Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of multiferroic Aurivillius-type interfaces in ferroelectric PbTiO3

QIAN Tao XU Tao

Citation:

First-principles study of multiferroic Aurivillius-type interfaces in ferroelectric PbTiO3

QIAN Tao, XU Tao
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Multiferroic materials have attracted considerable attention due to their novel quantum phenomena, including magnetoelectric coupling and topological domains, which are derived from the cross-coupling mechanism between ferroelectric order and magnetic order. However, the discovery of intrinsic multiferroic materials exhibiting magnetoelectric coupling remains limited, as ferroelectricity typically originates from the d0 electronic configuration, while ferromagnetism relies on partially filled dn state. Based on first principles calculations, this work demonstrates that electronic structure of PbTiO3 perovskite can be engineered by introducing an Aurivillius-type interface layer, which induces localized magnetic moments at the interface. The results reveal that when the system maintains strong electric polarization (up to 116.88 μC/cm2), the interfacial charge changes the electron occupancy of oxygen atoms, thereby resulting in interface magnetism and magnetoelectric coupling in PbTiO3. Notably, this multiferroic state exhibits pronounced interface localization, with the magnetic moment decaying rapidly as the layer thickness increases. Importantly, the emergent magnetism is asymmetric, resulting in a net positive spontaneous magnetization of 2.0μB. This observation indicates the emergence of ferrimagnetism at the interface. Furthermore, the interfacial region displays p-type conductivity behavior, exhibiting characteristics of two-dimensional hole gas (2DHG), and the density of holes and the density of charge carriers at the interface are several times higher than those in typical heterostructures. Overall, our work proposes a novel mechanism for designing multiferroic and providing a promising strategy for developing magnetoelectric-coupled multiferroic devices.
  • 图 1  模拟模型 (a) 块体单胞PbTiO3的原子结构; (b) PbTiO3 Aurivillious型界面的构造示意图; (c) 上层和下层的剖面图; (d) PbTiO3中Aurivillious型界面的仿真模型, 其中n = 6

    Figure 1.  Simulation model: (a) Atomic structure of bulk unit cell PbTiO3; (b) schematic illustration of the schematic diagram of PbTiO3 Aurivillious interface; (c) cross-section view of upper part and cross-section view of lower part; (d) simulation model of Aurivillious type interface in PbTiO3 with n = 6.

    图 2  四方PbTiO3的相图. 由A, B, CD组成的四边形区域显示了PbTiO3的稳定范围

    Figure 2.  Phase diagram of tetragonal PbTiO3. The quadrilateral area composed of A, B, C, and D shows the stability range of PbTiO3.

    图 3  界面的铁电性 (a) PbO层中沿z轴的归一化Pb—O相对位移; (b) TiO2层中沿z轴的归一化Ti—O相对位移; (c) 每层的局域极化

    Figure 3.  Ferroelectrixity of interface: (a) Normalized Pb—O relative displacements in the PbO layers along the z axis; (b) normalized Ti—O relative displacements in the TiO2 layers along the z axis; (c) the local polarization in each layer.

    图 4  界面的磁性 (a) 沿[001]方向初始磁性配置的PbTiO3中Aurivillius型界面周围的磁自旋密度分布, 其中紫色区域和黄色区域分别表示自旋密度为+0.005μB·Å–1和–0.005μB·Å–1的等值面; (b) 界面周围各原子层中O原子的磁矩

    Figure 4.  Magnetic properties of interface: (a) Magnetic spin-density distribution around Aurivillious type interface in PbTiO3 for initial polarization configuration along the [001] direction, in which the purple area and yellow area represent the iso-surfaces of spin-densities of +0.005μB·Å–1 and –0.005μB·Å–1, respectively; (b) the magnetic moment of O atoms in each atomic layer around the interface.

    图 5  (a) PbTiO3中Aurivillius型的总态密度(DOS), 红色和蓝色线分别表示自旋朝上和自旋朝下的占据(未占据)态; (b) Aurivillius型界面中的电荷密度分布, 绿色区域表示电荷密度为0.01 Å–3的等值面. 层分辨的部分态密度, 红色和黑线分别表示O的2p轨道自旋朝上和O的2p轨道自旋朝下的占据(未占据)态, 蓝色和绿线分别表示Pb的6s轨道自旋朝上和Pb的6s轨道自旋朝下的占据(未占据)态

    Figure 5.  (a) Total DOS for the Aurivillious-type interface in PbTiO3, the red and blue lines indicate the occupied (unoccupied) states of up-spin and down-spin, respectively; (b) charge density distribution in Aurivillius-type interface, the green area represents the iso-surface of charge densities of 0.01 Å–3. The layer resolved partial DOS, the red and black line indicate the occupied (unoccupied) states of O 2p up-spin and O 2p down-spin, respectively, the blue and green line indicate the occupied (unoccupied) states of Pb 6s up-spin and Pb 6s down-spin, respectively.

