Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Breakdown voltage of high pressure helium parallel plates and effect of field emission

Yang Chu-Ping Geng Yi-Nan Wang Jie Liu Xing-Nan Shi Zhen-Gang

Citation:

Breakdown voltage of high pressure helium parallel plates and effect of field emission

Yang Chu-Ping, Geng Yi-Nan, Wang Jie, Liu Xing-Nan, Shi Zhen-Gang
PDF
HTML
Get Citation
  • In this paper, a helium discharge model under high pressure is established. To qualitatively verify the validity of the model, we compare the results obtained from the previous experiments with those acquired from our model under similar operational conditions. In the simulation model, the electron temperature is obtained according to its relationship with the local electric field. According to the principle of electrical neutrality, the number density of He + and the number density of ${\rm{He}}_2^+$ are also equal to the initial electron density, and we can assume that the He + and the ${\rm{He}}_2^+$ account for 30% and 70%, respectively. For helium and copper electrodes, the secondary electron emission coefficient is 0.19 and the secondary electron average energy is15.3 eV. The Fowler-Nordheim equation is used to calculate the field-emission current density, and the electron flux is calculated according to the “charge conservation condition”. The electron flux is added to COMSOL's corresponding wall boundary, which can play the role of field emission. Finally, the analysis is carried out at a macro level (breakdown voltage) and micro level (spatial electron density). It is found that the field-emission current density is determined by the electric field intensity, the field enhancement factor, and the metal escaping work. The effect of field emission can be ignored when $\beta = 300$ . However, if $\beta = 400$ , the influence of field emission on the breakdown is significant when the electric field intensity is above $10\;{\rm{ MV}}/{\rm{m}}$ . For the breakdown of helium gas with copper serving as a parallel plate electrode, the effect of field emission can be ignored when the electric field intensity is lower than $8\;{\rm{ MV}}/{\rm{m}}$ . At a micro level, the field emission can provide new "seed electrons" for the discharge space, which can increase the electron density of the whole space and intensify the particle collision reaction, finally leading to the breakdown.
      Corresponding author: Geng Yi-Nan, gengyinan@mail.tsinghua.edu.cn
    [1]

    郑艳华, 石磊 2010 原子能科学技术 44 s253

    Zheng Y H, Shi L 2010 Atom. Energ. Sci. Technol. 44 s253

    [2]

    岳珊, 刘兴男, 时振刚 2015 物理学报 64 105101Google Scholar

    Yue S, Liu X N, Shi Z G 2015 Acta Phys. Sin. 64 105101Google Scholar

    [3]

    杨津基 1983 气体放电 (北京: 科学出版社)第53页

    Yang J J 1983 Gas Discharge (Beijing: Science Press) p53 (in Chinese)

    [4]

    Little R P, Whitney W T 1963 J. Appl. Phys. 34 2430Google Scholar

    [5]

    张喜波, 苏建仓, 孙旭, 赵亮, 李锐 2015 现代应用物理 6 43

    Zhang X B, Su J C, Sun X, Zhao L, Li R 2015 Mod. Appl. Phys. 6 43

    [6]

    徐翱, 金大志, 王亚军, 陈磊, 谈效华 2020 高电压技术 46 715

    Xu A, Jin D Z, Wang Y J, Chen L, Tan X H 2020 High Volt. Engineer. 46 715

    [7]

    成永红, 孟国栋, 董承业 2017 电工技术学报 32 14

    Cheng Y H, Meng G D, Dong C Y 2017 Trans. China Electrotechn. Soc. 32 14

    [8]

    Wallash A, LevitL 2003 Reliability, Testing, and Characterization of MEMS/MOEMS Ⅱ San Jose, USA, 2003 p87

    [9]

    潜力, 王昱权, 刘亮, 范守善 2011 物理学报 60 028801Google Scholar

    Qian L, Wang Y Q, Liu L, Fan S S 2011 Acta Phys. Sin. 60 028801Google Scholar

    [10]

