-
得益于激光预加热和轴向磁场的作用, 磁化套筒惯性聚变(magnetized liner inertial fusion, MagLIF)构型理论上能有效降低聚变实现的难度, 具有极大的应用潜力. 本文选择MagLIF过程中伴随激光预加热所必然存在端面损失效应作为研究目标, 搭建了能够描述几何参数与腊肠不稳定性等高维效应的一维唯象物理模型, 并分别通过与二维流体动力学程序和国外同类程序的计算对比完成参数拟合校验; 在此基础上, 获得端面损失效应对MagLIF内爆过程及预加热效果的影响规律. 计算结果表明: 不同喷射半径下MagLIF负载在内爆过程的绝大多数时间内保持了相近的流体动力学演化过程, 并在迟滞阶段经历了相同的质量损失比例, 且考虑端面效应后得到的预加热和内爆产额相对变差, 但却不改变规律性的趋势. 所建立的模型与结论有助于加深对MagLIF预加热和端面损失过程中物理图像的认知和理解.Benefiting from laser preheat and magnetization, magnetized liner lnertial fusion (MagLIF) has a promising potential because theoretically it can dramatically lower the difficulties in realizing the controlled fusion. In this paper, the end loss effect caused by laser preheat in MagLIF process is chosen as an objective to explore its influences, and a one-dimensional and heuristic model of this effect is proposed based on the jet model of ideal fluid, in which the high-dimensional influences, such as geometric parameters and sausage instability, are taken into consideration. To complete the verification progress, the calculation results of one-dimensional MIST code and two-dimensional programs TriAngels and HDYRA are compared, and the application scopes of this heuristic model are discussed and summarized. Based on this model, the key parameters and influences of the end loss effect on the MagLIF implosion process and pre-heating effect are obtained. The calculation results show that the MagLIF load maintains a similar hydrodynamic evolution process in most of the implosion processes with different laser entrance radii, and experiences the same percentage of mass (~16%) lost during stagnation stage. With the same driving current, the fuel temperature will rise higher in the model with more mass losing, so the fusion yields do not change too much. The mass loss ratio seems to play a dominant role. It is recommended to design the laser entrance hole as small as possible in the experiment to increase the yield. The predictions obtained after considering the end loss effect lower the preheating temperature and fusion yield, but no change happens to the regularity trend. As the liner height increases, the preheating temperature, peak current, fuel internal energy, and fusion yield each still show a monotonically downward trend. Therefore, under the premise of fixed driving capability and laser output capability, it is suggested that the liner height in MagLIF load design should be as short as possible. The established heuristic model and conclusions are helpful in better understanding the physical mechanism in the process of MagLIF preheat and end loss.
-
Keywords:
- magnetized liner lnertial fusion /
- end loss effect /
- heuristic model
[1] Ding B J, Bonoli P T, Tuccillo A, Goniche M, Kirov K, Li M, Li Y, Cesario R, Peysson Y, Ekedahl A, Amicucci L, Baek S, Faust I, Parker R, Shiraiwa S, Wallace G M, Cardinali A, Castaldo C, Ceccuzzi S, Mailloux J, Napoli F, Liu F, Wan B 2018 Nucl. Fusion 58 095003Google Scholar
[2] Makwana K D, Keppens R, Lapenta G 2018 Phys. Plasmas 25 082904Google Scholar