    图 6  Aurivillius型界面中不同初始极化配置下的磁自旋密度分布, 沿 (a) [00$ \bar{1} $]方向和 (b) [100]方向, 其中紫色区域和黄色区域分别表示自旋密度为+0.005μB·Å–1和–0.005μB·Å–1的等值面; (c) 沿[001]方向、[00$ \bar{1} $]方向和[100]方向的不同初始极化配置下每层的dPiz/dz

    Figure 6.  Magnetic spin-density distribution in Aurivillius-type interface with the different initial polarization configuration along (a) the [00$ \bar{1} $] direction and (b) the [100] direction, in which the purple area and yellow area represent the iso-surfaces of spin-densities of +0.005μB·Å–1 and –0.005μB·Å–1, respectively; (c) the magnitude of dPiz/dz in each layer of the different initial polarization configuration along the [001] direction, the[00$ \bar{1} $] direction, and the [100] direction, respectively.

    图 A1  (a) Pb中心晶格; (b) Ti中心晶格; (c) PbO平面中的O中心晶格; (d) TiO2平面中的O中心晶格

    Figure A1.  (a) Pb-centered lattice; (b) Ti-centered lattice; (c) O-centered lattice in the PbO plane; (d) O-centered lattice in the TiO2 plane.

    表 1  A, B, CD处的化学势数值

    Table 1.  The values of chemical potential for points A, B, C, and D, respectively.

    chemical potential/eV ΔμPb ΔμTi ΔμO μPb μTi μO
    A 0 –5.73 –2.28 –4.56 –17.69 –9.42
    B 0 –4.93 –2.54 –4.56 –16.90 –9.69
    C –2.28 –10.28 0 –6.84 –22.25 –7.14
    D –2.54 –10.02 0 –7.11 –21.98 –7.14
    DownLoad: CSV
  • [1]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759Google Scholar

    [2]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [3]

    俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明 2018 物理学报 67 157507

    Yu B, Hu Z, Cheng Y, Peng B, Zhou Z, Liu M 2018 Acta Phys. Sin. 67 157507

    [4]

    H. Béa, M. Gajek, M. Bibes, A. Barthélémy 2008 J. Phys. Condens. Matter 20 434221Google Scholar

    [5]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer Nature) pp23–51

    [6]

    Spaldin N A, Fiebig M 2005 Science 309 5733

    [7]

    Zhang J, Xie Y, Ji K, Shen X 2024 Appl. Phys. Lett. 125 230503Google Scholar

    [8]

    周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文 2018 物理学报 67 157505

    Zhou L, Wang X, Zhang H, Shen X, Dong D, Long Y 2018 Acta Phys. Sin. 67 157505

    [9]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123Google Scholar

    [10]

    Wang Y, Hu J, Lin Y, Nan C W 2010 NPG Asia Mater. 2 61Google Scholar

    [11]

    Hill N A 2000 J. Phys. Chem. B 104 6694Google Scholar

    [12]

    Ji H, Yan Z, Zhou G, Wang X, Zhang J, Li Z, Kang P, Xu X 2020 Appl. Phys. Lett. 117 192402Google Scholar

    [13]

    Shimada T, Uratani Y, Kitamura T 2012 Appl. Phys. Lett. 100 162901Google Scholar

    [14]

    Gao L, Chen X, Qi J 2024 Appl. Phys. Lett. 125 212903Google Scholar

    [15]

    Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H, Thompson C 2004 Science 304 5677

    [16]

    Wen Z, Li C, Wu D, Li A, Ming N 2013 Nat. Mater. 12 617Google Scholar

    [17]

    Xu T, Wu C, Zheng S, Wang Y, Wang J, Hirakata H, Kitamura T, Shimada T 2024 Phys. Rev. Lett. 132 086801Google Scholar

    [18]

    Xu T, Shimada T, Y. Araki, J. Wang, T. Kitamura 2015 Phys. Rev. B 92 104

    [19]

    Shimada T, Xu T, Uratani Y, Wang J, Kitamura T 2016 Nano Lett. 16 6774Google Scholar

    [20]

    Lin T, Gao A, Tang Z, Lin W, Sun M, Zhang Q, Wang X, Guo E, Lin G 2024 Chin. Phys. Lett. 41 047701Google Scholar