    孙强, 周前红, 宋萌萌, 杨薇, 董烨 2021 物理学报 70 015202Google Scholar

    Sun Q, Zhou Q H, Song M M, Yang W, Dong Y 2021 Acta Phys. Sin. 70 015202Google Scholar

    [11]

    Dmitry S, Daniel B, Dogyun H, Shin K, Valery K, Noriyasu O 2019 IEEE Trans. Plasma Sci. 47 5186Google Scholar

    [12]

    Shin K, Noriyasu O, Shuichi T 2013 IEEE Trans. Plasma Sci. 41 1889Google Scholar

    [13]

    You Q, Zhou Yan, Liu X N, Mo N, Luo H, Shi Z G 2020 J. Nucl. Sci. Technol. 57 624Google Scholar

    [14]

    宁文军, 戴栋, 张雨晖, 郝艳捧, 李立浧 2017 高压电技术 43 1845

    Ning W J, Dai D, Zhang Y H, Hao Y P, Li L C 2017 High Volt. Engineer. 43 1845

    [15]

    Hagelaar G, Pitchford L 2005 Plasma Sources Sci. T. 14 722Google Scholar

    [16]

    Maric D, Radenovic M 2005 The European Physical Journal D-Atomic, Molecular, optical and Plasma Physics 35 313

    [17]

    You Q, Mo N, Liu X N, Luo H, Shi Z G 2020 Ann. Nucl. Energy 141 107351Google Scholar

    [18]

    Zhang P, Kortshagen U 2005 J. Phys. D Appl. Phys. 39 153

    [19]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. T. 28 075003Google Scholar

    [20]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003Google Scholar

    [21]

    Smirnov B M 2015 Theory of Gas Discharge Plasma (Switzerland: Springer International Publishing) p230

  • 图 1  模型几何结构

    Figure 1.  Geometry of the model.

    图 2  平行平板

    Figure 2.  Parallel plate.

    图 3  1 MPa下实验值与仿真值 (a) 25 ℃; (b) 105 ℃; (c) 155 ℃ (d) 180 ℃

    Figure 3.  Experimental value and simulation value at 1 MPa: (a) 25 ℃; (b) 105 ℃; (c) 155 ℃; (d) 180 ℃.

    图 4  1 MPa和7 MPa下的实验值 (a) 25 ℃; (b) 105 ℃; (c) 155 ℃; (d) 180 ℃

    Figure 4.  Experimental value at 1 MPaand7 MPa: (a) 25 ℃; (b) 105 ℃; (c) 155 ℃; (d) 180 ℃.

    图 5  1 MPa和7 MPa下的实验击穿场强

    Figure 5.  Experimental breakdown field strength at 1 MPa and 7 MPa.

    图 6  电流密度的影响因素 (a) $\beta $ ; (b) E; (c) W

    Figure 6.  Influencing factors of current density: (a) $\beta $ ; (b) E; (c) W.

    图 7  流程图

    Figure 7.  Flow chart.

    图 8  轴向位置的电子密度

    Figure 8.  Electron density in Z axis.

    图 9  电子密度演化图

    Figure 9.  Evolutiondiagramofelectron density.

    图 10  7 MPa下实验值与仿真值 (a) 25 ℃; (b) 180 ℃

    Figure 10.  Experimental value and simulation value at 7 MPa: (a) 25 ℃; (b) 180 ℃.

    表 1  模型考虑的粒子碰撞过程

    Table 1.  Collision processes considered in the model.

