-
Investigating the dendritic competitive growth mechanism is of great importance for directional solidification, and the numerical simulation technique is regarded as an effective approach to a description of microstructural evolution. Therefore, a modified cellular automaton model with decentered square algorithm is developed for quantitatively simulating the dendritic competitive growth process. The model takes into account the simplified thermal field, solute diffusion, growth kinetics, etc., and the solid fraction increment calculation is achieved through local level rule method. The model is successfully used to describe the dendrites with various growth orientations and its availability in simulating dendritic competitive growth is verified by comparing with the experimental results of transparent alloy. For the nickel-based superalloy, the simulated results reveal that in the case of converging dendrites, the unfavorably oriented dendrite is able to overgrow the favorably oriented dendrite, which is dependent on the preferential growth angle. For the divergence case, the favorably oriented dendrite can overgrow the unfavorably oriented dendrite through side branching at the grain boundary. The competitive growth process is mainly controlled by the pulling rate and the preferential growth angle. Furthermore, the model is successfully extended to the simulation of three-dimensional dendritic competitive growth.
-
Keywords:
- cellular automaton /
- directional solidification /
- competitive growth /
- nickel-based superalloy
[1] Boettinger W J, Corell S R, Greer A L, Karam A, Kura W, Rappaz M, Trivedi R 2000 Acta Mater. 48 43
[2] Shi Y F 2013 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)[石玉峰 2013 博士学位论文 (北京: 清华大学)]
[3] Wang W, Lee P D, McLean M 2003 Acta Mater. 51 2971
[4] Gandin C A, Rappaz M 1994 Acta Mater. 42 2233
[5] Yang X L, Dong H B, Wang W, Lee P D 2004 Mater. Sci. Eng. A 386 129
[6] Dong H B, Lee P D 2005 Acta Mater. 53 659
[7] Dong H B, Yang X L, Lee P D, Wang W 2004 J. Mater. Sci. 39 7207
[8] Sanches L B, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471
[9] Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741
[10] Shi Y F, Xu Q Y, Gong M, Liu B C 2011 Acta Metall. Sin. 47 620(in Chinese)[石玉峰, 许庆彦, 龚铭, 柳百成 2011 金属学报 47 620]
[11] Walton D, Chalmers B 1959 Trans. Metall. Soc. AIME 215 447
[12] Zhou Y Z, Volek A, Green N R 2008 Acta Mater. 56 2631
[13] Zhou Y Z, Jin T, Sun X F 2010 Acta Metall. Sin. 46 1327(in Chinese)[周亦胄, 金涛, 孙晓峰 2010 金属学报 46 1327]
[14] Li J J, Wang Z J, Wang Y Q, Wang J C 2012 Acta Mater. 60 1478
[15] Wang Y Q, Wang J C, Li J J 2012 Acta Phys. Sin. 61 118103(in Chinese)[王雅琴, 王锦程, 李俊杰 2012 物理学报 61 118103]
[16] Yu H L, Lin X, Li J J, Wang Y Q, Huang W D 2013 Acta Metal. Sin. 49 58(in Chinese)[宇红雷, 林鑫, 李俊杰, 王理林, 黄卫东 2013 金属学报 49 58]
[17] Nastac L 1999 Acta Mater. 47 4253
[18] Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 S278(in Chinese)[潘诗琰, 朱鸣芳 2009 物理学报 58 S278]
