Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of oxygen vacancy defect on leakage current of PbTiO3 ferroelectric thin film

She Yan-Chao Zhang Wei-Xi Wang Ying Luo Kai-Wu Jiang Xiao-Wei

Citation:

Effect of oxygen vacancy defect on leakage current of PbTiO3 ferroelectric thin film

She Yan-Chao, Zhang Wei-Xi, Wang Ying, Luo Kai-Wu, Jiang Xiao-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ferroelectric (FE) materials have been extensively applied to the multifunctional electronic devices, particularly the FE memories due to their excellent physical properties. The FE memory is a kind of nonvolatile memory device, and it could overcome the shortcomings of the traditional memory. But the development of the FE memory is very slow due to the FE failure problem. However, with the continuous decrease of the thickness of FE thin film, when it reaches microns or nanometers in magnitude, the leakage current is the main cause of the FE failure of FE thin film. The leakage current of FE thin film is directly related to whether the FE memory is applicable, and it has been the hot spot of scientific researches. There are still a lot of factors influencing the FE memory leakage current except for the thickness of the film, such as interface, processing temperature, defect, domain wall, etc. Of these factors, the defect and domain wall are the most common and the most probable. In this paper, the first-principle calculation method through combining the density function theory with the nonequilibrium Green's function is used to systematically study the influence of oxygen vacancy defect on the leakage current of the FE thin film. The doping with four kinds of Cu, Al, V, and Fe cations is used to regulate and control the leakage current of the FE thin PbTiO3 film caused by the oxygen vacancy defects. We investigate the leakage current induced by oxygen vacancies in PbTiO3 films, and the doped PbTiO3 thin FE films having oxygen vacancies. It is found that Fe and Al doping will increase the leakage current of oxygen vacancy defects of FE thin films, while the Cu and V doping significantly reduce the leakage current of oxygen vacancy defects of FE thin films. This is because the Cu and V doping have obvious pinning effect on oxygen vacancy defect. In addition, we find that the oxygen vacancies are pinned by Cu and V atoms due to the fact that the formation energy of oxygen vacancies can be remarkably reduced. So Cu and V doping in PbTiO3 not only induce the leakage current but also improve the fatigue resistance of the FE thin film induced by oxygen vacancies. Moreover, since the ionic radius of V is closer to the ionic radius of Ti than the ionic radius of Cu, V is easier to implement doping to suppress the leakage current caused by the oxygen vacancy defects. These conclusions are of important theoretical significance and application value for improving the performance of FE thin films and their FE memories.
      Corresponding author: Zhang Wei-Xi, zhangwwxx@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11747168, 11604246), the Natural Science Foundation of Education Department of Guizhou Province, China (Grant Nos. KY[2015]384, KY[2015]446, KY[2017]053), the Natural Science Foundation of Science and Technology Agency of Guizhou Province, China (Grant No. LH[2015]7228), and the Science Research Foundation of Tongren University, China (Grant No. trxyDH1529).
    [1]

    Scott J F, de Araujo C A P 1989 Science 246 1400

    [2]

    Wen J H, Yang Q, Can J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 物理学报 62 067701]

    [3]

    Morozovska A N, Eliseev E A, Morozovsky N V, Kalinin S V 2017 Phys. Rev. B 95 195413

    [4]

    Huang F, Chen X, Liang X, Qin J, Zhang Y, Huang T, Wang Z, Peng B, Zhou P, Lu H, Zhang L, Deng L, Liu M, Liu Q, Tian H, Bi L 2017 Phys. Chem. Chem. Phys. 19 3486

    [5]

    de Luca G, Rossell M D, Schaab J, Viart N, Fiebig M, Trassin M 2017 Adv. Mater. 29 1605145

    [6]

    Saremi S, Xu R, Dedon L R, Mundy J A, Hsu S 2016 Adv. Mater. 28 10750

    [7]

    Chen L, Yang Y, Gui Z G, Sando D, Bibes M, Meng X K, Bellaiche L 2015 Phys. Rev. Lett. 115 267602

    [8]