    反应式 速率常数 反应能/eV 参考文献
    ${\rm{e}} + {\rm{He}} \to {\rm{2 e}} + {\rm{H}}{{\rm{e}}^ + }$ $\alpha {V_{\rm{e}}}/{N_{{\rm{He}}}}$ 24.6 [ 13]
    ${\rm{e }}+ {\rm{H}}{{\rm{e}}^{\rm{*}}} \to {\rm{2 e}} + {\rm{H}}{{\rm{e}}^ + }$ $1.5 \times {10^{ - 13} }\sqrt { {T_{\rm{e} } } } \exp \left( { - \dfrac{ {4.77} }{ { {T_{\rm{e} } } } } } \right)$ 4.78 [ 13]
    ${\rm{e}} + {\rm{He}}_{\rm{2}}^{\rm{*}} \to {\rm{2 e}} + {\rm{He}}_{\rm{2}}^ + $ $9.75 \times {10^{ - 16} }T_{\rm{e} }^{0.71}\exp \left( { - \dfrac{ {3.4} }{ { {T_{\rm{e} } } } } } \right)$ 3.4 [ 13]
    ${\rm{H}}{{\rm{e}}^{\rm{*}}} + {\rm{H}}{{\rm{e}}^{\rm{*}}} \to {\rm{e}} +{\rm{ He }}+{\rm{ H}}{{\rm{e}}^ + }$ $8.7 \times {10^{ - 16} }\sqrt {\dfrac{ { {T_{\rm{g} } } }}{ {0.025} } }$ 0 [ 13]
    ${\rm{He}}_{\rm{2}}^{\rm{*}} + {\rm{He}}_{\rm{2}}^{\rm{*}} \to {\rm{e}} + {\rm{3 He }}+{\rm{ H}}{{\rm{e}}^ + }$ $8.7 \times {10^{ - 16} }\sqrt {\dfrac{ { {T_{\rm{g} } } }}{ {0.025} } }$ 0 [ 13]
    ${\rm{He}}_{\rm{2}}^{\rm{*}} + {\rm{He}}_{\rm{2}}^{\rm{*}} \to {\rm{e}} +{\rm{ 2 He}} +{\rm{ He}}_{\rm{2}}^ + $ $2.03 \times {10^{ - 15} }\sqrt {\dfrac{ { {T_{\rm{g} } } }}{ {0.025} } }$ 0 [ 13]
    ${\rm{e}} + {\rm{He}} \to {\rm{e }}+ {\rm{H}}{{\rm{e}}^{\rm{*}}}$ $\dfrac{ {1.6 \times { {10}^{ - 15} }\exp \left( { - 350/{x^2} } \right)} }{ { {x^{0.3} }\left( {1 + 0.43{x^{1.2} } } \right)} }$ 19.8 [ 13]
    ${\rm{e }}+ {\rm{H}}{{\rm{e}}^{\rm{*}}} \to {\rm{e}} + {\rm{He}}$ $3 \times {10^{ - 15} } + \dfrac{ {5 \times { {10}^{ - 13} }\exp \left( { - 1.398/{T_{\rm{e} } } } \right)} }{ {1 + 5\exp \left( { - 0.602/{T_{\rm{e} } } } \right)} }$ –19.8 [ 13]
    ${\rm{e}} + {\rm{He}} \to {\rm{e}} + {\rm{He}}$ 横截面数据 0
    ${\rm{2 He }}+{\rm{ H}}{{\rm{e}}^ + } \to {\rm{He}} +{\rm{ He}}_{\rm{2}}^ + $ $1 \times {10^{ - 43}}$ 0 [ 13]
