]截然不同. 图8为塑性变形前后原子结构排列示意图, 变形前, 合金的原子排列相对松散, 少量原子移动能力较强, 存在大量的自由体积; 施加压力则加速了原子迁移, 使自由体积湮灭的速率大于产生速率, 原子的排列变得更加密集, 降低了原子的移动能力, 结构趋于致密化. 此外, 由于局部塑性变形的不均匀性作用, 虽然整体原子排列密集, 但仍然存在少量原子相对松散的排列(即红色虚线区域), 使得不同区域的原子的移动能力差异增大, 从而导致图8中塑性变形后样品的结构不均匀性加强. 最近的磁力显微镜观察[9]和高能纳米束X射线衍射[10]的结果显示, 剪切带的影响区域可以延伸至距离剪切带中心几十乃至上百个微米的区域, 并且剪切带周围存在应变梯度, 多个剪切带之间正是通过各自周围影响区域的叠加发生相互作用, 我们预计, 遍布整个表面的多个剪切带将引起剪切带影响区的明显重叠, 造成类似于晶态合金中的位错堆积的效果, 在局部塑性变形之后, 径向的变形将受到阻碍. 另一方面, 研究发现在Zr-Cu-Al金属玻璃中, 与未变形的样品相比, 变形样品剪切带周围的松弛动力学速度提高10倍[45]. 所以, 本塑性变形使得样品中多个剪切带同时激活和传播, 自由体积湮灭的速率预计将超过产生速率, 如同步辐射XRD已证明变形后样品的整体结构致密度增加, 从而导致硬度的增大.

    图 8 施加压力前后Fe78Si9B13金属玻璃的原子结构示意图\r\nFig. 8. Schematic of atomic structure for Fe78Si9B13 metallic glass before and after applying pressure.
    图 8  施加压力前后Fe78Si9B13金属玻璃的原子结构示意图
    Fig. 8.  Schematic of atomic structure for Fe78Si9B13 metallic glass before and after applying pressure.

    本研究采用了一种简单而有效的方法, 通过砂纸作为介质来传输并放大作用在Fe78Si9B13金属玻璃带材表面的等效压强, 可以在合金表面产生大量的剪切带并诱发局域塑性变形, 为探究剪切带诱导的非晶合金结构演变提供了契机. 通过同步辐射XRD分析, 观察到变形后样品的结构因子S(q)上第一峰峰位置随着压力的增大不断向高q方向移动, 表明合金的结构致密度逐渐增大, 过剩自由体积湮灭, 实空间上的分析结果表明, 合金的致密化源于短程及中程尺度上的原子协同重排. 同时, 还发现Fe78Si9B13金属玻璃在发生塑性变形后, 结构不均匀程度增大, 这一点可以通过S(q)第一峰峰位值随方位角的正弦波动以及HRTEM和ADF-STEM图像中明暗区对比的出现加以证明. 此外, 与单轴加载下非晶合金的加工软化不同, 上述结构演变有助于增强合金后续变形的抗力, 维氏硬度测试的结果显示, 相对于未变形的Fe78Si9B13金属玻璃带, 塑性变形的FSB-35样品的维氏硬度提高了约14.6%, 样品表现为加工硬化行为.

    感谢美国能源部(DOE)科学办公室的先进光子源设施资源, 由阿贡国家实验室运营(合同号: DE-AC02-06CH11357).

    [1]

    Greer A L, Cheng Y Q, Ma E 2013 Mat. Sci. Eng. R 74 71Google Scholar

    [2]

    Pan J, Chen Q, Liu L, Li Y 2011 Acta Mater. 59 5146Google Scholar

    [3]

    Jang D, Greer J R 2010 Nat. Mater. 9 215Google Scholar

    [4]

    Pan J, Ivanov Y P, Zhou W H, Li Y, Greer A L 2020 Nature 578 559Google Scholar

    [5]

    Wang T, Si J J, Wu Y D, Lv K, Liu Y H, Hui X D 2018 Scripta Mater. 150 106Google Scholar

    [6]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [7]

    Dmowski W, Yokoyama Y, Chuang A, Ren Y, Umemoto M, Tsuchiya K, Inoue A, Egami T 2010 Acta Mater. 58 429Google Scholar

    [8]

    Rosner H, Peterlechner M, Kubel C, Schmidt V, Wilde G 2014 Ultramicroscopy 142 1Google Scholar

    [9]

    Shen L Q, Luo P, Hu Y C, Bai H Y, Sun Y H, Sun B A, Liu Y H, Wang W H 2018 Nat. Commun. 9 4414Google Scholar

