-
Understanding the structure-property relationship of metallic glasses (MGs) at an atomic- or electronic level is a challenging topic in condensed matter physics. MGs usually exhibit low macroscopic plasticity, owing to the localized plastic flow in nano- and micro-meter scale shear bands upon deformation, which impedes their wide application as new structural materials. Thus, a detailed description of internal structure and establishing the structure-property relationship would underpin our knowledge of the mechanisms for the ductility/brittleness of MGs and further improve their plasticity. Due to the lack of structural defects such as dislocations and grain boundaries, the short- or middle-ranged ordered clusters are the typical deformation units in MGs, where the bonding strength and direction between atoms are the key factors that affect the cooperative displacements inside deformation unit. However, the bonding nature of MGs and their structure-property relationship are little studied systematically, which hinders our comprehensive understanding the basic problems about mechanical behaviors of MGs, such as fracture and plasticity deformation mechanism.In this paper, the potential correlation between the flexibility of bonding and ductility of MGs is discussed in detail. The first section gives a simple introduction of this topic. In the second section, the latest research progress of the electronic structural study of MGs is presented. Here, the corresponding studies of electronic structures of crystal alloys and their relationship with the mechanical properties are also presented for comparison. In the third section, the traditional and new experimental techniques employed for electronic structure measurements are presented, such as X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy and auger electron spectroscopy and the parameters such as nuclear magnetic resonance knight shift, susceptibility (χ) and specific heat (C) are also given in order to introduce electronic structure analysis methods of MGs and further reveal the bonding character of MGs and recent experimental findings of the relationship between the electronic structure and the mechanical properties of MGs.Numerous studies show that in the typical transition metal (TM)—metalloid metallic glass systems, the bond flexibility or mobility of atoms at the tip of crack that depends on the degree of bonding hybridization, determines the intrinsic plasticity versus brittleness. For instance, in these transition metal (TM)-based MGs, when metalloid element M with sp-element shells is alloyed in the TM matrix, the s-density of states (DOS) at M sites is scattered far below the Fermi level due to the pd hybridization between the p orbitals of M element and the d orbitals of TM. This causes the reduction of s-DOS at the Fermi energy (gs(EF)) at the solute M sites and exhibits a strong character. Thus, it is proposed that the gs(EF) can be employed as an effective order parameter to characterize the nature of bonding, especially in the aspect of evaluating bond flexibilities in amorphous alloys. This shows that the plastic flow and fracture process of MGs on an atomic scale can be well described using a simple bonding model where the deformation process is accompanied with the broken-down and reforming of atomic bonding inside short- or middleranged ordered clusters, since the defects are absent in MGs. We hope that this introduction can provide a much clearer picture of the bonding character of MGs, and further guide us in understanding the mechanism for ductile-to-brittle transition in MGs and exploring the novel MGs with intrinsic plasticity.directional boning
-
Keywords:
- metallic glasses /
- electronic structure /
- mechanical properties /
- ductility
[1] Eberhart M E, Clougherty D P 2004 Nat. Mater. 3 659
[2] Eberhart M E, Giamei A F 1998 Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 248 287
[3] Jones T E, Eberhart M E, Clougherty D P, Woodward C 2008 Phys. Rev. Lett. 101 085505.
[4] Liu Y, Chen K Y, Lu G, Zhang J H, Hu Z Q 1997 Acta Mater. 45 1837
[5] Krasko G L, Olson G B 1990 Solid State Commun. 76 247
[6] Lejcek P 2010 Grain Boundary Segregation in Metals (Vol. 136) (Berlin, Heidelberg: Springer-Verlag Press) p1
[7] Sloman H A 1932 J. I. Met. 49 365
[8] Lee H T, Brick R M 1952 J. I. Met. 4 147
[9] Rosi F D, Dube C A, Alexander B H 1953 Trans. Am. I. Min. Metall. Eng. 197 257
[10] Pugh S F 1954 Philos. Mag. 45 823
[11] Bader R F W 1998 J. Phys. Chem. A 102 7314
[12] Gschneidner K A, Ji M, Wang C Z, Ho K M, Russell A M, Mudryk Y, Becker A T, Larson J L 2009 Acta Mater. 57 5876
[13] Maclaren J M, Crampin S, Vvedensky D D, Eberhart M E 1989 Phys. Rev. Lett. 63 2586
[14] Maclaren J M, Gonis A, Schadler G 1992 Phys. Rev. B 45 14392.
