Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cellular automaton simulation on cooperative growth of M7C3 carbide and austenite in high Cr cast irons

Zhang Shan Zhang Hong-Wei Miao Miao Feng Miao-Miao Lei Hong Wang Qiang

Citation:

Cellular automaton simulation on cooperative growth of M7C3 carbide and austenite in high Cr cast irons

Zhang Shan, Zhang Hong-Wei, Miao Miao, Feng Miao-Miao, Lei Hong, Wang Qiang
PDF
HTML
Get Citation
  • M7C3 carbide’s amount, size, morphology and distribution in the microstructure contribute much to the wear resistance of high chromium cast irons. In the present paper, a two-dimensional microscopic cellular automaton model for the growth of the faceted M7C3 carbide together with the austenitic dendrite grains in an Fe-4%C-17%Cr ternary alloy is developed to obtain the evolution of M7C3 carbide grain morphology, the concentration redistribution and their interaction during the growth of M7C3 carbide and austenite grains, and also the total influence on the final M7C3 carbides’ size. The model includes the effect of latent heat release on the temperature drop. The grain growth velocity is determined by both the diffusion of C solute and the diffusion of Cr solute at the S/L interface. The equilibrium concentration in liquid cells is interpolated from the tablulated solidification path which is prescribed by Gulliver-Scheil approximation coupling with the thermodynamic equilibrium calculation. The morphology of the faceted M7C3 carbide is maintained through setting its neighborhood relations and optimizing its shape factor at grain growth. The results show that the individual grain growth velocity for M7C3 carbide and austenite increases with the increase of the supersaturation and Peclet number of solute C and Cr. The austenite precipitation and grain growth obviously speed up the growth velocity of M7C3 carbide grains. While with the austenite grains gradually touching and enveloping the M7C3 carbide grain, the growth velocities for both kinds of grains decrease. The rejection of solute C and Cr during austenite grain growth complements the absorption of solute C and Cr during M7C3 carbide grain growth, thus promoting their growth. The predicted cooling curve fits with the evolution tendency of the experimental one. The predicted final solidification microstructure and M7C3 carbide amount in volume fraction are in agreement with the experimental ones. Furthermore, both C solute concentration distribution and Cr solute concentration distribution in both residual liquid and austenite are consistent with the predictions by the Gulliver-Scheil, partial equilibrium and lever rule model.
      Corresponding author: Zhang Hong-Wei, hongweizhang@epm.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51574074, 51425401), the National Natural Science Foundation of China and Shanghai Baosteel (Grant Nos. U1460108, U1560207), and the Natural Science Foundations of Liaoning Province, China (Grant No. L20150183).
    [1]

    Siekaniec D, Kopycinski D, Szczesny A, Guzik E, Tyraa E, Nowak A 2017 Nephron Clinical Practice 17 143Google Scholar

    [2]

    Liu H N, Sakamoto M, Nomura M, Ogi K 2001 Wear 250 71Google Scholar

    [3]

    Pokusova M, Gabrisova Z, Brusilova A, Pribulova A, Futa P 2020 Mater. Sci. Forum. 998 30Google Scholar

    [4]

    Filipovic M, Kamberovic Z, Korac M, Gavrilovski M 2013 Mater. Des. 47 41Google Scholar

    [5]

    Buytoz S, Yildirim M M, Eren H 2005 Mater. Lett. 59 607Google Scholar

    [6]

    龚沛, 赵曜, 杨浩, 王宁 2017 金属热处理 42 137Google Scholar

    Gong P, Zhao Y, Yang H, Wang N 2017 Heat Treatment of Metals 42 137Google Scholar

    [7]

    陈哲, 王亮亮, 张晗, 付永红, 钟黎声, 叶芳霞 2013 热加工工艺 42 8Google Scholar

    Chen Z, Wang L L, Zhang H, Fu Y H, Zhong L S, Ye F X 2013 Hot Working Technology 42 8Google Scholar

    [8]

    Tang X H, Chung R, Pang C J, Li D Y, Hinckley B, Dolman K 2011 Wear 271 1426Google Scholar

    [9]

    Zhang H W, Nakajima K, Gandin C A, He J C 2013 ISIJ Int. 53 493Google Scholar

    [10]

    王同敏, 魏晶晶, 王旭东, 姚曼 2018 金属学报 54 193Google Scholar

    Wang T M, Wei J J, Wang X D, Yao M 2018 Acta Metall. Sin. 54 193Google Scholar

    [11]

    朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰 2018 金属学报 54 789Google Scholar

    Zhu M F, Xing L K, Fang H, Zhang Q Y, Tang Q Y, Pan S Y 2018 Acta. Metall. Sin. 54 789Google Scholar

    [12]

    Zhu M F, Cao W, Chen S L, Hong C P, Chang Y A 2007 J. Phase Equilib. Diffus. 28 130Google Scholar

    [13]

    戴挺, 朱鸣芳, 陈双林, 曹伟生, 洪俊杓 2008 金属学报 10 1175Google Scholar

    Dai T, Zhu M F, Chen S L, Cao W S, Hong J Z 2008 Acta Metall. Sin. 10 1175Google Scholar

    [14]

    Zhang H W, Gandin C A, Hamouda H B, Tourret D, Nakajima K, He J C 2010 ISIJ Int. 50 1859Google Scholar

    [15]

    Zhang H W, Gandin C A, Nakajima K, He J C 2012 IOP Conf Series: Materials Science Engineering 33 012063Google Scholar

    [16]

    石玉峰, 许庆彦, 柳百成 2012 物理学报 61 108101Google Scholar

    Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101Google Scholar

    [17]

    Michelic S C, Thuswaldner J M, Bernhard C 2010 Acta Mater. 58 2738Google Scholar

    [18]

    张晛韦 2019 硕士学位论文 (沈阳: 东北大学)

    Zhang X W 2019 Master's Dissertation (Shenyang: Northeastern University) (in Chinese)

    [19]

    Zhu M F, Hong C P, Stefanescu D M, Chang Y A 2007 Metall. Mater. Trans. B. 38 517Google Scholar

    [20]

    张蕾, 赵红蕾, 朱鸣芳 2015 金属学报 51 148Google Scholar

    Zhang L, Zhao H L, Zhu M F 2015 Acta Metall. Sin. 51 148Google Scholar

    [21]

    Ma S Q, Xing J, He Y, Li Y F, Huang Z F, Liu G Z, Geng Q J 2015 Mater. Chem. Phys. 161 65Google Scholar

    [22]

    Liu Q, Zhang H W, Wang Q, Zhou X K, Jonsson P G, Nakajima K 2012 ISIJ Int. 52 2210Google Scholar

    [23]

    Stefan-Kharicha M, Kharicha A, Zaidat K, Reiss G, Essl W, Goodwin F, Wu M H, Ludwig A, Mugrauer C 2020 J. Cryst. Growth 541 125667Google Scholar

    [24]

    付振南, 许庆彦, 熊守美 2007 中国有色金属学报 17 1567Google Scholar

    Fu Z N, Xu Q Y, Xiong S M 2007 J. Nonferrous Met. China 17 1567Google Scholar

    [25]

    董祥雷, 邢辉, 陈长乐, 沙莎, 王建元, 金克新 2016 物理学报 65 58Google Scholar

    Dong X L, Xing H, Chen C L, Sha S, Wang J Y, Jin K X 2016 Acta Phys. Sin. 65 58Google Scholar

    [26]

    Zhang H W, Zhang S, Wang Y C, Hao Y Z, Miao M, Nakajima K, Lei H, Wang Q, He J C 2020 IOP Conf Series: Materials Science and Engineering 861 012046Google Scholar

    [27]

    Gandin C A 1993 Acta Metallurgica et Materialia 41 345Google Scholar

    [28]

    Flemings M C, Poirier D R, Barone R V, Brody H D 1970 J. Iron Steel Inst. 208 371

    [29]

    Nastac L 1999 Acta Mater. 47 4253Google Scholar

    [30]

    Eggleston J J, Mcfadden G B, Voorhees P W 2001 Phys. D 150 91Google Scholar

    [31]

    Rappaz M, Boettinger W J 1999 Acta Mater. 47 3205Google Scholar

    [32]

    Burbelko A A, Gurgul D, Kaptur K W, Gorny M 2012 Arch. Foundry Eng. 12 11Google Scholar

    [33]

    孙玉成 2012 博士学位论文 (山东: 山东大学)

    Sun Y C 2012 Ph. D. Dissertation (Shandong: Shandong University) (in Chinese)

    [34]

    Wang J, Qi X, Xing X, Shi Z J, Zhou Y F, Yang Q X 2019 Mater. Res. Express 6 0865h3Google Scholar

