Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Establishment of composite leakage model and design of GaN Schottky barrier diode with stepped field plate

Liu Cheng Li Ming Wen Zhang Gu Zhao-Yuan Yang Ming-Chao Liu Wei-Hua Han Chuan-Yu Zhang Yong Geng Li Hao Yue

Citation:

Establishment of composite leakage model and design of GaN Schottky barrier diode with stepped field plate

Liu Cheng, Li Ming, Wen Zhang, Gu Zhao-Yuan, Yang Ming-Chao, Liu Wei-Hua, Han Chuan-Yu, Zhang Yong, Geng Li, Hao Yue
PDF
HTML
Get Citation
  • Quasi-vertical GaN barrier Schottky diodes have attracted much attention due to their low cost and high current transfer capability. The main problem is that the reverse characteristics of the devices may not be well estimated, which affects the design of the diodes. In this paper, the defects of GaN materials and the leakage related tunneling mechanisms accompanied with other mechanisms are considered. Based on the established composite device models, the reverse leakage current is simulated which is well consistent with the recent experimental result. With the assistance of the proposed models, several field plate structures are discussed and simulated to obtain a quasi-vertical GaN barrier Schottky diode with high breakdown voltage. The major leakage mechanisms are also analyzed according to the relation among leakage current, temperature and electric field at various reverse voltages. High BFOM up to 73.81 MW/cm2 is achieved by adopting the proposed stepped field plate structure.
      Corresponding author: Geng Li, gengli@mail.xjtu.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017YFB0404102).
    [1]

    Lee F C, Li Q 2013 IEEE Trans. Power Electron. 28 4127Google Scholar

    [2]

    Zhang Y, Sun M, Liu Z, Piedra D, Lee H S, Gao F, Fujishima T, Palacios T 2013 IEEE Trans. Electron. Devices 60 2224Google Scholar

    [3]

    Oka T 2019 Jpn. J. Appl. Phys. 58 Sb0805Google Scholar

    [4]

    Li Z D, Chow T P 2013 IEEE Trans. Electron. Devices 60 3230Google Scholar

    [5]

    Kizilyalli I C, Edwards A P, Nie H, Bui-Quang P, Disney D, Bour D 2014 IEEE Electron. Dev. Lett. 35 654Google Scholar

    [6]

    Saitoh Y, Sumiyoshi K, Okada M, et al. 2010 Appl. Phys. Express 3 081001Google Scholar

    [7]

    Bouzid F, Pezzimenti F, Dehimi L, Megherbi M L, Della Corte F G 2017 Jpn. J. Appl. Phys. 56 094301Google Scholar

    [8]

    Lukasiak L, Jasinski J, Jakubowski A 2016 12th Conference on Electron Technology (ELTE) Wisla, Poland, September. 11–14, 2016 10175

    [9]

    Bian Z, Zhang T, Zhang J, Zhao S, Zhou H, Xue J, Duan X, Zhang Y, Chen J, Dang K, Ning J, Hao Y 2019 Appl. Phys. Express 12 084004Google Scholar

    [10]

    Ohta H, Kaneda N, Horikiri F, Narita Y, Yoshida T, Mishima T, Nakamura T 2015 IEEE Electron. Dev. Lett. 36 1180Google Scholar

    [11]

    Nomoto K, Hu Z, Song B, Zhu M, et al. 2015 International Electron Devices Meeting (IEDM) Washington DC, USA, December 7–9, 2015 p9

    [12]

    Tanaka N, Hasegawa K, Yasunishi K, Murakami N, Oka T 2015 Appl. Phys. Express 8 071001Google Scholar

    [13]

    Li W, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017 IEEE Trans. Electron Devices 64 1635Google Scholar

    [14]

    Santi E, Peng K, Mantooth H A, Hudgins J L 2015 IEEE Trans. Electron Devices 62 434Google Scholar

    [15]

    Kumar M, Bhat T N, Roul B, Rajpalke M K, Kalghatgi A T, Krupanidhi S B 2012 Mater. Res. Bull. 47 1306Google Scholar

    [16]

    Cao Y, Chu R, Li R, Chen M, Chang R, Hughes B 2016 Appl. Phys. Lett. 108 062103Google Scholar

    [17]

    Yu L S, Liu Q Z, Xing Q J, Qiao D J, Lau S S, Redwing J 1998 J. Appl. Phys. 84 2099Google Scholar

    [18]

    Ozbek A M, Baliga B J 2011 Solid State Electron 62 1Google Scholar

    [19]