    [10]

    Shahabi H S, Scudino S, Kaban I, Stoica M, Escher B, Menzel S, Vaughan G B M, Kühn U, Eckert J 2016 Acta Mater. 111 187Google Scholar

    [11]

    Ma E, Ding J 2016 Mater. Today 19 568Google Scholar

    [12]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [13]

    Cubuk E D, Ivancic R J S, Schoenholz S S, et al. 2017 Science 358 1033Google Scholar

    [14]

    Wei D, Yang J, Jiang M Q, Wei B C, Wang Y J, Dai L H 2019 Phys. Rev. B 99 014115Google Scholar

    [15]

    Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 9 3965Google Scholar

    [16]

    Li B S, Xie S H, Kruzic J J 2019 Acta Mater. 176 278Google Scholar

    [17]

    Wakeda M, Saida J 2019 Sci. Technol. Adv. Mater. 20 632Google Scholar

    [18]

    Kim H K, Ahn J P, Lee B J, Park K W, Lee J C 2018 Acta Mater. 157 209Google Scholar

    [19]

    Luo L S, Wang B B, Dong F Y, Su Y Q, Guo E Y, Xu Y J, Wang M Y, Wang L, Yu J X, Ritchie R O, Guo J J, Fu H Z 2019 Acta Mater. 171 216Google Scholar

    [20]

    Ebner C, Escher B, Gammer C, Eckert J, Pauly S, Rentenberger C 2018 Acta Mater. 160 147Google Scholar

    [21]

    Bian X L, Zhao D, Kim J T, Sopu D, Wang G, Pippan R, Eckert J 2019 Mater. Sci. Eng. A 752 36Google Scholar

    [22]

    Kovács Z, Schafler E, Kis V K, Szommer P J, Révész Á 2018 J. Non-Cryst. Solids 498 25Google Scholar

    [23]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88Google Scholar

    [24]

    Wang J G, Hu Y C, Guan P F, Song K K, Wang L, Wang G, Pan Y, Sarac B, Eckert J 2017 Sci. Rep. 7 7076Google Scholar

    [25]

    Taghvaei A H, Shirazifard N G, Ramasamy P, Bednarčik J, Eckert J 2018 J. Alloy. Compd. 748 553Google Scholar

    [26]

    Yüce E, Sarac B, Ketov S, Reissner M, Eckert J 2021 J. Alloy. Compd. 872 159620Google Scholar

    [27]

    Huang B, Ge T P, Liu G L, Luan J H, He Q F, Yuan Q X, Huang W X, Zhang K, Bai H Y, Shek C H, Liu C T, Yang Y, Wang W H 2018 Acta Mater. 155 69Google Scholar

    [28]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30Google Scholar

    [29]

    Zeng Q S, Kono Y, Lin Y, Zeng Z D, Wang J Y, Sinogeikin S V, Park C, Meng Y, Yang W G, Mao H K, Mao W L 2014 Phys. Rev. Lett. 112 185502Google Scholar

    [30]

    Micoulaut M, Bauchy M 2013 Phys. Status Solidi B 250 976Google Scholar

    [31]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035Google Scholar

    [32]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar

    [33]

    Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42Google Scholar

    [34]

    Taghvaei A H, Shahabi H S, Bednarčik J, Eckert J 2015 J. Appl. Phys. 117 044902Google Scholar

    [35]

    Scudino S, Stoica M, Kaban I, Prashanth K G, Vaughan G B M, Eckert J 2015 J. Alloy. Compd. 639 465Google Scholar

    [36]

    Chen Z Q, Huang L, Wang F, Huang P, Lu T J, Xu K W 2016 Mater. Design 109 179Google Scholar

    [37]

    Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119 215501Google Scholar

    [38]

    Jaafari Z, Seifoddini A, Hasani S 2019 Metall. Mater. Trans. A 50 2875Google Scholar

    [39]

    Sarac B, Ivanov Y P, Chuvilin A, Schoberl T, Stoica M, Zhang Z L, Eckert J 2018 Nat. Commun. 9 1333Google Scholar

    [40]

    Wang Z T, Pan J, Li Y, Schuh C A 2013 Phys. Rev. Lett. 111 135504Google Scholar

    [41]

    Stolpe M, Kruzic J J, Busch R 2014 Acta Mater. 64 231Google Scholar

    [42]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501Google Scholar

    [43]

    Bhowmick R, Raghavan R, Chattopadhyay K, Ramamurty U 2006 Acta Mater. 54 4221Google Scholar

    [44]