    [35]

    Liu S, Zhou Y F, Xing X, Wang J B, Ren X J, Yang Q X 2016 Sci. Rep. 6 1Google Scholar

    [36]

    Coronado J J 2011 Wear 270 287Google Scholar

    [37]

    Beltran S L, Stefanescu D M 2004 Metall. Mater. Trans. A. 35 2471Google Scholar

    [38]

    Liu S, Wang Z, Shi Z, Zhou Y F, Yang Q X 2017 J. Alloy. Compd. 713 108Google Scholar

    [39]

    Kopycinski D, Guzik E, Siekaniec, Szczesny A 2015 Arch Foundry Eng 15 35Google Scholar

    [40]

    Liu Q 2013 Ph. D. Dissertation (Stockholm, Sweden: KTH Royal Institute of Technology)

  • 图 1  t = 99.99 s时, 不同系数a条件下模拟的M7C3质量分数图 (a) a = 0.25; (b) a = 0.40; (c) a = 0.50; (d) a = 0.60

    Figure 1.  M7C3 morphology in form of mass fraction with several values of coefficient a at t = 99.99 s: (a) a = 0.25; (b) a = 0.40; (c) a = 0.50; (d) a = 0.60.

    图 2  M7C3元胞邻居单元

    Figure 2.  Neighborhood relations for M7C3 grain.

    图 3  γ元胞Moore型邻居单元

    Figure 3.  Moore neighborhood relations for austenite grain.

    图 4  Fe-C伪二元合金相图(A 区, 液相; B区, 液相 + TiC; C 区, 液相 + M7C3; D区, 液相+ M7C3 + γ; E 区, M7C3 + γ; F区, 液相 + TiC + M7C3; G区, 液相+ TiC + γ; H区, 液相+ TiC + M7C3 + γ; I 区, TiC + γ + M7C3) (a) Fe-C-17%Cr; (b) Fe-C-23.8%Cr; (c) Fe-C-17%Cr-1.5%Ti; (d) Fe-C-23.8%Cr-4%Ti

    Figure 4.  Fe-C pseudo binary phase diagram: (a) Fe-C-17%Cr; (b) Fe-C-23.8%Cr; (c) Fe-C-17%Cr-1.5%Ti; (d) Fe-C-23.8%Cr-4%Ti. A zone, Liquid; B zone, Liquid + TiC; C zone, Liquid + M7C3; D zone, Liquid + M7C3 + γ; E zone, M7C3 + γ; F zone, Liquid + TiC + M7C3; G zone, Liquid + TiC + γ; H zone, Liquid + TiC + M7C3 + γ; I zone, TiC + γ + M7C3.

    图 5  预测的Fe-4%C-17%Cr合金冷却曲线及添加1.5%Ti合金石墨型实验冷却曲线[22]对比

    Figure 5.  Comparison of predicted cooling curve for Fe-4%C-17%Cr alloy and experimental cooling curve with 1.5%Ti addition in graphite mold [22].

    图 6  Fe-3.23%C-23.8%Cr合金添加4%Ti与否砂型实验冷却曲线[39]

    Figure 6.  Experimental cooling curves in sand mold for Fe-3.23%C-23.8%Cr alloy with or without 4%Ti addition[39].

    图 7  本模拟冷却曲线及各相质量分数演变

    Figure 7.  Predicted cooling curves and evolution of phase mass fraction.

    图 8  本模拟与GS模型中各相质量分数随温度变化

    Figure 8.  Evolution of phase mass fraction with temperature by present model and GS model.

    图 9  M7C3碳化物和奥氏体界面液相溶质贝克列数、平衡浓度演变 (a) M7C3界面; (b)奥氏体界面

    Figure 9.  Evolution of solute Peclet number and equilibrium concentration in liquid at M7C3 and austenite interface cell: (a) M7C3/liquid interface; (b) austenite/liquid interface.

    图 10  M7C3碳化物/液相和奥氏体/液相界面生长速度演变: (a) M7C3界面; (b)奥氏体界面

    Figure 10.  Evolution of growth velocity with PeCr at M7C3/liquid and austenite/liquid interface: (a) M7C3/liquid interface; (b) austenite/liquid interface.

    图 11  不同时刻奥氏体晶粒形貌 (a) t = 70.83 s; (b) t = 95.83 s; (c) t = 120.83 s; (d) t = 145.83 s

    Figure 11.  Morphologies of austenite grains at different moment: (a) t = 70.83 s; (b) t = 95.83 s; (c) t = 120.83 s; (d) t = 145.83 s.