    ${\rm{2 He }}+{\rm{ H}}{{\rm{e}}^{\rm{*}}} \to {\rm{He}} +{\rm{ He}}_{\rm{2}}^{\rm{*}}$ $8.1 \times {10^{ - 48}}T\exp \left( { - 650/T} \right)$ 0 [ 13]
    ${\rm{e }}+ {\rm{H}}{{\rm{e}}^ + } \to {\rm{H}}{{\rm{e}}^{\rm{*}}}$ $6.76 \times {10^{ - 19}}{T_{\rm{e}}}^{ - 0.5}$ –4.78 [ 14]
    ${\rm{e }}+ {\rm{H}}{{\rm{e}}^ + } \to {\rm{He}}$ $1.327 \times {10^{ - 27}}{n_{\rm{e}}}T_{\rm{e}}^{ - 4.4}$ –24.6 [ 14]
    ${\rm{e}} + {\rm{He}}_{\rm{2}}^ + \to {\rm{He}} +{\rm{ H}}{{\rm{e}}^{\rm{*}}}$ $5 \times {10^{ - 15}}$ 0 [ 13]
    ${\rm{e}} + {\rm{He}}_{\rm{2}}^ + \to {\rm{He}}_{\rm{2}}^{\rm{*}}$ $5 \times {10^{ - 15} }({ { {T_{\rm{g} } } } }/{ { {T_{\rm{e} } } } })$ –3.4 [ 13]
    ${\rm{e}} +{\rm{ He }}+{\rm{ H}}{{\rm{e}}^ + } \to {\rm{He}} +{\rm{ H}}{{\rm{e}}^{\rm{*}}}$ $1 \times {10^{ - 38}}{\left( {{T_{\rm{e}}}/{T_{\rm{g}}}} \right)^{ - 2}}$ 0 [ 13]
    ${\rm{2 e}} + {\rm{He}}_{\rm{2}}^ + \to {\rm{e + 2 H}}{{\rm{e}}^{\rm{*}}}$ $6.186 \times {10^{ - 39}}{T_{\rm{e}}}^{ - 4.4}$ 0 [ 15]
    ${\rm{2 e}} + {\rm{He}}_{\rm{2}}^ + \to {\rm{e}} + {\rm{He}}_{\rm{2}}^{\rm{*}}$ $7.1 \times {10^{ - 32}}$ 0 [ 15]
    ${\rm{e }}+ {\rm{He }}+ {\rm{He}}_{\rm{2}}^ + \to {\rm{He}} +{\rm{ He}}_{\rm{2}}^{\rm{*}}$ $5 \times {10^{ - 39} }({ { {T_{\rm{g} } } } }/{ { {T_{\rm{e} } } } })$ 0 [ 13]
    ${\rm{e }}+ {\rm{He }}+ {\rm{He}}_{\rm{2}}^ + \to {\rm{2 He }}+{\rm{ H}}{{\rm{e}}^{\rm{*}}}$ $5 \times {10^{ - 39}}$ 0 [ 15]
    ${\rm{2 e}} + {\rm{He}}_{\rm{2}}^ + \to {\rm{e}} +{\rm{ He }}+{\rm{ H}}{{\rm{e}}^{\rm{*}}}$ $2.8 \times {10^{ - 32}}$ 0 [ 15]
    注: ${V_{\rm{e}}}$表示电子迁移速度(迁移率与场强的乘积), ${N_{{\rm{He}}}}$是氦原子数密度, 由理想气体状态方程求得; ${T_{\rm{e}}}$和 ${T_{\rm{g}}}$分别是以eV表示的电子温度和气体温度, T 表示以K为单位的气体温度; x 表示以 ${\rm{Td}}$ ( $1~{\rm{ Td} } = {10^{ - 17} }\;{\rm{ V} } \cdot {\rm{c} }{ {\rm{m} }^{\rm{2} } }$)为单位的约化场强; 横截面数据来源于https://fr.lxcat.net/home/中的 Phelps 数据库; 表中二体反应(两种反应物)的速率常数单位是m 3/s, 三体反应(三种反应物)的速率常数单位是m 6/s.
    DownLoad: CSV