    Tong Y, Iwashita T, Dmowski W, Bei H, Yokoyama Y, Egami T 2015 Acta Mater. 86 240Google Scholar

    [45]

    Küchemann S, Liu C Y, Dufresne E M, Shin J, Maaß R 2018 Phys. Rev. B 97 014204Google Scholar

    期刊类型引用(1)

    1. 张安,刘凌志,古泽芳,赵凡,赖建平,胡海龙,袁卫锋,余家欣. 块体金属玻璃在纳米磨损下的加工硬化行为研究. 机械工程学报. 2025(01): 265-273 . 百度学术

    其他类型引用(3)

  • 图 1  (a) Fe78Si9B13非晶带施加载荷的示意图; (b) 砂纸的金相显微图像; (c) 样品变形前后的光学图片

    Figure 1.  (a) Schematic diagram for the stress applying procedure of the Fe78Si9B13 amorphous ribbon; (b) metallographic microscope images of the abrasive paper; (c) optical picture of samples before and after deformation.

    图 2  (a)—(c) Fe78Si9B13金属玻璃在约5, 15和35 MPa载荷下的金相显微图像; (d)—(f) SEM图像, 插图为高倍放大的SEM图像

    Figure 2.  (a)–(c) Metallographic microscope images and (d)–(f) SEM images of the Fe78Si9B13 metallic glasses subjected to about 5, 15, and 35 MPa, respectively. The insets are the SEM images with high magnification.

    图 3  (a) 样品变形前后的DSC曲线, 插图是样品Tc附近的放大图; (b) 不同样品总的释放焓的比较; (c) 各样品上所对应第二峰的位置

    Figure 3.  (a) DSC curves of the samples before and after deformation, the inset is the enlargement near the Tc of samples; (b) comparison of the total enthalpy release on various samples; (c) the position of the corresponding second peak on various samples.

    图 4  (a) Fe78Si9B13金属玻璃的结构因子S(q), 插图是第一峰附近的局部放大曲线(数据沿S(q)轴进行了移动); (b) S(q)中第一个峰的峰位和FWHM; (c) Fe78Si9B13金属玻璃的约化对分布函数G(r), 其中虚线标记了特征峰的位置; (d) 通过减去未变形样品的数据得到的G(r)的差异; (e)获取随方位角变化的衍射图谱的示意图; (f) 由pseudo-Voigt函数拟合S(q)中第一个峰的峰位与方位角的函数, 插图是由正弦函数拟合得出的振幅

    Figure 4.  (a) Structure factor S(q) of the Fe78Si9B13 metallic glasses, and the inset is the enlarged curves around the first peak (The data is shifted along S(q) axis for clarification); (b) peak position and FWHM of the first peak in S(q); (c) reduced pair distribution function G(r) of the Fe78Si9B13 metallic glasses, in which the dashed lines label the positions of characteristic peaks; (d) the difference in G(r) obtained by subtracting the data of the undeformed sample as a reference; (e) schematic diagram illustrating the acquisition of angular-dependent diffraction patterns; (f) position of the first peak in S(q) obtained from pseudo-Voigt function fitting as a function of angle, and the inset is the amplitude of oscillation derived from the sinusoidal function fitting.

    图 5  (a) 由G(r)曲线峰位置的相对位移确定的不同压力下Fe78Si9B13金属玻璃的体积应变ε; (b) ε随压力的变化

    Figure 5.  (a) Volume strain ε of Fe78Si9B13 metallic glasses at various pressures determined from the relative displacement of the peak position of the G(r); (b) the variation of ε with pressure.

    图 6  Fe78Si9B13金属玻璃未变形(a)和变形(b)的HRTEM图像, 插图是相对应的FFT模式, 黄色的圆圈标出了低亮度的区域; Fe78Si9B13金属玻璃未变形(c)和变形(d)的环形暗场扫描TEM (ADF-STEM)图像

    Figure 6.  HRTEM images of the undeformed (a) and deformed (b) Fe78Si9B13 metallic glasses. The insets are the corresponding FFT patterns, and the yellow circles mark the regions with low brightness. Annular dark-field scanning TEM (ADF-STEM) images of the undeformed (c) and deformed (d) Fe78Si9B13 metallic glasses.

    图 7  未变形(a)和变形(c) Fe78Si9B13金属玻璃压痕的金相显微镜图像; 未变形FSB-0试样(b)和FSB-35试样(d)的维氏硬度等值线图

    Figure 7.  Metallographic microscope images of the indentations for the undeformed (a) and deformed (c) Fe78Si9B13 metallic glasses; Vickers hardness contour plots of the undeformed FSB-0 sample (b) and the FSB-35 sample (d).

