-
In this paper, a helium discharge model under high pressure is established. To qualitatively verify the validity of the model, we compare the results obtained from the previous experiments with those acquired from our model under similar operational conditions. In the simulation model, the electron temperature is obtained according to its relationship with the local electric field. According to the principle of electrical neutrality, the number density of He + and the number density of
${\rm{He}}_2^+$ are also equal to the initial electron density, and we can assume that the He + and the${\rm{He}}_2^+$ account for 30% and 70%, respectively. For helium and copper electrodes, the secondary electron emission coefficient is 0.19 and the secondary electron average energy is15.3 eV. The Fowler-Nordheim equation is used to calculate the field-emission current density, and the electron flux is calculated according to the “charge conservation condition”. The electron flux is added to COMSOL's corresponding wall boundary, which can play the role of field emission. Finally, the analysis is carried out at a macro level (breakdown voltage) and micro level (spatial electron density). It is found that the field-emission current density is determined by the electric field intensity, the field enhancement factor, and the metal escaping work. The effect of field emission can be ignored when$\beta = 300$ . However, if$\beta = 400$ , the influence of field emission on the breakdown is significant when the electric field intensity is above$10\;{\rm{ MV}}/{\rm{m}}$ . For the breakdown of helium gas with copper serving as a parallel plate electrode, the effect of field emission can be ignored when the electric field intensity is lower than$8\;{\rm{ MV}}/{\rm{m}}$ . At a micro level, the field emission can provide new "seed electrons" for the discharge space, which can increase the electron density of the whole space and intensify the particle collision reaction, finally leading to the breakdown.-
Keywords:
- field emission /
- helium /
- high pressure /
- breakdown voltage
[1] 郑艳华, 石磊 2010 原子能科学技术 44 s253
Zheng Y H, Shi L 2010 Atom. Energ. Sci. Technol. 44 s253
[2] 岳珊, 刘兴男, 时振刚 2015 物理学报 64 105101Google Scholar
Yue S, Liu X N, Shi Z G 2015 Acta Phys. Sin. 64 105101Google Scholar
[3] 杨津基 1983 气体放电 (北京: 科学出版社)第53页
Yang J J 1983 Gas Discharge (Beijing: Science Press) p53 (in Chinese)
[4] Little R P, Whitney W T 1963 J. Appl. Phys. 34 2430Google Scholar
[5] 张喜波, 苏建仓, 孙旭, 赵亮, 李锐 2015 现代应用物理 6 43
Zhang X B, Su J C, Sun X, Zhao L, Li R 2015 Mod. Appl. Phys. 6 43
[6] 徐翱, 金大志, 王亚军, 陈磊, 谈效华 2020 高电压技术 46 715
Xu A, Jin D Z, Wang Y J, Chen L, Tan X H 2020 High Volt. Engineer. 46 715
[7] 成永红, 孟国栋, 董承业 2017 电工技术学报 32 14
Cheng Y H, Meng G D, Dong C Y 2017 Trans. China Electrotechn. Soc. 32 14
[8] Wallash A, LevitL 2003 Reliability, Testing, and Characterization of MEMS/MOEMS Ⅱ San Jose, USA, 2003 p87
[9] 潜力, 王昱权, 刘亮, 范守善 2011 物理学报 60 028801Google Scholar
Qian L, Wang Y Q, Liu L, Fan S S 2011 Acta Phys. Sin. 60 028801Google Scholar
[10] 孙强, 周前红, 宋萌萌, 杨薇, 董烨 2021 物理学报 70 015202Google Scholar
Sun Q, Zhou Q H, Song M M, Yang W, Dong Y 2021 Acta Phys. Sin. 70 015202Google Scholar
[11] Dmitry S, Daniel B, Dogyun H, Shin K, Valery K, Noriyasu O 2019 IEEE Trans. Plasma Sci. 47 5186Google Scholar
[12] Shin K, Noriyasu O, Shuichi T 2013 IEEE Trans. Plasma Sci. 41 1889Google Scholar
[13] You Q, Zhou Yan, Liu X N, Mo N, Luo H, Shi Z G 2020 J. Nucl. Sci. Technol. 57 624Google Scholar
[14] 宁文军, 戴栋, 张雨晖, 郝艳捧, 李立浧 2017 高压电技术 43 1845
Ning W J, Dai D, Zhang Y H, Hao Y P, Li L C 2017 High Volt. Engineer. 43 1845
[15] Hagelaar G, Pitchford L 2005 Plasma Sources Sci. T. 14 722Google Scholar
[16] Maric D, Radenovic M 2005 The European Physical Journal D-Atomic, Molecular, optical and Plasma Physics 35 313
[17] You Q, Mo N, Liu X N, Luo H, Shi Z G 2020 Ann. Nucl. Energy 141 107351Google Scholar
[18] Zhang P, Kortshagen U 2005 J. Phys. D Appl. Phys. 39 153
[19] Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. T. 28 075003Google Scholar
[20] Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003Google Scholar
[21] Smirnov B M 2015 Theory of Gas Discharge Plasma (Switzerland: Springer International Publishing) p230
-
表 1 模型考虑的粒子碰撞过程
Table 1. Collision processes considered in the model.
