-
Axial magnetic field is one of the main parameters of magnetized liner inertial fusion (MagLIF), which is greatly different from other traditional inertial confinement fusion configurations. The introduce of axial magnetic field dramatically increases energy deposit efficiency of alpha particles, when initial Bz increases from 0 to 30 T, the ratio of deposited alpha energy rises from 7% to 53%. In the MagLIF process, the evolvement of magnetic flux in fuel can be roughly divided into three main stages: undisturbed, oscillation, and equilibrium. The distributions and evolution characteristic of axial magnetic field are both determined by the liner conductivity, fuel conductivity, and the fluid dynamics. The pressure imbalance between fuel and liner, caused by laser injection, is the source of fluid oscillation, which is an intrinsic disadvantage of laser preheating method. This fluid oscillation does not lead the magnetic flux to decrease monotonically in the fuel during implosion process, but oscillate repeatedly, even increase in a short time. Nernst effect plays a negative role in MagLIF process. As initial axial magnetic field decreases from 30 to 20 to 10 T, the Nernst effect causes magnetic flux loss to increase from 28% to 44% to 73% correspondingly, and the deposited alpha energy ratio drops from 44% to 27% to 4% respectively. So the initial magnetic field is supposed to be moderately high. The radial distribution of temperature in fuel should be as uniform as possible after preheating, which is helpful in reducing the influence of Nernst effect. Compared with Nernst effect, the end loss effect is much responsible for rapid drawdown of fusion yield. A large number of physical images are acquired and summarized through this work, which are helpful in understanding the process of magnetic flux compression and diffusion in MagLIF process. The simulation can act as a powerful tool and the simulation results can serve as a useful guidance for the future experimental designs.
-
Keywords:
- MagLIF /
- axial magnetic field /
- Nernst effect
[1] Gao Z 2016 Matter Radiat. Extremes 1 153Google Scholar
[2] 章太阳, 陈冉 2017 物理学报 66 125201Google Scholar
Zhang T Y, Chen R 2017 Acta Phys. Sin. 66 125201Google Scholar
[3] Kazuhiko Horioka 2018 Matter Radiat. Extremes 3 12Google Scholar
[4] Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar
[5] Chen Y Y, Bao X H, Fu P, Gao G 2019 Chin. Phys. B 28 015201Google Scholar
[6] Zhang Y K, Zhou R J, Hu L Q, Chen M W, Chao Y 2018 Chin. Phys. B 27 055206Google Scholar
[7] Liu D Q, Zhou C P, Cao Z, Yan J C, Liu Y 2003 Fusion Eng. Des. 66 147Google Scholar
[8] Liu D Q, Lin T, Qiao T, Li Q, Li G S, Bai G Y, Ran H, Cao Z, Cai L J, Zou H, Li Y 2015 Fusion Eng. Des. 96 298
[9] Tikhonchuk V, Gu Y J, Klimo O, Limpouch J, Weber S 2019 Matter Radiat. Extremes 4 045402Google Scholar
[10] 薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒 2018 物理学报 24 094701Google Scholar
Xue Q X, Jiang S E, Wang Z B, Wang F, Zhao X Q, Yi A P, Ding Y K, Liu J R 2018 Acta Phys. Sin. 24 094701Google Scholar
[11] Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H, Wang S W 2018 Matter Radiat. Extremes 3 248Google Scholar
[12] Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J, Wang J G 2016 Matter Radiat. Extremes 1 135Google Scholar
[13] Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar
[14] Paradela J, García-Rubio F, Sanz J 2019 Phys. Plasmas 26 012705Google Scholar
[15] Perkins L J, Logan B G, Zimmerman G B, Werner C J 2013 Phys. Plasmas 20 072708Google Scholar
[16] Slutz S A, Vesey R A 2012 Phys. Rev. Lett 108 025003Google Scholar
[17] Sefkow A B, Slutz S A, Koning J M, Marinak M M, Peterson K J, Sinars D B, Vesey R A 2014 Phys. Plasmas 21 072711Google Scholar
[18] Slutz S A 2018 Phys. Plasmas 25 082707Google Scholar
[19] Gomez M R, Slutz S A, Sefkow A B, et al. 2014 Phys. Rev. Lett 113 155003Google Scholar
[20] Awe T J, McBride R D, Jennings C A, et al. 2013 Phys. Rev. Lett 111 235005Google Scholar
[21] Seyler C E, Martin M R, Hamlin N D 2018 Phys. Plasmas 25 062711Google Scholar
[22] Shipley G A, Awe T J, Hutsel B T, Slutz S A, Lamppa D C, Greenly J B, Hutchinson T M 2018 Phys. Plasmas 25 052703Google Scholar
[23] Gourdain P A, Adams M B, Davies J R, Seyler C E 2017 Phys. Plasmas 24 102712Google Scholar
[24] 赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军 2020 物理学报 69 035203Google Scholar
Zhao H L, Xiao B, Wang G H, Wang Q, Zhang Z W, Sun Q Z, Deng J J 2020 Acta Phys. Sin. 69 035203Google Scholar
[25] Basko M M, Kemp A J, Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59Google Scholar
[26] Braginskii S I 1965 Reviews of Plasma Physics (New York: Consultants Bureau) p205.