[19] Pan S Y, Zhu M F 2010 Acta Mater. 58 340
[20] Li B 2013 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)[李斌 2013 博士学位论文 (北京: 清华大学)]
[21] Esaka H, Shinozuka K, Tamura M 2005 Mater. Sci. Eng. A 413-414 151
[22] Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611
[23] D'souza N, Ardakani M G, Wagner A, Shollock B A, Mclean M 2002 J. Mater. Sci. 37 481
[24] Zhu M F, Hong C P 2001 ISIJ Int. 41 436
[25] Yang C B, Liu L, Zhao S B, Wang N, Zhang J, Fu H Z 2013 J. Alloys. Comp. 573 170
[26] Zhang X L, Zhou Y Z, Jin T, Sun X F, Liu L 2013 J. Mater. Sci. Technol. 29 879
[27] Lee P D, Chirazi A, Atwood R C, Wang W 2004 Mater. Sci. Eng. A 365 57
[28] D'Souza N, Jennings P A, Yang X L, Dong H B, Lee P D, Mclean M 2005 Metall. Mater. Trans. B 36B 657
-
[1] Boettinger W J, Corell S R, Greer A L, Karam A, Kura W, Rappaz M, Trivedi R 2000 Acta Mater. 48 43
[2] Shi Y F 2013 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)[石玉峰 2013 博士学位论文 (北京: 清华大学)]
[3] Wang W, Lee P D, McLean M 2003 Acta Mater. 51 2971
[4] Gandin C A, Rappaz M 1994 Acta Mater. 42 2233
[5] Yang X L, Dong H B, Wang W, Lee P D 2004 Mater. Sci. Eng. A 386 129
[6] Dong H B, Lee P D 2005 Acta Mater. 53 659
[7] Dong H B, Yang X L, Lee P D, Wang W 2004 J. Mater. Sci. 39 7207
[8] Sanches L B, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471
[9] Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741
[10] Shi Y F, Xu Q Y, Gong M, Liu B C 2011 Acta Metall. Sin. 47 620(in Chinese)[石玉峰, 许庆彦, 龚铭, 柳百成 2011 金属学报 47 620]
[11] Walton D, Chalmers B 1959 Trans. Metall. Soc. AIME 215 447
[12] Zhou Y Z, Volek A, Green N R 2008 Acta Mater. 56 2631
[13] Zhou Y Z, Jin T, Sun X F 2010 Acta Metall. Sin. 46 1327(in Chinese)[周亦胄, 金涛, 孙晓峰 2010 金属学报 46 1327]
[14] Li J J, Wang Z J, Wang Y Q, Wang J C 2012 Acta Mater. 60 1478
[15] Wang Y Q, Wang J C, Li J J 2012 Acta Phys. Sin. 61 118103(in Chinese)[王雅琴, 王锦程, 李俊杰 2012 物理学报 61 118103]
[16] Yu H L, Lin X, Li J J, Wang Y Q, Huang W D 2013 Acta Metal. Sin. 49 58(in Chinese)[宇红雷, 林鑫, 李俊杰, 王理林, 黄卫东 2013 金属学报 49 58]
[17] Nastac L 1999 Acta Mater. 47 4253
[18] Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 S278(in Chinese)[潘诗琰, 朱鸣芳 2009 物理学报 58 S278]
[19] Pan S Y, Zhu M F 2010 Acta Mater. 58 340
[20] Li B 2013 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)[李斌 2013 博士学位论文 (北京: 清华大学)]
[21] Esaka H, Shinozuka K, Tamura M 2005 Mater. Sci. Eng. A 413-414 151
[22] Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611
[23] D'souza N, Ardakani M G, Wagner A, Shollock B A, Mclean M 2002 J. Mater. Sci. 37 481
[24] Zhu M F, Hong C P 2001 ISIJ Int. 41 436
[25] Yang C B, Liu L, Zhao S B, Wang N, Zhang J, Fu H Z 2013 J. Alloys. Comp. 573 170
[26] Zhang X L, Zhou Y Z, Jin T, Sun X F, Liu L 2013 J. Mater. Sci. Technol. 29 879
[27] Lee P D, Chirazi A, Atwood R C, Wang W 2004 Mater. Sci. Eng. A 365 57
[28] D'Souza N, Jennings P A, Yang X L, Dong H B, Lee P D, Mclean M 2005 Metall. Mater. Trans. B 36B 657
Catalog
Metrics
- Abstract views: 6965
- PDF Downloads: 844
- Cited By: 0