反应式 速率常数 反应能/eV 参考文献 ${\rm{e}} + {\rm{He}} \to {\rm{2 e}} + {\rm{H}}{{\rm{e}}^ + }$ $\alpha {V_{\rm{e}}}/{N_{{\rm{He}}}}$ 24.6 [ 13] ${\rm{e }}+ {\rm{H}}{{\rm{e}}^{\rm{*}}} \to {\rm{2 e}} + {\rm{H}}{{\rm{e}}^ + }$ $1.5 \times {10^{ - 13} }\sqrt { {T_{\rm{e} } } } \exp \left( { - \dfrac{ {4.77} }{ { {T_{\rm{e} } } } } } \right)$ 4.78 [ 13] ${\rm{e}} + {\rm{He}}_{\rm{2}}^{\rm{*}} \to {\rm{2 e}} + {\rm{He}}_{\rm{2}}^ + $ $9.75 \times {10^{ - 16} }T_{\rm{e} }^{0.71}\exp \left( { - \dfrac{ {3.4} }{ { {T_{\rm{e} } } } } } \right)$ 3.4 [ 13] ${\rm{H}}{{\rm{e}}^{\rm{*}}} + {\rm{H}}{{\rm{e}}^{\rm{*}}} \to {\rm{e}} +{\rm{ He }}+{\rm{ H}}{{\rm{e}}^ + }$ $8.7 \times {10^{ - 16} }\sqrt {\dfrac{ { {T_{\rm{g} } } }}{ {0.025} } }$ 0 [ 13] ${\rm{He}}_{\rm{2}}^{\rm{*}} + {\rm{He}}_{\rm{2}}^{\rm{*}} \to {\rm{e}} + {\rm{3 He }}+{\rm{ H}}{{\rm{e}}^ + }$ $8.7 \times {10^{ - 16} }\sqrt {\dfrac{ { {T_{\rm{g} } } }}{ {0.025} } }$ 0 [ 13] ${\rm{He}}_{\rm{2}}^{\rm{*}} + {\rm{He}}_{\rm{2}}^{\rm{*}} \to {\rm{e}} +{\rm{ 2 He}} +{\rm{ He}}_{\rm{2}}^ + $ $2.03 \times {10^{ - 15} }\sqrt {\dfrac{ { {T_{\rm{g} } } }}{ {0.025} } }$ 0 [ 13] ${\rm{e}} + {\rm{He}} \to {\rm{e }}+ {\rm{H}}{{\rm{e}}^{\rm{*}}}$ $\dfrac{ {1.6 \times { {10}^{ - 15} }\exp \left( { - 350/{x^2} } \right)} }{ { {x^{0.3} }\left( {1 + 0.43{x^{1.2} } } \right)} }$ 19.8 [ 13] ${\rm{e }}+ {\rm{H}}{{\rm{e}}^{\rm{*}}} \to {\rm{e}} + {\rm{He}}$ $3 \times {10^{ - 15} } + \dfrac{ {5 \times { {10}^{ - 13} }\exp \left( { - 1.398/{T_{\rm{e} } } } \right)} }{ {1 + 5\exp \left( { - 0.602/{T_{\rm{e} } } } \right)} }$ –19.8 [ 13] ${\rm{e}} + {\rm{He}} \to {\rm{e}} + {\rm{He}}$ 横截面数据 0 ${\rm{2 He }}+{\rm{ H}}{{\rm{e}}^ + } \to {\rm{He}} +{\rm{ He}}_{\rm{2}}^ + $ $1 \times {10^{ - 43}}$ 0 [ 13] ${\rm{2 He }}+{\rm{ H}}{{\rm{e}}^{\rm{*}}} \to {\rm{He}} +{\rm{ He}}_{\rm{2}}^{\rm{*}}$ $8.1 \times {10^{ - 48}}T\exp \left( { - 650/T} \right)$ 0 [ 13] ${\rm{e }}+ {\rm{H}}{{\rm{e}}^ + } \to {\rm{H}}{{\rm{e}}^{\rm{*}}}$ $6.76 \times {10^{ - 19}}{T_{\rm{e}}}^{ - 0.5}$ –4.78 [ 14] ${\rm{e }}+ {\rm{H}}{{\rm{e}}^ + } \to {\rm{He}}$ $1.327 \times {10^{ - 27}}{n_{\rm{e}}}T_{\rm{e}}^{ - 4.4}$ –24.6 [ 14] ${\rm{e}} + {\rm{He}}_{\rm{2}}^ + \to {\rm{He}} +{\rm{ H}}{{\rm{e}}^{\rm{*}}}$ $5 \times {10^{ - 15}}$ 0 [ 13] ${\rm{e}} + {\rm{He}}_{\rm{2}}^ + \to {\rm{He}}_{\rm{2}}^{\rm{*}}$ $5 \times {10^{ - 15} }({ { {T_{\rm{g} } } } }/{ { {T_{\rm{e} } } } })$ –3.4 [ 13] ${\rm{e}} +{\rm{ He }}+{\rm{ H}}{{\rm{e}}^ + } \to {\rm{He}} +{\rm{ H}}{{\rm{e}}^{\rm{*}}}$ $1 \times {10^{ - 38}}{\left( {{T_{\rm{e}}}/{T_{\rm{g}}}} \right)^{ - 2}}$ 0 [ 13] ${\rm{2 e}} + {\rm{He}}_{\rm{2}}^ + \to {\rm{e + 2 H}}{{\rm{e}}^{\rm{*}}}$ $6.186 \times {10^{ - 39}}{T_{\rm{e}}}^{ - 4.4}$ 0 [ 15] ${\rm{2 e}} + {\rm{He}}_{\rm{2}}^ + \to {\rm{e}} + {\rm{He}}_{\rm{2}}^{\rm{*}}$ $7.1 \times {10^{ - 32}}$ 0 [ 15] ${\rm{e }}+ {\rm{He }}+ {\rm{He}}_{\rm{2}}^ + \to {\rm{He}} +{\rm{ He}}_{\rm{2}}^{\rm{*}}$ $5 \times {10^{ - 39} }({ { {T_{\rm{g} } } } }/{ { {T_{\rm{e} } } } })$ 0 [ 13] ${\rm{e }}+ {\rm{He }}+ {\rm{He}}_{\rm{2}}^ + \to {\rm{2 He }}+{\rm{ H}}{{\rm{e}}^{\rm{*}}}$ $5 \times {10^{ - 39}}$ 0 [ 15] ${\rm{2 e}} + {\rm{He}}_{\rm{2}}^ + \to {\rm{e}} +{\rm{ He }}+{\rm{ H}}{{\rm{e}}^{\rm{*}}}$ $2.8 \times {10^{ - 32}}$ 0 [ 15] 注: ${V_{\rm{e}}}$表示电子迁移速度(迁移率与场强的乘积), ${N_{{\rm{He}}}}$是氦原子数密度, 由理想气体状态方程求得; ${T_{\rm{e}}}$和 ${T_{\rm{g}}}$分别是以eV表示的电子温度和气体温度, T 表示以K为单位的气体温度; x 表示以 ${\rm{Td}}$ ( $1~{\rm{ Td} } = {10^{ - 17} }\;{\rm{ V} } \cdot {\rm{c} }{ {\rm{m} }^{\rm{2} } }$)为单位的约化场强; 横截面数据来源于https://fr.lxcat.net/home/中的 Phelps 数据库; 表中二体反应(两种反应物)的速率常数单位是m 3/s, 三体反应(三种反应物)的速率常数单位是m 6/s. 表 2 模型中的
$\alpha $ 系数及输运参数Table 2.