-
图 2 ZR装置95 kV充电电压下驱动电流随时间演化曲线[13]
Figure 2. Driving current from ZR facility with charging voltage 95 kV.
-
[1] Gao Z 2016 Matter Radiat. Extremes 1 153Google Scholar
[2] 章太阳, 陈冉 2017 物理学报 66 125201Google Scholar
Zhang T Y, Chen R 2017 Acta Phys. Sin. 66 125201Google Scholar
[3] Kazuhiko Horioka 2018 Matter Radiat. Extremes 3 12Google Scholar
[4] Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar
[5] Chen Y Y, Bao X H, Fu P, Gao G 2019 Chin. Phys. B 28 015201Google Scholar
[6] Zhang Y K, Zhou R J, Hu L Q, Chen M W, Chao Y 2018 Chin. Phys. B 27 055206Google Scholar
[7] Liu D Q, Zhou C P, Cao Z, Yan J C, Liu Y 2003 Fusion Eng. Des. 66 147Google Scholar
[8] Liu D Q, Lin T, Qiao T, Li Q, Li G S, Bai G Y, Ran H, Cao Z, Cai L J, Zou H, Li Y 2015 Fusion Eng. Des. 96 298
[9] Tikhonchuk V, Gu Y J, Klimo O, Limpouch J, Weber S 2019 Matter Radiat. Extremes 4 045402Google Scholar
[10] 薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒 2018 物理学报 24 094701Google Scholar
Xue Q X, Jiang S E, Wang Z B, Wang F, Zhao X Q, Yi A P, Ding Y K, Liu J R 2018 Acta Phys. Sin. 24 094701Google Scholar
[11] Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H, Wang S W 2018 Matter Radiat. Extremes 3 248Google Scholar
[12] Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J, Wang J G 2016 Matter Radiat. Extremes 1 135Google Scholar
[13] Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar
[14] Paradela J, García-Rubio F, Sanz J 2019 Phys. Plasmas 26 012705Google Scholar
[15] Perkins L J, Logan B G, Zimmerman G B, Werner C J 2013 Phys. Plasmas 20 072708Google Scholar
[16] Slutz S A, Vesey R A 2012 Phys. Rev. Lett 108 025003Google Scholar
[17] Sefkow A B, Slutz S A, Koning J M, Marinak M M, Peterson K J, Sinars D B, Vesey R A 2014 Phys. Plasmas 21 072711Google Scholar
[18] Slutz S A 2018 Phys. Plasmas 25 082707Google Scholar
[19] Gomez M R, Slutz S A, Sefkow A B, et al. 2014 Phys. Rev. Lett 113 155003Google Scholar
[20] Awe T J, McBride R D, Jennings C A, et al. 2013 Phys. Rev. Lett 111 235005Google Scholar
[21] Seyler C E, Martin M R, Hamlin N D 2018 Phys. Plasmas 25 062711Google Scholar
[22] Shipley G A, Awe T J, Hutsel B T, Slutz S A, Lamppa D C, Greenly J B, Hutchinson T M 2018 Phys. Plasmas 25 052703Google Scholar
[23] Gourdain P A, Adams M B, Davies J R, Seyler C E 2017 Phys. Plasmas 24 102712Google Scholar
[24] 赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军 2020 物理学报 69 035203Google Scholar
Zhao H L, Xiao B, Wang G H, Wang Q, Zhang Z W, Sun Q Z, Deng J J 2020 Acta Phys. Sin. 69 035203Google Scholar
[25] Basko M M, Kemp A J, Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59Google Scholar
[26] Braginskii S I 1965 Reviews of Plasma Physics (New York: Consultants Bureau) p205.
Catalog
Metrics
- Abstract views: 3952
- PDF Downloads: 41
- Cited By: 0