[3] Shimomura Y, Spears W 2004 IEEE Trans. Plasma Sci. 14 1369Google Scholar
[4] Clark D S, Weber C R, Milovich J L, Pak A E, Casey D T, Hammel B A, Ho D D, Jones O S, Koning J M, Kritcher A L, Marinak M M, Masse L P, Munro D H, Patel M V, Patel P K, Robey H F, Schroeder C R, Sepke S M, Edwards M J 2019 Phys. Plasmas 26 050601Google Scholar
[5] Perkins L J, Logan B G, Zimmerman G B, Werner C J 2013 Phys. Plasmas 20 072708Google Scholar
[6] McCrory R L, Meyerhofer D D, Betti R, Craxton R S, Delettrez J A, Edgell D H, Glebov V Yu, Goncharov V N, Harding D R, Jacobs-Perkins D W, Knauer J P, Marshall F J, McKenty P W, Radha P B, Regan S P 2008 Phys. Plasmas 15 055503Google Scholar
[7] Chen Y Y, Bao X H, Fu P, Gao G 2019 Chin. Phys. B 28 015201Google Scholar
[8] Zhang Y K, Zhou R J, Hu L Q, Chen M W, Chao Y 2018 Chin. Phys. B 27 055206Google Scholar
[9] Tikhonchuk V, Gu Y J, Klimo O, Limpouch J, Weber S 2019 Matter Radiat. Extremes 4 045402Google Scholar
[10] 薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒 2018 物理学报 24 094701Google Scholar
Xue Q X, Jiang S E, Wang Z B, Wang F, Zhao X Q, Yi A P, Ding Y K, Liu J R 2018 Acta Phys. Sin. 24 094701Google Scholar
[11] Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H, Wang S W 2018 Matter Radiat. Extremes 3 248Google Scholar
[12] Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J, Wang J G 2016 Matter Radiat. Extremes 1 135Google Scholar
[13] Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar
[14] Paradela J, García-Rubio F, Sanz J 2019 Phys. Plasmas 26 012705Google Scholar
[15] Slutz S A, Vesey R A 2012 Phys. Rev. Lett 108 025003Google Scholar
[16] Sefkow A B, Slutz S A, Koning J M, Marinak M M, Peterson K J, Sinars D B, Vesey R A 2014 Phys. Plasmas 21 072711Google Scholar
[17] Slutz S A 2018 Phys. Plasmas 25 082707Google Scholar
[18] Gomez M R, Slutz S A, Sefkow A B, Sinars D B, Hahn K, D, Hansen S B, Harding E C, Knapp P F, Schmit P F, Jennings C A, Awe T J, Geissel M, Rovang D C, Chandler G A, Cooper G W, Cuneo M E, Harvey-Thompson A J, Herrmann M C, Hess M H, Johns O, Lamppa D C, Martin M R, McBride R D, Peterson K J, Porter J L, Robertson G K, Rochau G A, Ruiz C L, Savage M E, Smith I C, Stygar W A, Vesey R A 2014 Phys. Rev. Lett 113 155003Google Scholar
[19] Awe T J, McBride R D, Jennings C A, Lamppa D C, Martin M R, Rovang D C, Slutz S A, Cuneo M E, Owen A C, Sinars D B, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, McKenney J L, Nakhleh C, Robertson G K, Rochau G A, Savage M E, Schroen D G, Stygar W A 2013 Phys. Rev. Lett 111 235005Google Scholar
[20] Seyler C E, Martin M R, Hamlin N D 2018 Phys. Plasmas 25 062711Google Scholar
[21] Geissel M, Harvey-Thompson A J, Awe T J, Bliss D E, Glinsky M E, Gomez M R, Harding E, Hansen S B, Jennings C, Kimmel M W, Knapp P, Lewis S M, Peterson K, Schollmeier M, Schwarz J, Shores J E, Slutz S A, Sinars D B, Smith I C, Speas C S, Vesey R A, Weis M R, Porter J L 2018 Phys. Plasmas 25 022706Google Scholar