    [21]

    Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37 589Google Scholar

    [22]

    Aleksandrov K, Beznosikov V 1997 Phys. Solid State 39 695Google Scholar

    [23]

    Choi W, Park B, Hwang J, Han G, Yang S, Lee H J, Lee S S, Jo J Y, Borisevich A Y, Jeong H Y, Oh S H, Lee J, Kim Y M 2024 Chin. Phys. B 33 096805Google Scholar

    [24]

    Neaton J B, Rabe K M 2003 Appl. Phys. Lett. 82 1586Google Scholar

    [25]

    Johnston K, Huang X, Neaton J B, Rabe K M 2005 Phys. Rev. B 71 100

    [26]

    Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Herme P, Gariglio S, Triscone J M, Ghosez P 2008 Nature 452 732Google Scholar

    [27]

    Aurivillius B 1949 Arkiv Kemi 1 463

    [28]

    Smolenskii G A, Isupov V A, Agranovskaya A I 1960 Phys. Solid State 1 1429

    [29]

    Subbarao E C 1961 J. Phys. Chem. Solids 23 665

    [30]

    Scott J F 2013 NPG Asia Mater. 5 e72Google Scholar

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [32]

    Li Z, Koval V, Mahajan A, Gao Z, Vecchini C, Stewart M, Cain M G, Tao K, Jia C, Viola G, Yan H 2020 Appl. Phys. Lett. 117 052903Google Scholar

    [33]

    Algueró M, Real R. P, Amorín H, Castro A 2022 Appl. Phys. Lett. 121 122904Google Scholar

    [34]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [36]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [37]

    Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124 219906Google Scholar

    [38]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202Google Scholar

    [39]

    Bilc D I, Orlando R, Shaltaf R, Rignanese G M, Iniguez J, Ghosez P 2008 Phys. Rev. B 77 165107Google Scholar

    [40]

    Shimada T, Ueda T, Wang J, Kitamura T 2013 Phys. Rev. B 87 174111Google Scholar

    [41]

    文志勤, 黄彬荣, 卢涛仪, 邹正光 2022 无机材料学报 37 787Google Scholar

    Wen Z, Huang B, Lu T, Zou Z 2022 J. Inorg. Mater. 37 787Google Scholar

    [42]

    Robertson J, Warren W L, Tuttle B A 1995 J. Appl. Phys. 77 3975Google Scholar

    [43]

    Mabud S, Glazer A M 1979 J. Appl. Crystallogr. 12 49Google Scholar

    [44]

    Xu T, Wang J, Shimada T, Kitamura T 2013 J. Phys. Condens. Matter 25 415901Google Scholar

    [45]

    Rondinelli J M, Stengel M, Spaldin N A 2008 Nat. Nano 3 46Google Scholar

    [46]

    Ahn C H, Bhattacharya A, Ventra M D, Eckstein J N, Frisbie C D, Gershenson M E, Goldman A M, Inoue I H, Mannhart J, Millis A J, Morpurgo A F, Natelson D, Triscone J M 2006 Rev. Mod. Phys. 78 1185Google Scholar

    [47]

    Vaz C A F, Hoffman J, Segal Y, Reiner J W, Grober R D, Zhang Z, Ahn C H, Walker F J 2010 Phys. Rev. Lett. 104 127202Google Scholar

    [48]

    Redwing J M, Tischler M A, Flynn J S, Elhamri S, Ahoujja M, Newrock R S, Mitchel W C 1996 Appl. Phys. Lett. 69 963Google Scholar