    图 8  施加压力前后Fe78Si9B13金属玻璃的原子结构示意图

    Figure 8.  Schematic of atomic structure for Fe78Si9B13 metallic glass before and after applying pressure.

  • [1]

    Greer A L, Cheng Y Q, Ma E 2013 Mat. Sci. Eng. R 74 71Google Scholar

    [2]

    Pan J, Chen Q, Liu L, Li Y 2011 Acta Mater. 59 5146Google Scholar

    [3]

    Jang D, Greer J R 2010 Nat. Mater. 9 215Google Scholar

    [4]

    Pan J, Ivanov Y P, Zhou W H, Li Y, Greer A L 2020 Nature 578 559Google Scholar

    [5]

    Wang T, Si J J, Wu Y D, Lv K, Liu Y H, Hui X D 2018 Scripta Mater. 150 106Google Scholar

    [6]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [7]

    Dmowski W, Yokoyama Y, Chuang A, Ren Y, Umemoto M, Tsuchiya K, Inoue A, Egami T 2010 Acta Mater. 58 429Google Scholar

    [8]

    Rosner H, Peterlechner M, Kubel C, Schmidt V, Wilde G 2014 Ultramicroscopy 142 1Google Scholar

    [9]

    Shen L Q, Luo P, Hu Y C, Bai H Y, Sun Y H, Sun B A, Liu Y H, Wang W H 2018 Nat. Commun. 9 4414Google Scholar

    [10]

    Shahabi H S, Scudino S, Kaban I, Stoica M, Escher B, Menzel S, Vaughan G B M, Kühn U, Eckert J 2016 Acta Mater. 111 187Google Scholar

    [11]

    Ma E, Ding J 2016 Mater. Today 19 568Google Scholar

    [12]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [13]

    Cubuk E D, Ivancic R J S, Schoenholz S S, et al. 2017 Science 358 1033Google Scholar

    [14]

    Wei D, Yang J, Jiang M Q, Wei B C, Wang Y J, Dai L H 2019 Phys. Rev. B 99 014115Google Scholar

    [15]

    Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 9 3965Google Scholar

    [16]

    Li B S, Xie S H, Kruzic J J 2019 Acta Mater. 176 278Google Scholar

    [17]

    Wakeda M, Saida J 2019 Sci. Technol. Adv. Mater. 20 632Google Scholar

    [18]

    Kim H K, Ahn J P, Lee B J, Park K W, Lee J C 2018 Acta Mater. 157 209Google Scholar

    [19]

    Luo L S, Wang B B, Dong F Y, Su Y Q, Guo E Y, Xu Y J, Wang M Y, Wang L, Yu J X, Ritchie R O, Guo J J, Fu H Z 2019 Acta Mater. 171 216Google Scholar

    [20]

    Ebner C, Escher B, Gammer C, Eckert J, Pauly S, Rentenberger C 2018 Acta Mater. 160 147Google Scholar

    [21]

    Bian X L, Zhao D, Kim J T, Sopu D, Wang G, Pippan R, Eckert J 2019 Mater. Sci. Eng. A 752 36Google Scholar

    [22]

    Kovács Z, Schafler E, Kis V K, Szommer P J, Révész Á 2018 J. Non-Cryst. Solids 498 25Google Scholar

    [23]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88Google Scholar

    [24]

    Wang J G, Hu Y C, Guan P F, Song K K, Wang L, Wang G, Pan Y, Sarac B, Eckert J 2017 Sci. Rep. 7 7076Google Scholar

    [25]

    Taghvaei A H, Shirazifard N G, Ramasamy P, Bednarčik J, Eckert J 2018 J. Alloy. Compd. 748 553Google Scholar

    [26]

    Yüce E, Sarac B, Ketov S, Reissner M, Eckert J 2021 J. Alloy. Compd. 872 159620Google Scholar

    [27]

    Huang B, Ge T P, Liu G L, Luan J H, He Q F, Yuan Q X, Huang W X, Zhang K, Bai H Y, Shek C H, Liu C T, Yang Y, Wang W H 2018 Acta Mater. 155 69Google Scholar

    [28]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30Google Scholar

    [29]

    Zeng Q S, Kono Y, Lin Y, Zeng Z D, Wang J Y, Sinogeikin S V, Park C, Meng Y, Yang W G, Mao H K, Mao W L 2014 Phys. Rev. Lett. 112 185502Google Scholar

    [30]

