-
The effect of S impurity on adhesion of Fe(110)/Al2O3(0001) interface is studied by the first-principles plane wave pseudopotential method within the density functional theory. It is shown that S impurity prefers to occupy the site of Fe3 at Fe(110)/Al2O3(0001) interface substitutionally due to the smallest interface segregation energy. The adhesion of Fe(110)/Al2O3(0001) interface is mainly governed by the interaction between Fe and O atoms on both sides of interface. The calculation results of the partial density of states, Mulliken overlap population and the electron density all suggest that Fe-O interaction is weakened by the segregated S impurity at Fe/Al2O3 interface, and the presence of S impurity gives rise to stronger electrostatic repulsion between Fe and O atoms across Fe/Al2O3 interface, which all leads to a reduced adhesion for Fe/Al2O3 interface. As a result, the results obtained by the first principles can give us a deeper understanding of the mechanism of a reduced interface adhesion and the oxidation film spallation by the segregation of S impurity at FeCrAl alloy interface.
-
Keywords:
- oxidation mechanism /
- first principles /
- Fe/Al2O3 interface /
- segregation
[1] Zhang G Y, Zhang H, Fang G L, Luo Z C 2009 Acta Phys. Sin. 58 6442(in Chinese)[张国英, 张辉, 方戈亮, 罗志成 2009 物理学报 58 6442]
[2] Zhang Z G, Zhang X J, Pan T J, Niu Y 2007 J. Iron Steel Res. Int. 35 38(in Chinese)[张志刚, 张学军, 潘太军, 牛焱 2007 钢铁研究 35 38]
[3] Hou P Y, Stringer J 1992 Oxid. Met. 38 323
[4] Sigler D R 1993 Oxid. Met. 40 555
[5] Li C X, Dang S H, Wang L P, Zhang C L, Han P D 2014 Chin. Phys. B 23 037102
[6] Kohyama M, Tanaka S, Okazaki-Maeda K, Akita T 2007 Mater. Trans. 48 675
[7] Liu G L 2010 Acta Phys. Sin. 59 494(in Chinese)[刘贵立 2010 物理学报 59 494]
[8] Hong T, Smith J R, Srolovitz D J 1995 Acta Metal. Mater. 43 2721
[9] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
[10] Vanderbilt D 1990 Phys. Rev. B 41 7892
[11] Guan W M, Pan Y, Zhang K H, Guo J M 2010 Rare Metal Mat. Eng. 39 1339
[12] Liu S Y, Shang J X, Wang F H, Zhang Y 2009 J. Phys. Condens. Matter 21 225005
[13] Wu L H, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794(in Chinese)[吴丽红, 赵新青, 宫声凯 2008 物理学报 57 7794]
[14] Fang L M, Gao J, Li H G 2012 J. Yantai Univ. 25 98 (in Chinese)[房丽敏, 高洁, 李华刚 2012 烟台大学学报 25 98]
[15] Tolpygo V K, Viefhaus H 1999 Oxid. Met. 52 29
[16] Hou P Y 2001 Mater. Sci. Forum 369 23
[17] Xin L, Li M S, Zhou L J, Li T F, Wang F H 2000 J. Chin. Rare Earth Soc. 18 330 (in Chinese)[辛丽, 李美栓, 周龙江, 李铁藩, 王福会 2000 中国稀土学报 18 330]
-
[1] Zhang G Y, Zhang H, Fang G L, Luo Z C 2009 Acta Phys. Sin. 58 6442(in Chinese)[张国英, 张辉, 方戈亮, 罗志成 2009 物理学报 58 6442]
[2] Zhang Z G, Zhang X J, Pan T J, Niu Y 2007 J. Iron Steel Res. Int. 35 38(in Chinese)[张志刚, 张学军, 潘太军, 牛焱 2007 钢铁研究 35 38]
[3] Hou P Y, Stringer J 1992 Oxid. Met. 38 323
[4] Sigler D R 1993 Oxid. Met. 40 555
[5] Li C X, Dang S H, Wang L P, Zhang C L, Han P D 2014 Chin. Phys. B 23 037102
[6] Kohyama M, Tanaka S, Okazaki-Maeda K, Akita T 2007 Mater. Trans. 48 675
[7] Liu G L 2010 Acta Phys. Sin. 59 494(in Chinese)[刘贵立 2010 物理学报 59 494]
[8] Hong T, Smith J R, Srolovitz D J 1995 Acta Metal. Mater. 43 2721
[9] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
[10] Vanderbilt D 1990 Phys. Rev. B 41 7892
[11] Guan W M, Pan Y, Zhang K H, Guo J M 2010 Rare Metal Mat. Eng. 39 1339
[12] Liu S Y, Shang J X, Wang F H, Zhang Y 2009 J. Phys. Condens. Matter 21 225005
[13] Wu L H, Zhao X Q, Gong S K 2008 Acta Phys. Sin. 57 7794(in Chinese)[吴丽红, 赵新青, 宫声凯 2008 物理学报 57 7794]
[14] Fang L M, Gao J, Li H G 2012 J. Yantai Univ. 25 98 (in Chinese)[房丽敏, 高洁, 李华刚 2012 烟台大学学报 25 98]
[15] Tolpygo V K, Viefhaus H 1999 Oxid. Met. 52 29
[16] Hou P Y 2001 Mater. Sci. Forum 369 23
[17] Xin L, Li M S, Zhou L J, Li T F, Wang F H 2000 J. Chin. Rare Earth Soc. 18 330 (in Chinese)[辛丽, 李美栓, 周龙江, 李铁藩, 王福会 2000 中国稀土学报 18 330]
Catalog
Metrics
- Abstract views: 6704
- PDF Downloads: 635
- Cited By: 0