    图 12  不同时刻晶粒取向 (a) t = 70.83 s; (b) t = 95.83 s; (c) t = 120.83 s; (d) t = 145.83 s

    Figure 12.  Crystallographic orientations of M7C3 and austenite grains at different moment: (a) t = 70.83 s; (b) t = 95.83 s; (c) t = 120.83 s; (d) t = 145.83 s.

    图 13  奥氏体晶粒A和邻近M7C3碳化物晶粒周围溶质浓度的演变: (a) C浓度; (b) Cr浓度

    Figure 13.  Evolution of solute concentration around austenite grain A and adjacent M7C3 carbide grain: (a) C concentration; (b) Cr concentration.

    图 14  Fe-4%C-17%Cr合金实验[22]和预测的凝固组织 (a)实验凝固形貌; (b)本模拟奥氏体质量分数; (c)本模拟C浓度场; (d)本模拟Cr浓度场

    Figure 14.  Experimental[22] and predicted solidification microstructure for Fe-4%C-17%Cr alloy: (a) experimental microstructure; (b) predicted austenite mass fraction; (c) predicted C concentration field; (d) predicted Cr concentration field.

    图 15  剩余液相中C, Cr溶质浓度演变

    Figure 15.  Evolution of C and Cr concentration in residual liquid.

    图 16  奥氏体中C, Cr溶质浓度演变与凝固路径模型对比 (a) C 浓度; (b) Cr浓度

    Figure 16.  Comparison of C and Cr solute concentration evolution in austenite with GS, PE and LR solidification path prediction: (a) C concentration; (b) Cr concentration.

    表 1  Fe-4%C-17%Cr三元合金模拟所用的物性参数(单位%是指质量分数)

    Table 1.  Physical properties used for Fe-4%C-17%Cr ternary alloy. Unit of % represents mass fraction (wt%).

    ParametersSymbolUnitValueNote
    Initial composition C$ {C_{{\text{C0}}}} $%4.00文献[22]
    Initial composition Cr$ {C_{{\text{Cr0}}}} $%17.00文献[22]
    Austenite nucleation temperature$ \mathop T\nolimits_{{\gamma }} $1266.00GS model
    M7C3 nucleation temperature$ \mathop T\nolimits_{\text{M}} $1304.00GS model
    C partition coefficient at austenite/liquid interface${k_{ { {{\rm p}, {\mathrm{\gamma }/\mathrm{L} } , {\rm C} } } } }$0.407GS model
    Cr partition coefficient at austenite/liquid interface${k_{ { {{\rm p}, {\mathrm{\gamma }/\mathrm{L} } , {\rm Cr} } } } }$0.576GS model
    Liquidus slope of C at austenite/liquid interface${m_{ { { {\mathrm{L}/\mathrm{\gamma } }, {\rm C} } } } }$℃/%–95.49GS model
    Liquidus slope of Cr at austenite/liquid interface${m_{ { { {\mathrm{L}/\mathrm{\gamma } }, {\rm Cr} } } } }$℃/%6.14GS model
    Liquidus slope of C at M7C3/liquid interface${m_{ {{\rm L/M}, \text{C} } } }$℃/%90.37GS model
    Liquidus slope of Cr at M7C3/liquid interface${m_{ {{\rm L/M},\text{Cr} } } }$℃/%15.29GS model
    Diffusion coefficient of C in austenite${D_{ { \mathrm{\gamma }, {\rm C} } } }$m2/s2.57×10–10GS model
    Diffusion coefficient of Cr in austenite${D_{ { {\mathrm{\gamma } , \rm Cr} } } }$m2/s3.67×10–14GS model
    Diffusion coefficient of C in liquid phase${D_{ {\text{L,C} } } }$m2/s9.60×10–10GS model
    Diffusion coefficient of Cr in liquid phase${D_{ {\text{L,Cr} } } }$m2/s8.23×10–10GS model
    Diffusion coefficient of C in M7C3${D_{ {\text{M,C} } } }$m2/s0.0
    Diffusion coefficient of Cr in M7C3${D_{ {\text{M,Cr} } } }$m2/s0.0
    Gibbs-Thomson coefficient at austenite/liquid interface${\varGamma _{ {\gamma } } }$$ {\text{m}} \cdot {\text{K}} $1.9×10–7文献[37]
    Gibbs-Thomson coefficient at M7C3/liquid interface${\varGamma _{\text{M} } }$$ {\text{m}} \cdot {\text{K}} $6.213×10–7文献[38]
    Latent heat of fusion for austenite$ \mathop L\nolimits_{{\gamma }} $J/kg1.86×105GS model
    Latent heat of fusion for M7C3$ \mathop L\nolimits_{\text{M}} $J/kg2.38×105GS model
    Specific heat capacity$\mathop c\nolimits_{\rm p}$J/(kg$ \cdot $℃)839GS model
    DownLoad: CSV