    Ieong M, Solomon P M, Laux S E, Wong H S P, Chidambarrao D 1998 International Electron Devices Meeting (IEDM) San Francisco, Ca, December 6–9, 1998 p733

    [20]

    Lei Y, Lu H, Cao D, Chen D, Zhang R, Zheng Y 2013 Solid State Electron 82 63Google Scholar

    [21]

    Albrecht J D, Wang R P, Ruden P P, Farahmand M, Brennan K F 1998 J. Appl. Phys. 83 4777Google Scholar

    [22]

    Gignac L M, Parrill T M, Chandrashekhar G V 1995 Thin Solid Films 261 59Google Scholar

    [23]

    Chevtchenko S A, Reshchikov M A, Fan Q, Ni X, Moon Y T, Baski A A, Morkoc H 2007 J. Appl. Phys. 101 113709Google Scholar

    [24]

    Fujita S, Ohishi T, Toyoshima H, Sasaki A 1985 J. Appl. Phys. 57 426Google Scholar

    [25]

    Vargheese K D, Rao G M 2001 J. Vac. Sci. Technol. A 19 2122Google Scholar

    [26]

    Lei Y, Shi H, Lu H, Chen D, Zhang R, Zheng Y 2013 J. Semicond. 34 054007Google Scholar

    [27]

    Tomer D, Rajput S, Hudy L J, Li C H, Li L 2015 Appl. Phys. Lett. 106 173510Google Scholar

    [28]

    Lenzlinger M, Snow E H 1968 IEEE Trans. Electron Devices ED15 686

    [29]

    Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H, Hao Y 2018 Superlattices Microstruct. 119 212Google Scholar

    [30]

    Dang G T, Zhang A P, Mshewa M M, Ren F, Chyi J I, Lee C M, Chuo C C, Chi G C, Han J, Chu S N G, Wilson R G, Cao X A, Pearton S J 2000 J. Vac. Sci. Technol. A 18 1135Google Scholar

    [31]

    Zhu T G, Lambert D J H, Shelton B S, Wong M M, Chowdhury U, Dupuis R D 2000 Appl. Phys. Lett. 77 2918Google Scholar

    [32]

    Witte W, Fahle D, Koch H, Heuken M, Kalisch H, Vescan A 2012 Semicond. Sci. Technol. 27 085015Google Scholar

    [33]

    Li L, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y, Ao J P 2014 IEEE J. Electron Devices Soc. 2 168Google Scholar

    [34]

    Gupta C, Enatsu Y, Gupta G, Keller S, Mishra U K 2016 Phys. Status Solidi A 213 878Google Scholar

    [35]

    Bian Z K, Zhou H, Xu S R, Zhang T, Dang K, Chen J B, Zhang J C, Hao Y 2019 Superlattices Microst. 125 295Google Scholar

  • 图 1  准垂直GaN SBD关键仿真模型 (a) SBT模型; (b) NT模型; (c) 准垂直GaN SBD的仿真和文献[9]提取的反向J-V实验测试曲线比较, 插图给出了仿真的器件结构

    Figure 1.  Key simulation model of quasi-vertical GaN SBDs: (a) SBT model; (b) NT model; (c) simulated and related experimental reverse J-V curves of the quasi-vertical GaN SBD schottky diode with the same structure as Ref. [9], the inset shows the simulated devicestructure.

    图 2  准垂直GaN SBD截面示意图 (a) 无场板结构; (b) 平面型场板结构; (c) 接触型场板结构; (d) 阶梯型场板结构

    Figure 2.  Cross-sections of different quasi-vertical GaN SBDs: (a) Without FP; (b) with plane FP; (c) with contacted FP; (d) with stepped FP.

    图 3  (a) 不同场板终端结构的准垂直GaN SBD的反向J-V特性曲线; (b) 阶梯型场板结构的几何参数与击穿电压的关系曲线(插图展示了阶梯型场板的结构示意图)

    Figure 3.  (a) Reverse J-V curves of the quasi-vertical GaN SBDs with various FP structures; (b) breakdown voltage of the stepped FP structure versus its geometric parameters, the inset shows the schematic diagram and geometric parameters of the stepped FP.

    图 4  不同场板终端结构的准垂直GaN SBD的电场分布图 (a) 无场板结构; (b) 平面型场板结构; (c) 接触型场板结构; (d) 阶梯型场板结构; (e) 不同场板终端结构GaN SBD的nGaN漂移层电场分布曲线

    Figure 4.  Electric field distribution diagrams of the quasi-vertical GaN SBDs with various FP structures: (a) Without FP; (b) with plane FP; (c) with contacted FP; (d) with stepped FP; (e) electric field distribution curves of nGaN layers for different FP structures.

