Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Field-emission current densities of carbon nanotube under the different electric fields

Wang Yi-Jun Cheng Yan

Citation:

Field-emission current densities of carbon nanotube under the different electric fields

Wang Yi-Jun, Cheng Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The field emission current variation law of carbon nanotube in a large electric field range (0-32 V m-1) is analyzed in depth by combining the density functional theory with metal electron theory. The results show that their emission current densities are determined by their densities of states, the pseudogap, the length and the local electric field, showing the different variation laws in the different electric field ranges. In the lower electric field (corresponding macroscopic field is less than 18 Vm-1), when their density of states increases, their pseudogap decreases: the two trends are opposite, the former increases the number of electrons for emission, and the latter improves the ability to transfer electrons, they all turn to the increase of the emission current, so their field-emission current density increases linearly with increasing electric field in this range. But in the higher electric field (corresponding macroscopic field is less than 32 Vm-1 and more than 18 Vm-1), their densities of states and the pseudogaps take on the same decrease and increase, so do they in the opposite change case, therefore the emission current density behaves as a non-periodic oscillation in the increasing electric field, moreover the higher electric conductivity lead to the rising of current density, the combined effect of the emitter current density exhibits an oscillatory growth in this electric field range, and the carbon nanotubes behave as ionizing radiation. So the too high electric field may cause the emission current to be instable. The electric conductivity variation law of the metallic carbon nanotube is further studied in this paper. In the lower electric field (corresponding macroscopic field is less than 5 Vm-1), the electric conductivity of CNT increases linearly with increasing electric field; when the macroscopic electric field increases up to a value in a range from 5 to 14 Vm-1, the electric conductivity only changes like a slight concussion in (6.3-9.9)1017Sm-1 range, when the macroscopic electric field increases to a value in a range from 16 to 32 Vm-1, the electric conductivity appears as a sharp oscillation growth trend. Additionally, the specific binding energy of CNT is enhanced with increasing electric field, accordingly the structural stability turns better and the cone-capped carbon nanotubes could be used for emission cathode material. The calculation results are consistent with the experimental results of the literature.
      Corresponding author: Wang Yi-Jun, wangyijun29@163.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11075135, 61307002), the Natural Science Foundation of Shaanxi Province (Grant No. 2012JM1009) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 12JK0984), the Scientific Research Program Funded(Grant No. 12XSYK014, 13XSYK010), and the Teaching Reform Research Program Funded by Xianyang Normal University (Program No. 201200127, 201302026), China.
    [1]

    Heer W A D, Chatelain A, Ugarte D 1995 Science 270 1179

    [2]

    Meyyappan M (translated by Liu Z F) 2005 Carbon Nanotubes: Science and Applications (Beijing: Science Press) pp223-228 (in Chinese) [M. 麦亚潘主 著 (刘忠范 译) 2007 碳纳米管科学与应用 (北京: 科学出版社) 第233228页]

    [3]

    Li X, Zhou W M, Liu W H, Wang X L 2015 Chin. Phys. B 24 057102

    [4]

    Xie Y, Zhang J M 2011 Chin. Phys. B 20 127302

    [5]

    Zhang X, Song Y R 2014 Chin. Phys. B 23 064204

    [6]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. A 119 173

    [7]

    Uh H S, Park S S 2015 Diamond and Related Materials 54 74

    [8]

    Modinos A 1984 Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum Publishing Corp) pp36-37

    [9]

    Jiang J, Feng T, Cheng X H 2006 Mater. Lett. 60 1085

    [10]

    Liu X H, Zhu C C, Li Y K 2004 Physics B 344 243

    [11]

    Hartschuh A 2003 Science 301 1354

    [12]

    Qu C Q, Qiao L, Wang C, Yu S S, Zheng W T, Jiang Q 2010 Phys. Lett. A 374 782

    [13]

    Yao Z, Kane C L, Dekker C 2000 Phys. Rev. Lett. 84 2941

    [14]

    Cui Y T, Zhang X B, Lei W 2013 High Power Laser And Particle Beams 25 1509 (in Chinese) [崔云涛, 张晓兵, 雷威 2013 强激光与粒子束 25 1509]

    [15]

    Delley B J 1990 Chem. Phys. 92 508

    [16]