$\alpha $ coefficient and transport parameters in the model.参数 计算式 参考文献 参数 计算式 参考文献 α/m –1 $0.41 p{ {\rm{e} }^{ - 18.116 p/E} }$ [ 16] D e/(m 2·s –1) $2.3 \times {10^{24}}{T_{\rm{e}}}/{N_{{\rm{He}}}}$ [ 17] $ + 1.93 p{ {\rm{e} }^{ - 84.541 p/E} } $ D p/(m 2·s –1) $3.25 \times {10^{22}}{T_{\rm{e}}}/{N_{{\rm{He}}}}$ [ 17] μ e/(m 2·s –1·V –1) $2.83 \times {10^{24}}/{N_{{\rm{He}}}}$ [ 17] D i/(m 2·s –1) $4.88 \times {10^{22}}{T_{\rm{e}}}/{N_{{\rm{He}}}}$ [ 17] μ p/(m 2·s –1·V –1) $3.25 \times {10^{22}}/{N_{{\rm{He}}}}$ [ 17] D m/(m 2·s –1) $\dfrac{ {5.6} }{ {133.3 p} }{\left( {\dfrac{ { {T_{\rm{g} } } }}{ {0.025} } } \right)^{1.5} }$ [ 17] μ i/(m 2·s –1·V –1) $4.88 \times {10^{22}}/{N_{{\rm{He}}}}$ [ 17] D j/(m 2·s –1) $\dfrac{ {4.1} }{ {133.3 p} }{\left( {\dfrac{ { {T_{\rm{g} } } }}{ {0.025} } } \right)^{1.5} }$ [ 17] 注: 电子(e)、氦原子离子(He +)、氦分子离子( ${\rm{He}}_2^+ $)、氦激发态原子(He *)以及氦激发态分子( ${\rm{He}}_2^* $), 分别对应下标e, p, i, m和j. 表 3 模型边界条件
Table 3. Boundary conditions in the model.
边界 $ \varphi $ $ {n}_{\rm{e}} $ $ {n}_{\rm{\varepsilon }} $ n i $ {n}_{\rm{n}} $ AD $ {V}_{a} $ (6) (7) (8) (8) BC $ 0 $ (6) (7) (8) (8) AB, CD $\dfrac{\partial \varphi }{\partial r}=0$ $ -{{n}}\cdot {{\varGamma }}_{\bf{e}}=0 $ $ -{{n}}\cdot {{\varGamma }}_{\bf{\varepsilon }}=0 $ $ -{{n}}\cdot {{\varGamma }}_{{k}}=0 $ $ -{{n}}\cdot {{\varGamma }}_{{k}}=0 $ 表 4 实验与仿真参数
Table 4. Parameters of experimentand simulation.
参数 值 温度/℃ 25, 105, 155, 180 压强/ MPa 1, 7 间距/ mm 0.25, 031, 0.53, 3.02 半径/ cm 3 外加电压 直流 表 5 场致电流
Table 5. Current of field emission.