[15] Eberhart M E, Vvedensky D D 1987 Phys. Rev. Lett. 58 61
[16] Eberhart M E 1999 Sci. Am. 281 66
[17] Eberhart M E 1996 Acta Mater. 44 2495
[18] Nakashima P N H, Smith A E, Etheridge J, Muddle B C 2011 Science 331 1583
[19] Eberhart M E, Clougherty D P, Maclaren J M 1993 Philos. Mag. B: Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 68 455
[20] Eberhart M E, Jones T E, Sauer M A 2008 JOM 60 67
[21] Eberhart M E 1996 Philos. Mag. A: Phys. Condens. Matter Struct. Defect Mech. Prop. 73 47
[22] Beltz G E, Selinger R L B, Kim K S, Marder M P 1999 Fracture and Ductile Vs. Brittle Behavior-Theory, Modelling and Experiment (Vol. 539) (Cambridge: Cambridge University Press) p13
[23] Eberhart M E, Donovan, M M, Maclaren, J M, Clougherty, D P 1991 Prog. Surf. Sci. 36 1
[24] Niu H Y, Chen X Q, Liu P T, Xing W W, ChengX Y, Li D Z, Li Y Y 2012 Sci. Rep. 2 718
[25] Ogata S, Li J, Yip S 2002 Science 298 807
[26] Morinaga M, Saito J, Yukawa N, Adachi H 1990 Acta Metall. Mater. 38 25
[27] Heredia F E, Pope D P 1991 Acta Metall. Mater. 39 2017
[28] Lejcek P, Hofmann S 1995 Crit. Rev. Solid State Mater. Sci. 20 1
[29] Datta A, Waghmare U V, Ramamurty U 2008 Acta Mater. 56 2531
[30] Cheng Y Q, Cao A J, Ma E 2009 Acta Mater. 57 3253
[31] Weaire D, Ashby M F, Logan J, Weins M J 1971 Acta Metall. 19 779
[32] Cheng Y Q, Ma E 2011 Acta Mater. 59 1800
[33] Wang W H 2007 Prog. Mater. Sci. 52 540
[34] Spaepen F 1977 Acta Metall. 25 407
[35] Argon A S 1979 Acta Metall. 27 47
[36] Spaepen F 2006 Scr. Mater. 54 363
[37] Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501
[38] Wang W H 2005 J. Non-Cryst. Solids 351 1481
[39] Wang W H 2006 J. Appl. Phys. 99 093506
[40] Rouxel T 2007 J. Am. Ceram. Soc. 90 3019
[41] Fukuhara M, Takahashi M, Kawazoe Y, Inoue A 2007 Appl. Phys. Lett. 90 073114
[42] Mayou D, Nguyenmanh D, Pasturel A, Cyrotlackmann F 1986 Phys. Rev. B 33 3384
[43] Tamura R, Takeuchi T, Aoki C, Takeuchi S, Kiss T, Yokoya T, Shin S 2004 Phys. Rev. Lett. 92 146402
[44] Huang L, Wang C Z, Hao S G, Kramer M J, Ho K M 2010 Phys. Rev. B 81 014108
[45] Yuan C C, Yang F, Kargl F, Holland-Moritz D, Simeoni G G, Meyer A 2015 Phys. Rev. B 91 214203
[46] Amamou A, Krill G 1979 Solid State Commun. 31 971
[47] Amamou A 1979 Phys. Status Solidi A: Appl. Res. 54 565
[48] He Q A, Cheng Y Q, Ma E, Xu J A 2011 Acta Mater. 59 202
[49] Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501
[50] Weinert M, Watson R E 1998 Phys. Rev. B 58 9732
[51] Sandor M T, Kecskes L J, He Q, Xu J, Wu Y 2011 Chin. Sci. Bull. 56 3937
[52] Wang X F, Jones T E, Wu Y, Lu Z P, Halas S, DurakiewiczT, Eberhart M E 2014 J. Chem. Phys. 141 024503