    Jo J Y, Han H S, Yoon J G, Song T K, Kim S H, Noh T W 2007 Phys. Rev. Lett. 99 267602

    [9]

    Sudhama C, Campbell A, Maniar P, Jones R, Moazzami R, Mogab C, Lee J 1994 J. Appl. Phys. 75 1014

    [10]

    Velev J P, Duan C G, Belashchenko K D, Jaswal S S, Tsymbal E Y 2007 Phys. Rev. Lett. 98 137201

    [11]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181

    [12]

    Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 物理学报 53 1265]

    [13]

    Jia C, Urban K 2004 Science 303 2001

    [14]

    Erhart P, Eichel R, Trskelin P, Albe K 2007 Phys. Rev. B 76 174116

    [15]

    Park C, Chadi D 1998 Phys. Rev. B 57 13961

    [16]

    Li J J, Yu J, Li J, Wang M, Li Y B, Wu Y Y, Gao J X, Wang Y B 2010 Acta Phys. Sin. 59 1302 (in Chinese) [李建军, 于军, 李佳, 王梦, 李玉斌, 吴云翼, 高俊雄, 王耘波 2010 物理学报 59 1302]

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Chadi D, Cohen M L 1973 Phys. Rev. B 8 5747

    [20]

    Baldereschi A 1973 Phys. Rev. B 7 5212

    [21]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [22]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 物理学报 62 203103]

    [23]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C 2014 Rev. Mod. Phys. 86 253

    [24]

    Scott J, Araujo A, Melnick B, McMillan L, Zuleeg R 1991 J. Appl. Phys. 70 382

    [25]

    Pykk S, Chadi D J 1999 Phys. Rev. Lett. 83 1231

  • [1]

    Scott J F, de Araujo C A P 1989 Science 246 1400

    [2]

    Wen J H, Yang Q, Can J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 物理学报 62 067701]

    [3]

    Morozovska A N, Eliseev E A, Morozovsky N V, Kalinin S V 2017 Phys. Rev. B 95 195413

    [4]

    Huang F, Chen X, Liang X, Qin J, Zhang Y, Huang T, Wang Z, Peng B, Zhou P, Lu H, Zhang L, Deng L, Liu M, Liu Q, Tian H, Bi L 2017 Phys. Chem. Chem. Phys. 19 3486

    [5]

    de Luca G, Rossell M D, Schaab J, Viart N, Fiebig M, Trassin M 2017 Adv. Mater. 29 1605145

    [6]

    Saremi S, Xu R, Dedon L R, Mundy J A, Hsu S 2016 Adv. Mater. 28 10750

    [7]

    Chen L, Yang Y, Gui Z G, Sando D, Bibes M, Meng X K, Bellaiche L 2015 Phys. Rev. Lett. 115 267602

    [8]

    Jo J Y, Han H S, Yoon J G, Song T K, Kim S H, Noh T W 2007 Phys. Rev. Lett. 99 267602

    [9]

    Sudhama C, Campbell A, Maniar P, Jones R, Moazzami R, Mogab C, Lee J 1994 J. Appl. Phys. 75 1014

    [10]

    Velev J P, Duan C G, Belashchenko K D, Jaswal S S, Tsymbal E Y 2007 Phys. Rev. Lett. 98 137201

    [11]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181

    [12]

    Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 物理学报 53 1265]

    [13]

    Jia C, Urban K 2004 Science 303 2001

    [14]

    Erhart P, Eichel R, Trskelin P, Albe K 2007 Phys. Rev. B 76 174116

    [15]

    Park C, Chadi D 1998 Phys. Rev. B 57 13961

    [16]

    Li J J, Yu J, Li J, Wang M, Li Y B, Wu Y Y, Gao J X, Wang Y B 2010 Acta Phys. Sin. 59 1302 (in Chinese) [李建军, 于军, 李佳, 王梦, 李玉斌, 吴云翼, 高俊雄, 王耘波 2010 物理学报 59 1302]

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Chadi D, Cohen M L 1973 Phys. Rev. B 8 5747

    [20]

    Baldereschi A 1973 Phys. Rev. B 7 5212

    [21]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [22]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 物理学报 62 203103]