    图 5  线性依赖关系图 (a) PFE机制对应的ln(I/E)与E 1/2和SBT机制对应的ln(I/T 2)与E 1/2; (b) 高反向电压–580—–330 V时, FNT机制对应的ln(I/E 2)与–1/E; 在低电场及反向电压小于–300 V下, 热电子发射机制对应的 (c) ln IE1/2和(d) lnI与1000/T关系; 在中等电场强度及反向电压–300— –120 V下, VRH机制对应的 (e) lnJE, (f) lnJT –5/4关系(对应的温度范围为200—400 K)

    Figure 5.  Plots of (a) ln(I/E) versus E 1/2 for PFE and ln(I/T 2) versus E 1/2 for SBT; (b) ln(I/E 2) versus –1/E for FNT under high reverse voltages from –580 V to –330 V; (c) ln I versus E 1/2 for thermal emission under small reverse voltages of lower than –300 V; (d) temperature (200—400 K) dependent plot of ln I versus 1000/T; (e) lnJ versus E and (f) lnJ versus T-5/4 (200–400 K) for VRH under medium high reverse voltages from –300 V to –120 V.

    图 6  (a) 含有阶梯型场板终端结构GaN SBD的正向J-V特性曲线; (b) 多级阶梯型场板终端结构GaN SBD的正向J-V特性曲线

    Figure 6.  (a) Forward J-V curve of the stepped FP structure; (b) forward J-V curves of the quasi-vertical GaN SBDs with multi-stepped FP.

    图 7  蓝宝石衬底准垂直型GaN SBD的击穿电压与导通电阻的对比图(BFOM单位为MW/cm2)

    Figure 7.  Bench marking the break down voltage and on-resistance of quasi-vertical GaN SBDs on sapphire substrates.

    表 1  GaN SBD漏电模型及应用范围

    Table 1.  Summary of GaN SBD leakage current simulation models.

    模型种类物理模型应用范围
    状态模型能带变窄模型不限
    不完全电离模型较高掺杂
    隧穿模型陷阱辅助隧穿模型缺陷相关材料
    非局域隧穿模型较高电场
    肖特基隧穿模型不限
    复合模型Auger复合模型不限
    SRH复合模型不限

    迁移率模型
    Albrecht 模型较低电场
    GaN饱和迁移率模型较高电场
    平行电场迁移率模型不限
    电离模型Selberherr电离模型 不限
    DownLoad: CSV

    表 2  准垂直型GaN SBD多级阶梯型场板结构的主要电学参数

    Table 2.  Key electrical parameters of quasi-vertical GaN SBDs with multi-stepped FP.

    阶梯型场板结构击穿电压/V开启电压/V导通电阻/(mΩ·cm2)BFOM/ (MW·cm–2)
    0阶场板552.40.424.469.35
    1阶场板582.70.424.673.81
    2阶场板584.20.425.166.92
    3阶场板585.10.435.859.02
    4阶场板586.40.446.552.90
    DownLoad: CSV
  • [1]

    Lee F C, Li Q 2013 IEEE Trans. Power Electron. 28 4127Google Scholar

    [2]

    Zhang Y, Sun M, Liu Z, Piedra D, Lee H S, Gao F, Fujishima T, Palacios T 2013 IEEE Trans. Electron. Devices 60 2224Google Scholar

    [3]

    Oka T 2019 Jpn. J. Appl. Phys. 58 Sb0805Google Scholar

    [4]

    Li Z D, Chow T P 2013 IEEE Trans. Electron. Devices 60 3230Google Scholar

    [5]

    Kizilyalli I C, Edwards A P, Nie H, Bui-Quang P, Disney D, Bour D 2014 IEEE Electron. Dev. Lett. 35 654Google Scholar

    [6]

    Saitoh Y, Sumiyoshi K, Okada M, et al. 2010 Appl. Phys. Express 3 081001Google Scholar

    [7]

    Bouzid F, Pezzimenti F, Dehimi L, Megherbi M L, Della Corte F G 2017 Jpn. J. Appl. Phys. 56 094301Google Scholar

    [8]

    Lukasiak L, Jasinski J, Jakubowski A 2016 12th Conference on Electron Technology (ELTE) Wisla, Poland, September. 11–14, 2016 10175

    [9]

    Bian Z, Zhang T, Zhang J, Zhao S, Zhou H, Xue J, Duan X, Zhang Y, Chen J, Dang K, Ning J, Hao Y 2019 Appl. Phys. Express 12 084004Google Scholar

    [10]