[53] Gu X J, Poon S J, Shiflet G J, Widom M 2008 Acta Mater. 56 88
[54] Mitra A, Jiles D C 1997 J. Magn. Magn. Mater. 168 169
[55] Duwez P, Lin S C H 1967 J. Appl. Phys. 38 4096
[56] Nishiyama N, Inoue A 1996 Mater. T. JIM 37 1531
[57] Xu D H, Duan G, Johnson W L 2004 Phys. Rev. Lett. 92 245504
[58] Shen J, Liang W Z, Sun J F 2006 Appl. Phys. Lett. 89 121908
[59] Inoue A, Shen B L, Yavari A R, Greer A L 2003 J. Mater. Res. 18 1487
[60] Mott N F, Davis E A 1979 Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon Press) Chaps. 5
[61] Miracle D B 2004 Nat. Mater. 3 697
[62] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
[63] Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404
[64] Xi X K, Sandor M T, Wang H J, Wang J Q, Hwang W, Wu Y 2011 J. Phys.-Condes. Matter 23 115501
[65] Johnson K H, Leon F A, Eberhart M E 1982 J. I. Met. 34 58
[66] Oelhafen P, Hauser E, Guntherodt H J 1980 Helvet. Phys. Acta 52 378
[67] Oelhafen P, Hauser E, Guntherodt H J, Bennemann K H 1979 Phys. Rev. Lett. 43 1134
[68] Amamou A 1980 Solid State Commun. 33 1029
[69] Park R L 1975 Phys. Today 28 52
[70] Onn D G, Johnson W D, Gleeson P F, Donnelly T A, Egami T, Liebermann H H 1977 J. Phys. C: Solid State Phys. 10 639
[71] Butler N H 1977 Phys. Rev. B: Solid State 15 5267
[72] Yang D P, Hines W A, Tsai C L, Giessen B C, Lu F C 1991 J. Appl. Phys. 69 6225
[73] Hines W A, Glover K, Clark W G, Kabacoff L T, Modzelewski C U, Hasegawa R, Duwez P 1980 Phys. Rev. B 21 3771
[74] Narath A 1969 Phys. Rev. 179 359
[75] Panissod P, Guerra D A, Amamou A, Durand J, Johnson W L, Carter W L, Poon S J 1980 Phys. Rev. Lett. 44 1465
[76] Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501.
[77] Zhang Y D, Budnick J I, Ford J C, Hines W A 1991 J. Magn. Magn. Mater. 100 13
[78] Pokatillov V S 2007 Phys. Solid State 49 2217
[79] Imafuku M, Saito K, Kanehashi K, Saida J, Sato S, Inoue A 2005 J. Non-Cryst. Solids 351 3587
[80] Breitzke H, Luders K, Scudino S, Kuhn U, Eckert J 2004 Phys. Rev. B 70 014201
[81] Panissod P, Bakonyi I, Hasegawa R 1983 Phys. Rev. B 28 2374
[82] Yuan C C, Xiang J F, Xi X K, Wang W H 2011 Phys. Rev. Lett. 107 236403
[83] Yuan C C, Yang Y F, Xi X K 2013 J. Appl. Phys. 114 213511
[84] Yuan C C, Shen X, Cui J, Gu L, Yu R C, Xi X K 2012 Appl. Phys. Lett. 101 021902
[85] Yang W M, Liu H S, Zhao Y C, Inoue A, Jiang K M, Huo J T, Ling H B, Li Q, Shen B L 2014 Sci. Rep. 4 6233
-
[1] Eberhart M E, Clougherty D P 2004 Nat. Mater. 3 659
[2] Eberhart M E, Giamei A F 1998 Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 248 287
[3] Jones T E, Eberhart M E, Clougherty D P, Woodward C 2008 Phys. Rev. Lett. 101 085505.