    表 2  GS模型和Fe-C伪二元相图中二种成分Fe-C-Cr合金析出相及析出温度

    Table 2.  Phase type and precipitation temperature in two Fe-C-Cr alloys by GS prediction and in Fe-C pseudo binary phase diagram.

    ModelAlloy compositionM7C3 precipitation temperature/℃γ precipitation temperature/℃CEM precipitation temperature or solidus /℃Phase volume fraction at CEM precipitation
    temperature or solidus
    GS modelFe-4%C-17%Cr130412661194(CEM)29.91%(M7C3) 57.22%(γ)
    GS modelFe-4%C-17%Cr-1.5%Ti128812711193(CEM)26.38%(M7C3) 63.20%(γ)
    Fe-C phase diagramFe-4%C-17%Cr130512661239(solidus)
    Fe-C phase diagramFe-4%C-17%Cr-1.5%Ti128512711248(solidus)
    GS modelFe-3.23%C-23.8%Cr130512971193(CEM)28.18%(M7C3) 71.62%(γ)
    GS modelFe-3.23%C-23.8%Cr-4%Ti129613241296(solidus)17.80%(M7C3) 74.28%(γ)
    Fe-C phase diagramFe-3.23%C-23.8%Cr130512961292(solidus)
    Fe-C phase diagramFe-3.23%C-23.8%Cr-4%Ti129513281295(solidus)
    DownLoad: CSV
  • [1]

    Siekaniec D, Kopycinski D, Szczesny A, Guzik E, Tyraa E, Nowak A 2017 Nephron Clinical Practice 17 143Google Scholar

    [2]

    Liu H N, Sakamoto M, Nomura M, Ogi K 2001 Wear 250 71Google Scholar

    [3]

    Pokusova M, Gabrisova Z, Brusilova A, Pribulova A, Futa P 2020 Mater. Sci. Forum. 998 30Google Scholar

    [4]

    Filipovic M, Kamberovic Z, Korac M, Gavrilovski M 2013 Mater. Des. 47 41Google Scholar

    [5]

    Buytoz S, Yildirim M M, Eren H 2005 Mater. Lett. 59 607Google Scholar

    [6]

    龚沛, 赵曜, 杨浩, 王宁 2017 金属热处理 42 137Google Scholar

    Gong P, Zhao Y, Yang H, Wang N 2017 Heat Treatment of Metals 42 137Google Scholar

    [7]

    陈哲, 王亮亮, 张晗, 付永红, 钟黎声, 叶芳霞 2013 热加工工艺 42 8Google Scholar

    Chen Z, Wang L L, Zhang H, Fu Y H, Zhong L S, Ye F X 2013 Hot Working Technology 42 8Google Scholar

    [8]

    Tang X H, Chung R, Pang C J, Li D Y, Hinckley B, Dolman K 2011 Wear 271 1426Google Scholar

    [9]

    Zhang H W, Nakajima K, Gandin C A, He J C 2013 ISIJ Int. 53 493Google Scholar

    [10]

    王同敏, 魏晶晶, 王旭东, 姚曼 2018 金属学报 54 193Google Scholar

    Wang T M, Wei J J, Wang X D, Yao M 2018 Acta Metall. Sin. 54 193Google Scholar

    [11]

    朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰 2018 金属学报 54 789Google Scholar

    Zhu M F, Xing L K, Fang H, Zhang Q Y, Tang Q Y, Pan S Y 2018 Acta. Metall. Sin. 54 789Google Scholar

    [12]

    Zhu M F, Cao W, Chen S L, Hong C P, Chang Y A 2007 J. Phase Equilib. Diffus. 28 130Google Scholar

    [13]