    Ohta H, Kaneda N, Horikiri F, Narita Y, Yoshida T, Mishima T, Nakamura T 2015 IEEE Electron. Dev. Lett. 36 1180Google Scholar

    [11]

    Nomoto K, Hu Z, Song B, Zhu M, et al. 2015 International Electron Devices Meeting (IEDM) Washington DC, USA, December 7–9, 2015 p9

    [12]

    Tanaka N, Hasegawa K, Yasunishi K, Murakami N, Oka T 2015 Appl. Phys. Express 8 071001Google Scholar

    [13]

    Li W, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017 IEEE Trans. Electron Devices 64 1635Google Scholar

    [14]

    Santi E, Peng K, Mantooth H A, Hudgins J L 2015 IEEE Trans. Electron Devices 62 434Google Scholar

    [15]

    Kumar M, Bhat T N, Roul B, Rajpalke M K, Kalghatgi A T, Krupanidhi S B 2012 Mater. Res. Bull. 47 1306Google Scholar

    [16]

    Cao Y, Chu R, Li R, Chen M, Chang R, Hughes B 2016 Appl. Phys. Lett. 108 062103Google Scholar

    [17]

    Yu L S, Liu Q Z, Xing Q J, Qiao D J, Lau S S, Redwing J 1998 J. Appl. Phys. 84 2099Google Scholar

    [18]

    Ozbek A M, Baliga B J 2011 Solid State Electron 62 1Google Scholar

    [19]

    Ieong M, Solomon P M, Laux S E, Wong H S P, Chidambarrao D 1998 International Electron Devices Meeting (IEDM) San Francisco, Ca, December 6–9, 1998 p733

    [20]

    Lei Y, Lu H, Cao D, Chen D, Zhang R, Zheng Y 2013 Solid State Electron 82 63Google Scholar

    [21]

    Albrecht J D, Wang R P, Ruden P P, Farahmand M, Brennan K F 1998 J. Appl. Phys. 83 4777Google Scholar

    [22]

    Gignac L M, Parrill T M, Chandrashekhar G V 1995 Thin Solid Films 261 59Google Scholar

    [23]

    Chevtchenko S A, Reshchikov M A, Fan Q, Ni X, Moon Y T, Baski A A, Morkoc H 2007 J. Appl. Phys. 101 113709Google Scholar

    [24]

    Fujita S, Ohishi T, Toyoshima H, Sasaki A 1985 J. Appl. Phys. 57 426Google Scholar

    [25]

    Vargheese K D, Rao G M 2001 J. Vac. Sci. Technol. A 19 2122Google Scholar

    [26]

    Lei Y, Shi H, Lu H, Chen D, Zhang R, Zheng Y 2013 J. Semicond. 34 054007Google Scholar

    [27]

    Tomer D, Rajput S, Hudy L J, Li C H, Li L 2015 Appl. Phys. Lett. 106 173510Google Scholar

    [28]

    Lenzlinger M, Snow E H 1968 IEEE Trans. Electron Devices ED15 686

    [29]

    Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H, Hao Y 2018 Superlattices Microstruct. 119 212Google Scholar

    [30]

    Dang G T, Zhang A P, Mshewa M M, Ren F, Chyi J I, Lee C M, Chuo C C, Chi G C, Han J, Chu S N G, Wilson R G, Cao X A, Pearton S J 2000 J. Vac. Sci. Technol. A 18 1135Google Scholar

    [31]

    Zhu T G, Lambert D J H, Shelton B S, Wong M M, Chowdhury U, Dupuis R D 2000 Appl. Phys. Lett. 77 2918Google Scholar

    [32]

    Witte W, Fahle D, Koch H, Heuken M, Kalisch H, Vescan A 2012 Semicond. Sci. Technol. 27 085015Google Scholar

    [33]

    Li L, Kishi A, Liu Q, Itai Y, Fujihara R, Ohno Y, Ao J P 2014 IEEE J. Electron Devices Soc. 2 168Google Scholar

    [34]

    Gupta C, Enatsu Y, Gupta G, Keller S, Mishra U K 2016 Phys. Status Solidi A 213 878Google Scholar

    [35]

    Bian Z K, Zhou H, Xu S R, Zhang T, Dang K, Chen J B, Zhang J C, Hao Y 2019 Superlattices Microst. 125 295Google Scholar