    [23]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C 2014 Rev. Mod. Phys. 86 253

    [24]

    Scott J, Araujo A, Melnick B, McMillan L, Zuleeg R 1991 J. Appl. Phys. 70 382

    [25]

    Pykk S, Chadi D J 1999 Phys. Rev. Lett. 83 1231

  • [1] Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong. First-principles calculations of point defect migration mechanisms in InP. Acta Physica Sinica, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] Chen Cui-Hong, Li Zhan-Kui, Wang Xiu-Hua, Li Rong-Hua, Fang Fang, Wang Zhu-Sheng, Li Hai-Xia. Development of high performance PIN-silicon detector and its application in radioactive beam physical experiment. Acta Physica Sinica, 2023, 72(12): 122902. doi: 10.7498/aps.72.20230213
    [3] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] Shi Zhi-Xin, Zhou Da-Yu, Li Shuai-Dong, Xu Jin, Uwe Schröder. First-order reversal curve diagram and its application in investigation of polarization switching behavior of HfO2-based ferroelectric thin films. Acta Physica Sinica, 2021, 70(12): 127702. doi: 10.7498/aps.70.20210115
    [5] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [6] Liang Jin-Ling, Zhang Yun, Qiu Xiao-Yan, Wu Sheng-Yu, Luo Ya. First-principles study of Fe:Mg:LiTaO3 crystals. Acta Physica Sinica, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [7] Lin Qiao-Lu, Li Gong-Ping, Xu Nan-Nan, Liu Huan, Wang Cang-Long. A first-principles study on magnetic properties of the intrinsic defects in rutile TiO2. Acta Physica Sinica, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [8] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [9] Wang Kai, Zhang Wen-Hua, Liu Ling-Yun, Xu Fa-Qiang. Healing of oxygen defects on VO2 surface: F4TCNQ adsorption. Acta Physica Sinica, 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [10] Tan Xing-Yi, Wang Jia-Heng, Zhu Yi-Yi, Zuo An-You, Jin Ke-Xin. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur. Acta Physica Sinica, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [11] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [12] Xie Dong, Leng Yong-Xiang, Huang Nan. Deposition and first-principles caculation of carbon-doped titanium monoxide films. Acta Physica Sinica, 2013, 62(19): 198103. doi: 10.7498/aps.62.198103
    [13] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Lü Yi, Wang Bin, Li Yu-Chen. Analytical modeling for drain current of strained Si NMOSFET. Acta Physica Sinica, 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [14] Wen Juan-Hui, Yang Qiong, Cao Jue-Xian, Zhou Yi-Chun. Strain control of the leakage current of the ferroelectric thin films. Acta Physica Sinica, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [15] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [16] Sun Yuan, Ming Xing, Meng Xing, Sun Zheng-Hao, Xiang Peng, Lan Min, Chen Gang. First-principles investigation of the electronic properties of multiferroic BaCoF4. Acta Physica Sinica, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [17] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [18] Wang Xiu-Zhang, Liu Hong-Ri. Enhanced ferroelectricity of Pb(Zr0.5Ti0.5)O3 film by the introduction of La0.3Sr0.7TiO3 template layer. Acta Physica Sinica, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [19] Yang Chang-Ping, Chen Shun-Sheng, Dai Qi, Guo Ding-He, Wang Hao. Spin-dependent electroresistance in Nd0.67Sr0.33MnOy(y<3.0). Acta Physica Sinica, 2007, 56(8): 4908-4913. doi: 10.7498/aps.56.4908
    [20] Jia Jian-Feng, Huang Kai, Pan Qing-Tao, Li Shi-Guo, He De-Yan. Dielectric properties and leakage current of MgO/(Ba0.8Sr0.2)TiO3 heterostructured films prepared by sol-gel technique. Acta Physica Sinica, 2006, 55(4): 2069-2072. doi: 10.7498/aps.55.2069
Metrics
  • Abstract views:  7748
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  10 June 2018
  • Accepted Date:  02 August 2018
  • Published Online:  20 September 2019

/

返回文章
返回