    Wang X Q, Li L, Zhu N J 2008 Acta Phys. Sin. 57 7173(in Chinese) [王新庆, 李良, 褚宁杰 2008 物理学报 57 7173]

    [17]

    Jo S H, Wang D Z, Huang J Y 2004 Appl. Phys. Lett. 85 810

    [18]

    Ma H L, Huo H B, Zeng F G 2013 Acta Phys. Sin. 62 158801(in Chinese) [麻华丽, 霍海波, 曾凡光 2013 物理学报 62 158801]

    [19]

    Chen C L 2007 Solid-State Physics (Beijing: Science Press) pp167-168 (in Chinese) [陈长乐 2007 固体物理 (北京: 科学出版社) 第167168页]

  • [1]

    Heer W A D, Chatelain A, Ugarte D 1995 Science 270 1179

    [2]

    Meyyappan M (translated by Liu Z F) 2005 Carbon Nanotubes: Science and Applications (Beijing: Science Press) pp223-228 (in Chinese) [M. 麦亚潘主 著 (刘忠范 译) 2007 碳纳米管科学与应用 (北京: 科学出版社) 第233228页]

    [3]

    Li X, Zhou W M, Liu W H, Wang X L 2015 Chin. Phys. B 24 057102

    [4]

    Xie Y, Zhang J M 2011 Chin. Phys. B 20 127302

    [5]

    Zhang X, Song Y R 2014 Chin. Phys. B 23 064204

    [6]

    Fowler R H, Nordheim L 1928 Proc. R. Soc. A 119 173

    [7]

    Uh H S, Park S S 2015 Diamond and Related Materials 54 74

    [8]

    Modinos A 1984 Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum Publishing Corp) pp36-37

    [9]

    Jiang J, Feng T, Cheng X H 2006 Mater. Lett. 60 1085

    [10]

    Liu X H, Zhu C C, Li Y K 2004 Physics B 344 243

    [11]

    Hartschuh A 2003 Science 301 1354

    [12]

    Qu C Q, Qiao L, Wang C, Yu S S, Zheng W T, Jiang Q 2010 Phys. Lett. A 374 782

    [13]

    Yao Z, Kane C L, Dekker C 2000 Phys. Rev. Lett. 84 2941

    [14]

    Cui Y T, Zhang X B, Lei W 2013 High Power Laser And Particle Beams 25 1509 (in Chinese) [崔云涛, 张晓兵, 雷威 2013 强激光与粒子束 25 1509]

    [15]

    Delley B J 1990 Chem. Phys. 92 508

    [16]

    Wang X Q, Li L, Zhu N J 2008 Acta Phys. Sin. 57 7173(in Chinese) [王新庆, 李良, 褚宁杰 2008 物理学报 57 7173]

    [17]

    Jo S H, Wang D Z, Huang J Y 2004 Appl. Phys. Lett. 85 810

    [18]

    Ma H L, Huo H B, Zeng F G 2013 Acta Phys. Sin. 62 158801(in Chinese) [麻华丽, 霍海波, 曾凡光 2013 物理学报 62 158801]

    [19]

    Chen C L 2007 Solid-State Physics (Beijing: Science Press) pp167-168 (in Chinese) [陈长乐 2007 固体物理 (北京: 科学出版社) 第167168页]