    表 2  模型中的 $\alpha $ 系数及输运参数

    Table 2.  $\alpha $ coefficient and transport parameters in the model.

    参数 计算式 参考文献 参数 计算式 参考文献
    α/m –1 $0.41 p{ {\rm{e} }^{ - 18.116 p/E} }$ [ 16] D e/(m 2·s –1) $2.3 \times {10^{24}}{T_{\rm{e}}}/{N_{{\rm{He}}}}$ [ 17]
    $ + 1.93 p{ {\rm{e} }^{ - 84.541 p/E} } $ D p/(m 2·s –1) $3.25 \times {10^{22}}{T_{\rm{e}}}/{N_{{\rm{He}}}}$ [ 17]
    μ e/(m 2·s –1·V –1) $2.83 \times {10^{24}}/{N_{{\rm{He}}}}$ [ 17] D i/(m 2·s –1) $4.88 \times {10^{22}}{T_{\rm{e}}}/{N_{{\rm{He}}}}$ [ 17]
    μ p/(m 2·s –1·V –1) $3.25 \times {10^{22}}/{N_{{\rm{He}}}}$ [ 17] D m/(m 2·s –1) $\dfrac{ {5.6} }{ {133.3 p} }{\left( {\dfrac{ { {T_{\rm{g} } } }}{ {0.025} } } \right)^{1.5} }$ [ 17]
    μ i/(m 2·s –1·V –1) $4.88 \times {10^{22}}/{N_{{\rm{He}}}}$ [ 17] D j/(m 2·s –1) $\dfrac{ {4.1} }{ {133.3 p} }{\left( {\dfrac{ { {T_{\rm{g} } } }}{ {0.025} } } \right)^{1.5} }$ [ 17]
    注: 电子(e)、氦原子离子(He +)、氦分子离子( ${\rm{He}}_2^+ $)、氦激发态原子(He *)以及氦激发态分子( ${\rm{He}}_2^* $), 分别对应下标e, p, i, m和j.
    DownLoad: CSV

    表 3  模型边界条件

    Table 3.  Boundary conditions in the model.

    边界 $ \varphi $ $ {n}_{\rm{e}} $ $ {n}_{\rm{\varepsilon }} $ n i $ {n}_{\rm{n}} $
    AD $ {V}_{a} $ (6) (7) (8) (8)
    BC $ 0 $ (6) (7) (8) (8)
    AB, CD $\dfrac{\partial \varphi }{\partial r}=0$ $ -{{n}}\cdot {{\varGamma }}_{\bf{e}}=0 $ $ -{{n}}\cdot {{\varGamma }}_{\bf{\varepsilon }}=0 $ $ -{{n}}\cdot {{\varGamma }}_{{k}}=0 $ $ -{{n}}\cdot {{\varGamma }}_{{k}}=0 $
    DownLoad: CSV

    表 4  实验与仿真参数

    Table 4.  Parameters of experimentand simulation.

    参数
    温度/℃ 25, 105, 155, 180
    压强/ MPa 1, 7
    间距/ mm 0.25, 031, 0.53, 3.02
    半径/ cm 3
    外加电压 直流
    DownLoad: CSV

    表 5  场致电流

    Table 5.  Current of field emission.

    温度/℃ 间距/mm 实验值/V 场强/(MV·m –1) I/A
    $\beta = 300$ $\beta = 400$
    25 0.25 2640 10.56 $7.01 \times {10^{ - 6}}$ $2.2 \times {10^{ - 3}}$
    0.31 3350 10.81 $1.17 \times {10^{ - 5}}$ $4.2 \times {10^{ - 3}}$
    0.53 5475 10.33 $4.24 \times {10^{ - 6}}$ $1.5 \times {10^{ - 3}}$
    0.71 7605 10.71 $9.65 \times {10^{ - 6}}$ $2.8 \times {10^{ - 3}}$
    180 0.31 2490 8.03 $6.20 \times {10^{ - 9}}$ $9.62 \times {10^{ - 6}}$
    0.53 3960 7.47 $7.02 \times {10^{ - 10}}$ $1.81 \times {10^{ - 6}}$
    0.71 5540 7.80 $2.64 \times {10^{ - 9}}$ $5.00 \times {10^{ - 6}}$
    DownLoad: CSV
  • [1]

    郑艳华, 石磊 2010 原子能科学技术 44 s253

    Zheng Y H, Shi L 2010 Atom. Energ. Sci. Technol. 44 s253

    [2]