[4] Liu Y, Chen K Y, Lu G, Zhang J H, Hu Z Q 1997 Acta Mater. 45 1837
[5] Krasko G L, Olson G B 1990 Solid State Commun. 76 247
[6] Lejcek P 2010 Grain Boundary Segregation in Metals (Vol. 136) (Berlin, Heidelberg: Springer-Verlag Press) p1
[7] Sloman H A 1932 J. I. Met. 49 365
[8] Lee H T, Brick R M 1952 J. I. Met. 4 147
[9] Rosi F D, Dube C A, Alexander B H 1953 Trans. Am. I. Min. Metall. Eng. 197 257
[10] Pugh S F 1954 Philos. Mag. 45 823
[11] Bader R F W 1998 J. Phys. Chem. A 102 7314
[12] Gschneidner K A, Ji M, Wang C Z, Ho K M, Russell A M, Mudryk Y, Becker A T, Larson J L 2009 Acta Mater. 57 5876
[13] Maclaren J M, Crampin S, Vvedensky D D, Eberhart M E 1989 Phys. Rev. Lett. 63 2586
[14] Maclaren J M, Gonis A, Schadler G 1992 Phys. Rev. B 45 14392.
[15] Eberhart M E, Vvedensky D D 1987 Phys. Rev. Lett. 58 61
[16] Eberhart M E 1999 Sci. Am. 281 66
[17] Eberhart M E 1996 Acta Mater. 44 2495
[18] Nakashima P N H, Smith A E, Etheridge J, Muddle B C 2011 Science 331 1583
[19] Eberhart M E, Clougherty D P, Maclaren J M 1993 Philos. Mag. B: Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 68 455
[20] Eberhart M E, Jones T E, Sauer M A 2008 JOM 60 67
[21] Eberhart M E 1996 Philos. Mag. A: Phys. Condens. Matter Struct. Defect Mech. Prop. 73 47
[22] Beltz G E, Selinger R L B, Kim K S, Marder M P 1999 Fracture and Ductile Vs. Brittle Behavior-Theory, Modelling and Experiment (Vol. 539) (Cambridge: Cambridge University Press) p13
[23] Eberhart M E, Donovan, M M, Maclaren, J M, Clougherty, D P 1991 Prog. Surf. Sci. 36 1
[24] Niu H Y, Chen X Q, Liu P T, Xing W W, ChengX Y, Li D Z, Li Y Y 2012 Sci. Rep. 2 718
[25] Ogata S, Li J, Yip S 2002 Science 298 807
[26] Morinaga M, Saito J, Yukawa N, Adachi H 1990 Acta Metall. Mater. 38 25
[27] Heredia F E, Pope D P 1991 Acta Metall. Mater. 39 2017
[28] Lejcek P, Hofmann S 1995 Crit. Rev. Solid State Mater. Sci. 20 1
[29] Datta A, Waghmare U V, Ramamurty U 2008 Acta Mater. 56 2531
[30] Cheng Y Q, Cao A J, Ma E 2009 Acta Mater. 57 3253
[31] Weaire D, Ashby M F, Logan J, Weins M J 1971 Acta Metall. 19 779
[32] Cheng Y Q, Ma E 2011 Acta Mater. 59 1800
[33] Wang W H 2007 Prog. Mater. Sci. 52 540
[34] Spaepen F 1977 Acta Metall. 25 407
[35] Argon A S 1979 Acta Metall. 27 47
[36] Spaepen F 2006 Scr. Mater. 54 363
[37] Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501
[38] Wang W H 2005 J. Non-Cryst. Solids 351 1481
[39] Wang W H 2006 J. Appl. Phys. 99 093506
[40] Rouxel T 2007 J. Am. Ceram. Soc. 90 3019
[41] Fukuhara M, Takahashi M, Kawazoe Y, Inoue A 2007 Appl. Phys. Lett. 90 073114
[42] Mayou D, Nguyenmanh D, Pasturel A, Cyrotlackmann F 1986 Phys. Rev. B 33 3384
[43] Tamura R, Takeuchi T, Aoki C, Takeuchi S, Kiss T, Yokoya T, Shin S 2004 Phys. Rev. Lett. 92 146402
[44] Huang L, Wang C Z, Hao S G, Kramer M J, Ho K M 2010 Phys. Rev. B 81 014108
[45] Yuan C C, Yang F, Kargl F, Holland-Moritz D, Simeoni G G, Meyer A 2015 Phys. Rev. B 91 214203