  • [1] Ma Yu-Long, Xiang Wei, Jin Da-Zhi, Chen Lei, Yao Ze-En, Wang Qi-Long. Field evaporation behaviour for carbon nanotube thin-film. Acta Physica Sinica, 2016, 65(9): 097901. doi: 10.7498/aps.65.097901
    [2] Ma Li-An, Zheng Yong-An, Wei Zhao-Hui, Hu Li-Qin, Guo Tai-Liang. Effect of synthesis temperature and N2/O2 flow on morphology and field emission property of SnO2 nanowires. Acta Physica Sinica, 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [3] Xiang Fei, Wu Ping, Zeng Fan-Guang, Wang Gan-Ping, Li Chun-Xia, Ju Bing-Quan. Fast-pulse repetitive frequency emission characteristic of high current carbon nanotubes cathode. Acta Physica Sinica, 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [4] Lu Wen-Hui, Zhang Shuai. Effect of contact resistance on field emission from carbon nanotube. Acta Physica Sinica, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [5] Zuo Ying-Hong, Wang Jian-Guo, Fan Ru-Yu. Influence of diode gap distance on space charge effects in field emission. Acta Physica Sinica, 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [6] Yuan Xue-Song, Zhang Yu, Sun Li-Min, Li Xiao-Yun, Deng Shao-Zhi, Xu Ning-Sheng, Yan Yang. Study of pulsed field emission characteristics and simulation models of carbon nanotube cold cathodes. Acta Physica Sinica, 2012, 61(21): 216101. doi: 10.7498/aps.61.216101
    [7] Qian Li, Wang Yu-Quan, Liu Liang, Fan Shou-Shan. Field emission of carbon nanotube under atmospheric pressure. Acta Physica Sinica, 2011, 60(2): 028801. doi: 10.7498/aps.60.028801
    [8] Pan Jin-Yan, Gao Yun-Long, Zhang Wen-Yan. High luminance carbon nanotube field emission cold cathode based on indium tin oxide/Ti composite electrode. Acta Physica Sinica, 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [9] He Chun-Shan, Wang Wei-Liang, Chen Gui-Hua, Li Zhi-Bing. Image potential effect on field emission from arrays of carbon nanotubes. Acta Physica Sinica, 2009, 58(13): 241-S245. doi: 10.7498/aps.58.241
    [10] Qin Hua-Fang, Guo Tai-Liang. Preparation of tetrapod-shaped ZnO nanomaterial field emission cathodes by deposition method. Acta Physica Sinica, 2008, 57(2): 1224-1228. doi: 10.7498/aps.57.1224
    [11] Qin Yu-Xiang, Hu Ming. Field emission properties of titanium carbide-modified carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [12] Liao Qing-Liang, Zhang Yue, Huang Yun-Hua, Qi Jun-Jie, Gao Zhan-Jun, Xia Lian-Sheng, Zhang Huang. Short-pulsed explosive field emission and plasma expansion of carbon nanotube cathodes. Acta Physica Sinica, 2008, 57(3): 1778-1783. doi: 10.7498/aps.57.1778
    [13] Bai Xin, Wang Ming-Sheng, Liu Yang, Zhang Geng-Min, Zhang Zhao-Xiang, Zhao Xing-Yu, Guo Deng-Zhu, Xue Zeng-Quan. Field evaporation of the end of a carbon nanotube. Acta Physica Sinica, 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [14] Wang Xin-Qing, Li Liang, Chu Ning-Jie, Jin Hong-Xiao, Ge Hong-Liang. Theoretical optimization for field emission current density from carbon nanotubes array. Acta Physica Sinica, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [15] Guo Da-Bo, Yuan Guang, Song Cui-Hua, Gu Chang-Zhi, Wang Qiang. Field emission of carbon nanotubes. Acta Physica Sinica, 2007, 56(10): 6114-6117. doi: 10.7498/aps.56.6114
    [16] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [17] Chen Rong-Hua, Zhu Ming-Yuan, Li Ying, Li Wen-Xian, Jin Hong-Ming, Dou Shi-Xue. Effect of pulsed magnetic field on critical current in carbon-nanotube-doped MgB2 wires. Acta Physica Sinica, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [18] Lin Zhi-Xian, Guo Tai-Liang, Hu Li-Qin, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Tetrapod-like ZnO nanostructures serving as cold cathodes for flat panel displays. Acta Physica Sinica, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
    [19] Ding Pei, Chao Ming-Ju, Liang Er-Jun, Guo Xin-Yong. Fabrication of CNx nanotubes films using different nitrogen sources and their low field emission properties. Acta Physica Sinica, 2005, 54(12): 5926-5930. doi: 10.7498/aps.54.5926
    [20] Ding Pei, Chao Ming-Ju, Liang Er-Jun, Guo Xin-Yong, Du Zu-Liang. Synthesis structure observation and low field emission of CNx nanotubes. Acta Physica Sinica, 2004, 53(8): 2786-2791. doi: 10.7498/aps.53.2786
Metrics
  • Abstract views:  6557
  • PDF Downloads:  220
  • Cited By: 0
Publishing process
  • Received Date:  01 May 2015
  • Accepted Date:  07 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回