    岳珊, 刘兴男, 时振刚 2015 物理学报 64 105101Google Scholar

    Yue S, Liu X N, Shi Z G 2015 Acta Phys. Sin. 64 105101Google Scholar

    [3]

    杨津基 1983 气体放电 (北京: 科学出版社)第53页

    Yang J J 1983 Gas Discharge (Beijing: Science Press) p53 (in Chinese)

    [4]

    Little R P, Whitney W T 1963 J. Appl. Phys. 34 2430Google Scholar

    [5]

    张喜波, 苏建仓, 孙旭, 赵亮, 李锐 2015 现代应用物理 6 43

    Zhang X B, Su J C, Sun X, Zhao L, Li R 2015 Mod. Appl. Phys. 6 43

    [6]

    徐翱, 金大志, 王亚军, 陈磊, 谈效华 2020 高电压技术 46 715

    Xu A, Jin D Z, Wang Y J, Chen L, Tan X H 2020 High Volt. Engineer. 46 715

    [7]

    成永红, 孟国栋, 董承业 2017 电工技术学报 32 14

    Cheng Y H, Meng G D, Dong C Y 2017 Trans. China Electrotechn. Soc. 32 14

    [8]

    Wallash A, LevitL 2003 Reliability, Testing, and Characterization of MEMS/MOEMS Ⅱ San Jose, USA, 2003 p87

    [9]

    潜力, 王昱权, 刘亮, 范守善 2011 物理学报 60 028801Google Scholar

    Qian L, Wang Y Q, Liu L, Fan S S 2011 Acta Phys. Sin. 60 028801Google Scholar

    [10]

    孙强, 周前红, 宋萌萌, 杨薇, 董烨 2021 物理学报 70 015202Google Scholar

    Sun Q, Zhou Q H, Song M M, Yang W, Dong Y 2021 Acta Phys. Sin. 70 015202Google Scholar

    [11]

    Dmitry S, Daniel B, Dogyun H, Shin K, Valery K, Noriyasu O 2019 IEEE Trans. Plasma Sci. 47 5186Google Scholar

    [12]

    Shin K, Noriyasu O, Shuichi T 2013 IEEE Trans. Plasma Sci. 41 1889Google Scholar

    [13]

    You Q, Zhou Yan, Liu X N, Mo N, Luo H, Shi Z G 2020 J. Nucl. Sci. Technol. 57 624Google Scholar

    [14]

    宁文军, 戴栋, 张雨晖, 郝艳捧, 李立浧 2017 高压电技术 43 1845

    Ning W J, Dai D, Zhang Y H, Hao Y P, Li L C 2017 High Volt. Engineer. 43 1845

    [15]

    Hagelaar G, Pitchford L 2005 Plasma Sources Sci. T. 14 722Google Scholar

    [16]

    Maric D, Radenovic M 2005 The European Physical Journal D-Atomic, Molecular, optical and Plasma Physics 35 313

    [17]

    You Q, Mo N, Liu X N, Luo H, Shi Z G 2020 Ann. Nucl. Energy 141 107351Google Scholar

    [18]

    Zhang P, Kortshagen U 2005 J. Phys. D Appl. Phys. 39 153

    [19]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. T. 28 075003Google Scholar

    [20]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003Google Scholar

    [21]

    Smirnov B M 2015 Theory of Gas Discharge Plasma (Switzerland: Springer International Publishing) p230