    戴挺, 朱鸣芳, 陈双林, 曹伟生, 洪俊杓 2008 金属学报 10 1175Google Scholar

    Dai T, Zhu M F, Chen S L, Cao W S, Hong J Z 2008 Acta Metall. Sin. 10 1175Google Scholar

    [14]

    Zhang H W, Gandin C A, Hamouda H B, Tourret D, Nakajima K, He J C 2010 ISIJ Int. 50 1859Google Scholar

    [15]

    Zhang H W, Gandin C A, Nakajima K, He J C 2012 IOP Conf Series: Materials Science Engineering 33 012063Google Scholar

    [16]

    石玉峰, 许庆彦, 柳百成 2012 物理学报 61 108101Google Scholar

    Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101Google Scholar

    [17]

    Michelic S C, Thuswaldner J M, Bernhard C 2010 Acta Mater. 58 2738Google Scholar

    [18]

    张晛韦 2019 硕士学位论文 (沈阳: 东北大学)

    Zhang X W 2019 Master's Dissertation (Shenyang: Northeastern University) (in Chinese)

    [19]

    Zhu M F, Hong C P, Stefanescu D M, Chang Y A 2007 Metall. Mater. Trans. B. 38 517Google Scholar

    [20]

    张蕾, 赵红蕾, 朱鸣芳 2015 金属学报 51 148Google Scholar

    Zhang L, Zhao H L, Zhu M F 2015 Acta Metall. Sin. 51 148Google Scholar

    [21]

    Ma S Q, Xing J, He Y, Li Y F, Huang Z F, Liu G Z, Geng Q J 2015 Mater. Chem. Phys. 161 65Google Scholar

    [22]

    Liu Q, Zhang H W, Wang Q, Zhou X K, Jonsson P G, Nakajima K 2012 ISIJ Int. 52 2210Google Scholar

    [23]

    Stefan-Kharicha M, Kharicha A, Zaidat K, Reiss G, Essl W, Goodwin F, Wu M H, Ludwig A, Mugrauer C 2020 J. Cryst. Growth 541 125667Google Scholar

    [24]

    付振南, 许庆彦, 熊守美 2007 中国有色金属学报 17 1567Google Scholar

    Fu Z N, Xu Q Y, Xiong S M 2007 J. Nonferrous Met. China 17 1567Google Scholar

    [25]

    董祥雷, 邢辉, 陈长乐, 沙莎, 王建元, 金克新 2016 物理学报 65 58Google Scholar

    Dong X L, Xing H, Chen C L, Sha S, Wang J Y, Jin K X 2016 Acta Phys. Sin. 65 58Google Scholar

    [26]

    Zhang H W, Zhang S, Wang Y C, Hao Y Z, Miao M, Nakajima K, Lei H, Wang Q, He J C 2020 IOP Conf Series: Materials Science and Engineering 861 012046Google Scholar

    [27]

    Gandin C A 1993 Acta Metallurgica et Materialia 41 345Google Scholar

    [28]

    Flemings M C, Poirier D R, Barone R V, Brody H D 1970 J. Iron Steel Inst. 208 371

    [29]

    Nastac L 1999 Acta Mater. 47 4253Google Scholar

    [30]

    Eggleston J J, Mcfadden G B, Voorhees P W 2001 Phys. D 150 91Google Scholar

    [31]

    Rappaz M, Boettinger W J 1999 Acta Mater. 47 3205Google Scholar

    [32]

    Burbelko A A, Gurgul D, Kaptur K W, Gorny M 2012 Arch. Foundry Eng. 12 11Google Scholar

    [33]

    孙玉成 2012 博士学位论文 (山东: 山东大学)

    Sun Y C 2012 Ph. D. Dissertation (Shandong: Shandong University) (in Chinese)

    [34]

    Wang J, Qi X, Xing X, Shi Z J, Zhou Y F, Yang Q X 2019 Mater. Res. Express 6 0865h3Google Scholar

    [35]

    Liu S, Zhou Y F, Xing X, Wang J B, Ren X J, Yang Q X 2016 Sci. Rep. 6 1Google Scholar

    [36]

    Coronado J J 2011 Wear 270 287Google Scholar

    [37]

    Beltran S L, Stefanescu D M 2004 Metall. Mater. Trans. A. 35 2471Google Scholar

    [38]

    Liu S, Wang Z, Shi Z, Zhou Y F, Yang Q X 2017 J. Alloy. Compd. 713 108Google Scholar

    [39]