  • [1] Yang Chu-Ping, Geng Yi-Nan, Wang Jie, Liu Xing-Nan, Shi Zhen-Gang. Breakdown voltage of high pressure helium parallel plates and effect of field emission. Acta Physica Sinica, 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [2] She Yan-Chao, Zhang Wei-Xi, Wang Ying, Luo Kai-Wu, Jiang Xiao-Wei. Effect of oxygen vacancy defect on leakage current of PbTiO3 ferroelectric thin film. Acta Physica Sinica, 2018, 67(18): 187701. doi: 10.7498/aps.67.20181130
    [3] Wang Xiang, Chen Lei-Lei, Cao Yan-Rong, Yang Qun-Si, Zhu Pei-Min, Yang Guo-Feng, Wang Fu-Xue, Yan Da-Wei, Gu Xiao-Feng. Physical model of conductive dislocations in GaN Schottky diodes. Acta Physica Sinica, 2018, 67(17): 177202. doi: 10.7498/aps.67.20180762
    [4] Zhao Yi-Han, Duan Bao-Xing, Yuan Song, Lü Jian-Mei, Mei Yang. Novel lateral double-diffused MOSFET with vertical assisted deplete-substrate layer. Acta Physica Sinica, 2017, 66(7): 077302. doi: 10.7498/aps.66.077302
    [5] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [6] Yuan Song, Duan Bao-Xing, Yuan Xiao-Ning, Ma Jian-Chong, Li Chun-Lai, Cao Zhen, Guo Hai-Jun, Yang Yin-Tang. Experimental research on the new Al0.25Ga0.75N/GaN HEMTs with a step AlGaN layer. Acta Physica Sinica, 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [7] Duan Bao-Xing, Li Chun-Lai, Ma Jian-Chong, Yuan Song, Yang Yin-Tang. New folding lateral double-diffused metal-oxide-semiconductor field effect transistor with the step oxide layer. Acta Physica Sinica, 2015, 64(6): 067304. doi: 10.7498/aps.64.067304
    [8] Yue Shan, Liu Xing-Nan, Shi Zhen-Gang. Experimental study on breakdown voltage between parallel plates in high-pressure helium. Acta Physica Sinica, 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [9] Duan Bao-Xing, Cao Zhen, Yuan Xiao-Ning, Yang Yin-Tang. New REBULF super junction LDMOS with the N type buffered layer. Acta Physica Sinica, 2014, 63(22): 227302. doi: 10.7498/aps.63.227302
    [10] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong. A low on-resistance silicon on insulator lateral double diffused metal oxide semiconductor device with a vertical drain field plate. Acta Physica Sinica, 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [11] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong, Zhang Wei-Hua, Dai Hong-Li. A dual-trench silicon on insulator high voltage device with an L-shaped source field plate. Acta Physica Sinica, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [12] Duan Bao-Xing, Yang Yin-Tang. Breakdown voltage analysis for the new Al0.25 Ga0.75N/GaN HEMTs with the step AlGaN layers. Acta Physica Sinica, 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [13] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Lü Yi, Wang Bin, Li Yu-Chen. Analytical modeling for drain current of strained Si NMOSFET. Acta Physica Sinica, 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [14] Wen Juan-Hui, Yang Qiong, Cao Jue-Xian, Zhou Yi-Chun. Strain control of the leakage current of the ferroelectric thin films. Acta Physica Sinica, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [15] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [16] Duan Bao-Xing, Yang Yin-Tang, Kevin J. Chen. Breakdown voltage analysis for new Al0.25Ga0.75N/GaN HEMT with F ion implantation. Acta Physica Sinica, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [17] Chen Guo-Yun, Xin Yong, Huang Fu-Cheng, Wei Zhi-Yong, Lei Sheng-Jie, Huang San-Bo, Zhu Li, Zhao Jing-Wu, Ma Jia-Yi. Performances of a boron-lined ionization chamber used in neutron/-ray mixed field of reactors. Acta Physica Sinica, 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [18] Wei Wei, Hao Yue, Feng Qian, Zhang Jin-Cheng, Zhang Jin-Feng. Geometrical optimization of AlGaN/GaN field-plate high electron mobility transistor. Acta Physica Sinica, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [19] Guo Liang-Liang, Feng Qian, Hao Yue, Yang Yan. Study of high breakdown-voltage AlGaN/GaN FP-HEMT. Acta Physica Sinica, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [20] Lu Xiao, Wu Chuan-Gui, Zhang Wan-Li, Li Yan-Rong. Dielectric breakdown of BST thin films prepared by RF sputtering. Acta Physica Sinica, 2006, 55(5): 2513-2517. doi: 10.7498/aps.55.2513
Metrics
  • Abstract views:  5500
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2021
  • Accepted Date:  21 November 2021
  • Available Online:  02 March 2022
  • Published Online:  05 March 2022

/

返回文章
返回