[22] Davies J R, Bahr R E, Barnak D H, Betti R, Bonino M J, Campbell E M, Hansen E C, Harding D R, Peebles J L, Sefkow A B, Seka W, Chang P Y, Geissel M, Harvey-Thompson A J 2018 Phys. Plasmas 25 062704Google Scholar
[23] Slutz S A 2015 Sandia National Laboratory Report SAND2015-1515R
[24] 赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军 2020 物理学报 69 035203Google Scholar
Zhao H L, Xiao B, Wang G H, Wang Q, Zhang Z W, Sun Q Z, Deng J J 2020 Acta Phys. Sin. 69 035203Google Scholar
[25] 赵海波, 肖波, 柏劲松, 段书超, 王刚华, 阚明先, 陈芳 2018 高压物理学报 32 042303Google Scholar
Zhao H B, Xiao B, Bai J S, Duan S C, Wang G H, Kan M X, Chen F 2018 Chin. J. High Pressure Phys. 32 042303Google Scholar
[26] 赵海波 2018 硕士学位论文 (北京: 中国工程物理研究院研究生部)
Zhao H B 2018 M. S. Thesis (Beijing: China Academy of Engineering Physics) (in Chinese)
[27] Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar
[28] McBride R D, Jennings C A, Vesey R A, Rochau G A, Savage M E, Stygar W A, Cuneo M E, Sinars D B, Jones M, LeChien K R, Lopez M R, Moore J K, Struve K W, Wagoner T C, Waisman E M 2010 Phys. Rev. ST Accel. Beams 13 120401Google Scholar
-
表 1 不同套筒高度计算得到的内爆结果对比(不考虑端面损失效应)
Table 1. Calculated implosion results at different liner heights by MIST (without end loss effect)
套筒高度h/cm 预加热温度/eV 峰值电流/MA 燃料峰值内能/(kJ·cm–1) 聚变产额/(kJ·cm–1) 能量增益Q 0.50 890 29.5 786 2426 3.1 0.75 615 28.9 668 2133 3.2 1.00 450 28.2 565 1614 2.9 1.25 364 27.4 478 1172 2.5 表 2 不同套筒高度计算得到的内爆结果对比(考虑端面损失效应)
Table 2. Calculated implosion results at different liner heights by MIST (with end loss effect).
套筒高度h/cm 预加热温度/eV 峰值电流/MA 燃料峰值内能/(kJ·cm–1) 聚变产额/(kJ·cm–1) 能量增益Q 0.50 890 29.5 486 1850 3.8 0.75 615 28.9 480 1660 3.45 1.00 450 28.2 440 1320 3.0 1.25 364 27.4 400 990 2.48 -
[1] Ding B J, Bonoli P T, Tuccillo A, Goniche M, Kirov K, Li M, Li Y, Cesario R, Peysson Y, Ekedahl A, Amicucci L, Baek S, Faust I, Parker R, Shiraiwa S, Wallace G M, Cardinali A, Castaldo C, Ceccuzzi S, Mailloux J, Napoli F, Liu F, Wan B 2018 Nucl. Fusion 58 095003Google Scholar
[2] Makwana K D, Keppens R, Lapenta G 2018 Phys. Plasmas 25 082904Google Scholar
[3] Shimomura Y, Spears W 2004 IEEE Trans. Plasma Sci. 14 1369Google Scholar
[4] Clark D S, Weber C R, Milovich J L, Pak A E, Casey D T, Hammel B A, Ho D D, Jones O S, Koning J M, Kritcher A L, Marinak M M, Masse L P, Munro D H, Patel M V, Patel P K, Robey H F, Schroeder C R, Sepke S M, Edwards M J 2019 Phys. Plasmas 26 050601Google Scholar
[5] Perkins L J, Logan B G, Zimmerman G B, Werner C J 2013 Phys. Plasmas 20 072708Google Scholar
[6] McCrory R L, Meyerhofer D D, Betti R, Craxton R S, Delettrez J A, Edgell D H, Glebov V Yu, Goncharov V N, Harding D R, Jacobs-Perkins D W, Knauer J P, Marshall F J, McKenty P W, Radha P B, Regan S P 2008 Phys. Plasmas 15 055503Google Scholar
[7] Chen Y Y, Bao X H, Fu P, Gao G 2019 Chin. Phys. B 28 015201Google Scholar
[8] Zhang Y K, Zhou R J, Hu L Q, Chen M W, Chao Y 2018 Chin. Phys. B 27 055206Google Scholar
[9] Tikhonchuk V, Gu Y J, Klimo O, Limpouch J, Weber S 2019 Matter Radiat. Extremes 4 045402Google Scholar
[10] 薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒 2018 物理学报 24 094701Google Scholar