    Micoulaut M, Bauchy M 2013 Phys. Status Solidi B 250 976Google Scholar

    [31]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035Google Scholar

    [32]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar

    [33]

    Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42Google Scholar

    [34]

    Taghvaei A H, Shahabi H S, Bednarčik J, Eckert J 2015 J. Appl. Phys. 117 044902Google Scholar

    [35]

    Scudino S, Stoica M, Kaban I, Prashanth K G, Vaughan G B M, Eckert J 2015 J. Alloy. Compd. 639 465Google Scholar

    [36]

    Chen Z Q, Huang L, Wang F, Huang P, Lu T J, Xu K W 2016 Mater. Design 109 179Google Scholar

    [37]

    Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119 215501Google Scholar

    [38]

    Jaafari Z, Seifoddini A, Hasani S 2019 Metall. Mater. Trans. A 50 2875Google Scholar

    [39]

    Sarac B, Ivanov Y P, Chuvilin A, Schoberl T, Stoica M, Zhang Z L, Eckert J 2018 Nat. Commun. 9 1333Google Scholar

    [40]

    Wang Z T, Pan J, Li Y, Schuh C A 2013 Phys. Rev. Lett. 111 135504Google Scholar

    [41]

    Stolpe M, Kruzic J J, Busch R 2014 Acta Mater. 64 231Google Scholar

    [42]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501Google Scholar

    [43]

    Bhowmick R, Raghavan R, Chattopadhyay K, Ramamurty U 2006 Acta Mater. 54 4221Google Scholar

    [44]

    Tong Y, Iwashita T, Dmowski W, Bei H, Yokoyama Y, Egami T 2015 Acta Mater. 86 240Google Scholar

    [45]

    Küchemann S, Liu C Y, Dufresne E M, Shin J, Maaß R 2018 Phys. Rev. B 97 014204Google Scholar

  • [1] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [2] Densification and heterogeneity enhancement of a Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211304
    [3] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] Yu Hai-Bin, Yang Qun. Ultrastable glasses. Acta Physica Sinica, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [6] Wang Jun-Qiang, Ouyang Su. Extended elastic model for flow of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [7] Ma Jiang, Yang Can, Gong Feng, Wu Xiao-Yu, Liang Xiong. Thermoplastic forming of bulk metallic glasses. Acta Physica Sinica, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [8] Hu Li-Na, Zhao Xi, Zhang Chun-Zhi. Fragile-to-strong transition in metallic glass-forming liquids. Acta Physica Sinica, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [9] Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming. Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound. Acta Physica Sinica, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [10] Yuan Chen-Chen. Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [11] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [12] Chen Hua, Li Bao-Wei, Zhao Ming, Zhang Xue-Feng, Jia Xiao-Lin, Du Yong-Sheng. Effect of existence form of La3+ on the properties of the Bayan Obo Mine tailing glass ceramics. Acta Physica Sinica, 2015, 64(19): 196201. doi: 10.7498/aps.64.196201
    [13] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [14] Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [15] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [16] Chen Yan, Jiang Min-Qiang, Dai Lan-Hong. Temperature-dependent yield asymmetry between tension and compression in metallic glasses. Acta Physica Sinica, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [17] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [18] Zhang Qiang, Hiroyuki Toda. Synchrotron K-edge subtraction imaging and its application to metallic foams. Acta Physica Sinica, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [19] Yi Rong-Qing, Yang Guo-Hong, Cui Yan-Li, Du Hua-Bing, Wei Min-Xi, Dong Jian-Jun, Zhao Yi-Dong, Cui Ming-Qi, Zheng Lei. Study of X-ray detector system characteristics on the 3B3 medium energy beamline in BSRF. Acta Physica Sinica, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [20] Tong Cun-Zhu, Zheng Pjing, Bai Hai-Yang, Chen Zhao-Jia, Luo Jian-Lin, Zhang Jie, Lin De-Hua, Wang Wei-Hua. . Acta Physica Sinica, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
  • 期刊类型引用(1)

    1. 张安,刘凌志,古泽芳,赵凡,赖建平,胡海龙,袁卫锋,余家欣. 块体金属玻璃在纳米磨损下的加工硬化行为研究. 机械工程学报. 2025(01): 265-273 . 百度学术

    其他类型引用(3)

Metrics
  • Abstract views:  5518
  • PDF Downloads:  102
  • Cited By: 4
Publishing process
  • Received Date:  13 July 2021
  • Accepted Date:  29 October 2021
  • Available Online:  24 February 2022
  • Published Online:  05 March 2022

/

返回文章
返回