[46] Amamou A, Krill G 1979 Solid State Commun. 31 971
[47] Amamou A 1979 Phys. Status Solidi A: Appl. Res. 54 565
[48] He Q A, Cheng Y Q, Ma E, Xu J A 2011 Acta Mater. 59 202
[49] Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501
[50] Weinert M, Watson R E 1998 Phys. Rev. B 58 9732
[51] Sandor M T, Kecskes L J, He Q, Xu J, Wu Y 2011 Chin. Sci. Bull. 56 3937
[52] Wang X F, Jones T E, Wu Y, Lu Z P, Halas S, DurakiewiczT, Eberhart M E 2014 J. Chem. Phys. 141 024503
[53] Gu X J, Poon S J, Shiflet G J, Widom M 2008 Acta Mater. 56 88
[54] Mitra A, Jiles D C 1997 J. Magn. Magn. Mater. 168 169
[55] Duwez P, Lin S C H 1967 J. Appl. Phys. 38 4096
[56] Nishiyama N, Inoue A 1996 Mater. T. JIM 37 1531
[57] Xu D H, Duan G, Johnson W L 2004 Phys. Rev. Lett. 92 245504
[58] Shen J, Liang W Z, Sun J F 2006 Appl. Phys. Lett. 89 121908
[59] Inoue A, Shen B L, Yavari A R, Greer A L 2003 J. Mater. Res. 18 1487
[60] Mott N F, Davis E A 1979 Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon Press) Chaps. 5
[61] Miracle D B 2004 Nat. Mater. 3 697
[62] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
[63] Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404
[64] Xi X K, Sandor M T, Wang H J, Wang J Q, Hwang W, Wu Y 2011 J. Phys.-Condes. Matter 23 115501
[65] Johnson K H, Leon F A, Eberhart M E 1982 J. I. Met. 34 58
[66] Oelhafen P, Hauser E, Guntherodt H J 1980 Helvet. Phys. Acta 52 378
[67] Oelhafen P, Hauser E, Guntherodt H J, Bennemann K H 1979 Phys. Rev. Lett. 43 1134
[68] Amamou A 1980 Solid State Commun. 33 1029
[69] Park R L 1975 Phys. Today 28 52
[70] Onn D G, Johnson W D, Gleeson P F, Donnelly T A, Egami T, Liebermann H H 1977 J. Phys. C: Solid State Phys. 10 639
[71] Butler N H 1977 Phys. Rev. B: Solid State 15 5267
[72] Yang D P, Hines W A, Tsai C L, Giessen B C, Lu F C 1991 J. Appl. Phys. 69 6225
[73] Hines W A, Glover K, Clark W G, Kabacoff L T, Modzelewski C U, Hasegawa R, Duwez P 1980 Phys. Rev. B 21 3771
[74] Narath A 1969 Phys. Rev. 179 359
[75] Panissod P, Guerra D A, Amamou A, Durand J, Johnson W L, Carter W L, Poon S J 1980 Phys. Rev. Lett. 44 1465
[76] Xi X K, Li L L, Zhang B, Wang W H, Wu Y 2007 Phys. Rev. Lett. 99 095501.
[77] Zhang Y D, Budnick J I, Ford J C, Hines W A 1991 J. Magn. Magn. Mater. 100 13
[78] Pokatillov V S 2007 Phys. Solid State 49 2217
[79] Imafuku M, Saito K, Kanehashi K, Saida J, Sato S, Inoue A 2005 J. Non-Cryst. Solids 351 3587
[80] Breitzke H, Luders K, Scudino S, Kuhn U, Eckert J 2004 Phys. Rev. B 70 014201
[81] Panissod P, Bakonyi I, Hasegawa R 1983 Phys. Rev. B 28 2374
[82] Yuan C C, Xiang J F, Xi X K, Wang W H 2011 Phys. Rev. Lett. 107 236403
[83] Yuan C C, Yang Y F, Xi X K 2013 J. Appl. Phys. 114 213511
[84] Yuan C C, Shen X, Cui J, Gu L, Yu R C, Xi X K 2012 Appl. Phys. Lett. 101 021902
[85] Yang W M, Liu H S, Zhao Y C, Inoue A, Jiang K M, Huo J T, Ling H B, Li Q, Shen B L 2014 Sci. Rep. 4 6233
Catalog
Metrics
- Abstract views: 7046
- PDF Downloads: 645
- Cited By: 0