温度/℃ 间距/mm 实验值/V 场强/(MV·m –1) I/A $\beta = 300$ $\beta = 400$ 25 0.25 2640 10.56 $7.01 \times {10^{ - 6}}$ $2.2 \times {10^{ - 3}}$ 0.31 3350 10.81 $1.17 \times {10^{ - 5}}$ $4.2 \times {10^{ - 3}}$ 0.53 5475 10.33 $4.24 \times {10^{ - 6}}$ $1.5 \times {10^{ - 3}}$ 0.71 7605 10.71 $9.65 \times {10^{ - 6}}$ $2.8 \times {10^{ - 3}}$ 180 0.31 2490 8.03 $6.20 \times {10^{ - 9}}$ $9.62 \times {10^{ - 6}}$ 0.53 3960 7.47 $7.02 \times {10^{ - 10}}$ $1.81 \times {10^{ - 6}}$ 0.71 5540 7.80 $2.64 \times {10^{ - 9}}$ $5.00 \times {10^{ - 6}}$ -
[1] 郑艳华, 石磊 2010 原子能科学技术 44 s253
Zheng Y H, Shi L 2010 Atom. Energ. Sci. Technol. 44 s253
[2] 岳珊, 刘兴男, 时振刚 2015 物理学报 64 105101Google Scholar
Yue S, Liu X N, Shi Z G 2015 Acta Phys. Sin. 64 105101Google Scholar
[3] 杨津基 1983 气体放电 (北京: 科学出版社)第53页
Yang J J 1983 Gas Discharge (Beijing: Science Press) p53 (in Chinese)
[4] Little R P, Whitney W T 1963 J. Appl. Phys. 34 2430Google Scholar
[5] 张喜波, 苏建仓, 孙旭, 赵亮, 李锐 2015 现代应用物理 6 43
Zhang X B, Su J C, Sun X, Zhao L, Li R 2015 Mod. Appl. Phys. 6 43
[6] 徐翱, 金大志, 王亚军, 陈磊, 谈效华 2020 高电压技术 46 715
Xu A, Jin D Z, Wang Y J, Chen L, Tan X H 2020 High Volt. Engineer. 46 715
[7] 成永红, 孟国栋, 董承业 2017 电工技术学报 32 14
Cheng Y H, Meng G D, Dong C Y 2017 Trans. China Electrotechn. Soc. 32 14
[8] Wallash A, LevitL 2003 Reliability, Testing, and Characterization of MEMS/MOEMS Ⅱ San Jose, USA, 2003 p87
[9] 潜力, 王昱权, 刘亮, 范守善 2011 物理学报 60 028801Google Scholar
Qian L, Wang Y Q, Liu L, Fan S S 2011 Acta Phys. Sin. 60 028801Google Scholar
[10] 孙强, 周前红, 宋萌萌, 杨薇, 董烨 2021 物理学报 70 015202Google Scholar
Sun Q, Zhou Q H, Song M M, Yang W, Dong Y 2021 Acta Phys. Sin. 70 015202Google Scholar
[11] Dmitry S, Daniel B, Dogyun H, Shin K, Valery K, Noriyasu O 2019 IEEE Trans. Plasma Sci. 47 5186Google Scholar
[12] Shin K, Noriyasu O, Shuichi T 2013 IEEE Trans. Plasma Sci. 41 1889Google Scholar
[13] You Q, Zhou Yan, Liu X N, Mo N, Luo H, Shi Z G 2020 J. Nucl. Sci. Technol. 57 624Google Scholar
[14] 宁文军, 戴栋, 张雨晖, 郝艳捧, 李立浧 2017 高压电技术 43 1845
Ning W J, Dai D, Zhang Y H, Hao Y P, Li L C 2017 High Volt. Engineer. 43 1845
[15] Hagelaar G, Pitchford L 2005 Plasma Sources Sci. T. 14 722Google Scholar
[16] Maric D, Radenovic M 2005 The European Physical Journal D-Atomic, Molecular, optical and Plasma Physics 35 313
[17] You Q, Mo N, Liu X N, Luo H, Shi Z G 2020 Ann. Nucl. Energy 141 107351Google Scholar
[18] Zhang P, Kortshagen U 2005 J. Phys. D Appl. Phys. 39 153
[19] Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. T. 28 075003Google Scholar
[20] Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003Google Scholar
[21] Smirnov B M 2015 Theory of Gas Discharge Plasma (Switzerland: Springer International Publishing) p230
Catalog
Metrics
- Abstract views: 5609
- PDF Downloads: 99
- Cited By: 0