Xue Q X, Jiang S E, Wang Z B, Wang F, Zhao X Q, Yi A P, Ding Y K, Liu J R 2018 Acta Phys. Sin. 24 094701Google Scholar
[11] Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H, Wang S W 2018 Matter Radiat. Extremes 3 248Google Scholar
[12] Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J, Wang J G 2016 Matter Radiat. Extremes 1 135Google Scholar
[13] Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar
[14] Paradela J, García-Rubio F, Sanz J 2019 Phys. Plasmas 26 012705Google Scholar
[15] Slutz S A, Vesey R A 2012 Phys. Rev. Lett 108 025003Google Scholar
[16] Sefkow A B, Slutz S A, Koning J M, Marinak M M, Peterson K J, Sinars D B, Vesey R A 2014 Phys. Plasmas 21 072711Google Scholar
[17] Slutz S A 2018 Phys. Plasmas 25 082707Google Scholar
[18] Gomez M R, Slutz S A, Sefkow A B, Sinars D B, Hahn K, D, Hansen S B, Harding E C, Knapp P F, Schmit P F, Jennings C A, Awe T J, Geissel M, Rovang D C, Chandler G A, Cooper G W, Cuneo M E, Harvey-Thompson A J, Herrmann M C, Hess M H, Johns O, Lamppa D C, Martin M R, McBride R D, Peterson K J, Porter J L, Robertson G K, Rochau G A, Ruiz C L, Savage M E, Smith I C, Stygar W A, Vesey R A 2014 Phys. Rev. Lett 113 155003Google Scholar
[19] Awe T J, McBride R D, Jennings C A, Lamppa D C, Martin M R, Rovang D C, Slutz S A, Cuneo M E, Owen A C, Sinars D B, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, McKenney J L, Nakhleh C, Robertson G K, Rochau G A, Savage M E, Schroen D G, Stygar W A 2013 Phys. Rev. Lett 111 235005Google Scholar
[20] Seyler C E, Martin M R, Hamlin N D 2018 Phys. Plasmas 25 062711Google Scholar
[21] Geissel M, Harvey-Thompson A J, Awe T J, Bliss D E, Glinsky M E, Gomez M R, Harding E, Hansen S B, Jennings C, Kimmel M W, Knapp P, Lewis S M, Peterson K, Schollmeier M, Schwarz J, Shores J E, Slutz S A, Sinars D B, Smith I C, Speas C S, Vesey R A, Weis M R, Porter J L 2018 Phys. Plasmas 25 022706Google Scholar
[22] Davies J R, Bahr R E, Barnak D H, Betti R, Bonino M J, Campbell E M, Hansen E C, Harding D R, Peebles J L, Sefkow A B, Seka W, Chang P Y, Geissel M, Harvey-Thompson A J 2018 Phys. Plasmas 25 062704Google Scholar
[23] Slutz S A 2015 Sandia National Laboratory Report SAND2015-1515R
[24] 赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军 2020 物理学报 69 035203Google Scholar
Zhao H L, Xiao B, Wang G H, Wang Q, Zhang Z W, Sun Q Z, Deng J J 2020 Acta Phys. Sin. 69 035203Google Scholar
[25] 赵海波, 肖波, 柏劲松, 段书超, 王刚华, 阚明先, 陈芳 2018 高压物理学报 32 042303Google Scholar
Zhao H B, Xiao B, Bai J S, Duan S C, Wang G H, Kan M X, Chen F 2018 Chin. J. High Pressure Phys. 32 042303Google Scholar
[26] 赵海波 2018 硕士学位论文 (北京: 中国工程物理研究院研究生部)
Zhao H B 2018 M. S. Thesis (Beijing: China Academy of Engineering Physics) (in Chinese)
[27] Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar
[28] McBride R D, Jennings C A, Vesey R A, Rochau G A, Savage M E, Stygar W A, Cuneo M E, Sinars D B, Jones M, LeChien K R, Lopez M R, Moore J K, Struve K W, Wagoner T C, Waisman E M 2010 Phys. Rev. ST Accel. Beams 13 120401Google Scholar
计量
- 文章访问数: 4362
- PDF下载量: 44
- 被引次数: 0