  • [1] Zhou Xin-Miao, Zhang Bo-Ya, Chen Li, Li Xing-Wen. Simulation of effect of metal particles on breakdown process of three-electrode gas spark switches. Acta Physica Sinica, 2024, 73(1): 015202. doi: 10.7498/aps.73.20231283
    [2] Tong Zan, Yang Yin-Li, Xu Jing, Liu Wei, Chen Liang. Theoretical study of helium separation performance of crown ether-graphane membranes. Acta Physica Sinica, 2023, 72(6): 068201. doi: 10.7498/aps.72.20222183
    [3] Liu Cheng, Li Ming, Wen Zhang, Gu Zhao-Yuan, Yang Ming-Chao, Liu Wei-Hua, Han Chuan-Yu, Zhang Yong, Geng Li, Hao Yue. Establishment of composite leakage model and design of GaN Schottky barrier diode with stepped field plate. Acta Physica Sinica, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [4] Xu Da-Lin, Wang Yu-Qi, Li Xin-Hua, Shi Tong-Fei. Effect of charge coupling on breakdown voltage of high voltage trench-gate-type super barrier rectifier. Acta Physica Sinica, 2021, 70(6): 067301. doi: 10.7498/aps.70.20201558
    [5] Wang Yi-Jun, Cheng Yan. Field-emission current densities of carbon nanotube under the different electric fields. Acta Physica Sinica, 2015, 64(19): 197304. doi: 10.7498/aps.64.197304
    [6] Wang Jian-Long, Ding Fang, Zhu Xiao-Dong. Optical properties of direct current glow discharge plasmas at high pressures. Acta Physica Sinica, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [7] Yue Shan, Liu Xing-Nan, Shi Zhen-Gang. Experimental study on breakdown voltage between parallel plates in high-pressure helium. Acta Physica Sinica, 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [8] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong. A low on-resistance silicon on insulator lateral double diffused metal oxide semiconductor device with a vertical drain field plate. Acta Physica Sinica, 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [9] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong, Zhang Wei-Hua, Dai Hong-Li. A dual-trench silicon on insulator high voltage device with an L-shaped source field plate. Acta Physica Sinica, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [10] Zuo Ying-Hong, Wang Jian-Guo, Fan Ru-Yu. Influence of diode gap distance on space charge effects in field emission. Acta Physica Sinica, 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [11] Peng Kai, Liu Da-Gang. Numerical simulation and study of three-dimensional thermal field emission. Acta Physica Sinica, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [12] Qian Li, Wang Yu-Quan, Liu Liang, Fan Shou-Shan. Field emission of carbon nanotube under atmospheric pressure. Acta Physica Sinica, 2011, 60(2): 028801. doi: 10.7498/aps.60.028801
    [13] Pan Jin-Yan, Gao Yun-Long, Zhang Wen-Yan. High luminance carbon nanotube field emission cold cathode based on indium tin oxide/Ti composite electrode. Acta Physica Sinica, 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [14] Wei Wei, Hao Yue, Feng Qian, Zhang Jin-Cheng, Zhang Jin-Feng. Geometrical optimization of AlGaN/GaN field-plate high electron mobility transistor. Acta Physica Sinica, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [15] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [16] Guo Liang-Liang, Feng Qian, Hao Yue, Yang Yan. Study of high breakdown-voltage AlGaN/GaN FP-HEMT. Acta Physica Sinica, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [17] Lin Zhi-Xian, Guo Tai-Liang, Hu Li-Qin, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Tetrapod-like ZnO nanostructures serving as cold cathodes for flat panel displays. Acta Physica Sinica, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [18] Ding Pei, Chao Ming-Ju, Liang Er-Jun, Guo Xin-Yong. Fabrication of CNx nanotubes films using different nitrogen sources and their low field emission properties. Acta Physica Sinica, 2005, 54(12): 5926-5930. doi: 10.7498/aps.54.5926
    [19] Liu Jun-Qiao, Zhan Jie-Min. Numerical simulation and characteristic comparison of Spindt type and diamond film field emisson. Acta Physica Sinica, 2005, 54(7): 3439-3443. doi: 10.7498/aps.54.3439
    [20] Ding Pei, Chao Ming-Ju, Liang Er-Jun, Guo Xin-Yong, Du Zu-Liang. Synthesis structure observation and low field emission of CNx nanotubes. Acta Physica Sinica, 2004, 53(8): 2786-2791. doi: 10.7498/aps.53.2786
Metrics
  • Abstract views:  5813
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2021
  • Accepted Date:  03 February 2021
  • Available Online:  30 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回