    Kopycinski D, Guzik E, Siekaniec, Szczesny A 2015 Arch Foundry Eng 15 35Google Scholar

    [40]

    Liu Q 2013 Ph. D. Dissertation (Stockholm, Sweden: KTH Royal Institute of Technology)

  • [1] Zhang Shi-Jie, Wang Ying-Ming, Wang Qi, Li Chen-Yu, Li Ri. Simulation of dendrite collision behavior based on cellular automata-lattice Boltzmann model. Acta Physica Sinica, 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [2] Liang Jing-Yun, Zhang Li-Li, Luan Xi-Dao, Guo Jin-Lin, Lao Song-Yang, Xie Yu-Xiang. Multi-section cellular automata model of traffic flow. Acta Physica Sinica, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [3] Chen Rui, Xu Qing-Yan, Liu Bai-Cheng. Simulation of dendritic competitive growth during directional solidification using modified cellular automaton method. Acta Physica Sinica, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [4] Yong Gui, Huang Hai-Jun, Xu Yan. A cellular automata model of pedestrian evacuation in rooms with squared rhombus cells. Acta Physica Sinica, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [5] Wei Lei, Lin Xin, Wang Meng, Huang Wei-Dong. Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth. Acta Physica Sinica, 2012, 61(9): 098104. doi: 10.7498/aps.61.098104
    [6] Tian Chang-Hai, Deng Min-Yi, Kong Ling-Jiang, Liu Mu-Ren. Cellular automaton simulation with directed small-world networks for the dynamical behaviors of spiral waves. Acta Physica Sinica, 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
    [7] Kang Rui, Peng Li-Juan, Yang Kai. One-dimensional traffic cellular automaton model with consideration of the change of driving rules. Acta Physica Sinica, 2009, 58(7): 4514-4522. doi: 10.7498/aps.58.4514
    [8] Tian Huan-Huan, Xue Yu, Kang San-Jun, Liang Yu-Juan. Study on the energy consumption using the cellular automaton mixed traffic model. Acta Physica Sinica, 2009, 58(7): 4506-4513. doi: 10.7498/aps.58.4506
    [9] Peng Li-Juan, Kang Rui. One-dimensional cellular automaton model of traffic flow considering drivers’ features. Acta Physica Sinica, 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [10] Li Qing-Ding, Dong Li-Yun, Dai Shi-Qiang. Investigation on traffic bottleneck induce by bus stopping with a two-lane cellular automaton model. Acta Physica Sinica, 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [11] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. Modeling urban expressway systems with ramps and accessory roads by cellular automaton model. Acta Physica Sinica, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [12] Zhang Li-Sheng, Deng Min-Yi, Kong Ling-Jiang, Liu Mu-Ren, Tang Guo-Ning. The cellular automaton model for the nonlinear waves in the two-dimensional excitable media. Acta Physica Sinica, 2009, 58(7): 4493-4499. doi: 10.7498/aps.58.4493
    [13] Shan Bo-Wei, Lin Xin, Wei Lei, Huang Wei-Dong. A cellular automaton model for dendrite solidification of pure substance. Acta Physica Sinica, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [14] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. A cellular automaton model for studying the on-ramp control of highway. Acta Physica Sinica, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [15] Yue Hao, Shao Chun-Fu, Chen Xiao-Ming, Hao He-Rui. Simulation of bi-directional pedestrian flow based on cellular automata model. Acta Physica Sinica, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [16] Zhang Wen-Zhu, Yuan Jian, Yu Zhe, Xu Zan-Xin, Shan Xiu-Ming. Study of the global behavior of wireless sensor networks based on cellular automata. Acta Physica Sinica, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] Guo Si-Ling, Wei Yan-Fang, Xue Yu. On the characteristics of phase transition in CA traffic models. Acta Physica Sinica, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [18] Wu Ke-Fei, Kong Ling-Jiang, Liu Mu-Ren. The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. Acta Physica Sinica, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] Mou Yong-Biao, Zhong Cheng-Wen. Cellular automaton model of traffic flow based on safety driving. Acta Physica Sinica, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [20] Hua Wei, Lin Bo-Liang. One-dimensional traffic cellular automaton model with considering the vehicle moving status. Acta Physica Sinica, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
Metrics
  • Abstract views:  4704
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2021
  • Accepted Date:  15 June 2021
  • Available Online:  15 August 2021
  • Published Online:  05 November 2021

/

返回文章
返回