  • [1] Zhang Jiang-Lin, Wang Zhong-Min, Wang Dian-Hui, Hu Chao-Hao, Wang Feng, Gan Wei-Jiang, Lin Zhen-Kun. First principles study of V/Pd interface interactions and their hydrogen absorption properties. Acta Physica Sinica, doi: 10.7498/aps.72.20230132
    [2] Sun Shi-Yang, Chi Zhong-Bo, Xu Ping-Ping, An Ze-Yu, Zhang Jun-Hao, Tan Xin, Ren Yuan. First-principles study of formation and performance of diamond (111)/Al interface. Acta Physica Sinica, doi: 10.7498/aps.70.20210572
    [3] Qin Wen-Jing, Xu Bo, Sun Bao-Zhen, Liu Gang. First principles study of electrical and magnetic properties of two-dimensional ferromagnetic semiconductors CrI3 adsorbed by atoms. Acta Physica Sinica, doi: 10.7498/aps.70.20210090
    [4] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, doi: 10.7498/aps.69.20191799
    [5] Zhang Xian-Fei, Wang Ling-Ling, Zhu Hai, Zeng Cheng. Numerical study on salt finger at interface between fluid layer and porous layer by single-domain approach. Acta Physica Sinica, doi: 10.7498/aps.69.20200351
    [6] Wang Yu-Jia, Geng Wan-Rong, Tang Yun-Long, Zhu Yin-Lian, Ma Xiu-Liang. Construction of novel ferroelectric topological structures and their structural characteristics at sub-angström level. Acta Physica Sinica, doi: 10.7498/aps.69.20201718
    [7] Liang Jin-Ling, Zhang Yun, Qiu Xiao-Yan, Wu Sheng-Yu, Luo Ya. First-principles study of Fe:Mg:LiTaO3 crystals. Acta Physica Sinica, doi: 10.7498/aps.68.20190575
    [8] Chen Dong-Yun, Gao Ming, Li Yong-Hua, Xu Fei, Zhao Lei, Ma Zhong-Quan. First principle study of formation mechanism of molybdenum-doped amorphous silica in MoO3/Si interface. Acta Physica Sinica, doi: 10.7498/aps.68.20190067
    [9] Zhai Xiao-Fang, Yun Yu, Meng De-Chao, Cui Zhang-Zhang, Huang Hao-Liang, Wang Jian-Lin, Lu Ya-Lin. Research progress of multiferroicity in Bi-layered oxide single-crystalline thin films. Acta Physica Sinica, doi: 10.7498/aps.67.20181159
    [10] Yan Song-Ling, Tang Li-Ming, Zhao Yu-Qing. First-principles study of the electronic properties and magnetism of LaMnO3/SrTiO3 heterointerface with the different component thickness ratios. Acta Physica Sinica, doi: 10.7498/aps.65.077301
    [11] Tang Jie, Zhang Guo-Ying, Bao Jun-Shan, Liu Gui-Li, Liu Chun-Ming. First-principles study of the effect of S impurity on the adhesion of Fe/Al2O3 interface. Acta Physica Sinica, doi: 10.7498/aps.63.187101
    [12] Fan Yong, Bu Wen-Bin, Liu Xiao-Xu, Cheng Wei-Dong, Wu Zhong-Hua, Yin Jing-Hua. Research on interface and fractal characteristics of PI/Al2O3Films by SAXS. Acta Physica Sinica, doi: 10.7498/aps.60.056101
    [13] Medvedeva I, Chen Shun-Sheng, Huang Chang, Wang Rui-Long, Yang Chang-Ping. The electrical transport properties of Ag/Nd0.7Sr0.3MnO3 ceramic interface. Acta Physica Sinica, doi: 10.7498/aps.60.037304
    [14] You Yin-Tao, Wang Ai-Fen, Sun Xiao-Yu, Li Wen-Bin, Zheng Xiao-Yan. Study on the exciton dissociation at the NPB-Alq3 interface. Acta Physica Sinica, doi: 10.7498/aps.59.6527
    [15] Sun Yuan, Ming Xing, Meng Xing, Sun Zheng-Hao, Xiang Peng, Lan Min, Chen Gang. First-principles investigation of the electronic properties of multiferroic BaCoF4. Acta Physica Sinica, doi: 10.7498/aps.58.5653
    [16] Sun Yuan, Huang Zu-Fei, Fan Hou-Gang, Ming Xing, Wang Chun-Zhong, Chen Gang. First-principles investigation on the role of ions in ferroelectric transition of BiFeO3. Acta Physica Sinica, doi: 10.7498/aps.58.193.1
    [17] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Ge Cun-Wang. Magnetoelectric coupling and magnetoelectric properties of single-phase ABO3 type multiferroic materials. Acta Physica Sinica, doi: 10.7498/aps.58.3491
    [18] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Jiang Xue-Fan, Luo Li-Jin. Electric-field-induced magnetization in 1-3 type multiferroic nanocomposite thin film. Acta Physica Sinica, doi: 10.7498/aps.58.7227
    [19] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, doi: 10.7498/aps.57.4434
    [20] LIU PING, XU WEN-LAN, LI ZHI-FENG, MIAO ZHONG-LIN, LU WEI. THE THEORETICAL CALCULATION ABOUT PHONON DISPERSION OF THE TETRAGONAL AND CUBIC PHASES IN PbTiO3. Acta Physica Sinica, doi: 10.7498/aps.50.239
Metrics
  • Abstract views:  373
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  28 March 2025
  • Accepted Date:  04 April 2025
  • Available Online:  08 April 2025

/

返回文章
返回