搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菱形网格的行人疏散元胞自动机模型

永贵 黄海军 许岩

引用本文:
Citation:

菱形网格的行人疏散元胞自动机模型

永贵, 黄海军, 许岩

A cellular automata model of pedestrian evacuation in rooms with squared rhombus cells

Yong Gui, Huang Hai-Jun, Xu Yan
PDF
导出引用
  • 利用改进的层次域元胞自动机模型, 研究了正菱形网格空间中的行人疏散问题. 这类网格可以避免行人贴近房间墙壁或障碍物, 转移概率考虑了各种逃生受阻因素. 数值仿真显示, 出口处的行人分布与实验快照展示的行人分布基本相同, 疏散时间和出口宽度呈线性关系, 行人流率接近实验结果.
    The modified floor field cellular automata model is used to simulate the pedestrian evacuation in rooms which are discretized into squared rhombus cells. This discretization can effectively stop pedestrians to move against walls or obstacles. The pedestrian transition probabilities from one cell to neighbor cells are computed by considering various factors influencing evacuation. Simulation results show that the pedestrian distribution nearby exit is basically the same as that indicated by the experimental snapshot, the evacuation time increases almost linearly with exit width, and the flow rate from exit is close to the one observed from experiment.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB725400)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB725400).
    [1]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282

    [2]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487

    [3]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487

    [4]

    Muramatsu M, Nagatani T 2000 Physica A 275 281

    [5]

    Muramatsu M, Nagatani T 2000 Physica A 286 377

    [6]

    Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507

    [7]

    Kirchner A, Schadschneider A 2002 Physica A 312 260

    [8]

    Song W G, Yu W F, Wang B H, Fan W C 2006 Physica A 371 658

    [9]

    Guo R Y, Huang H J 2008 J. Phys. A: Math. Theor. 41 385104

    [10]

    Nagai R, Fukamachi M, Nagatani T 2006 Physica A 367 449

    [11]

    Guo R Y, Huang H J, Wong S C 2011 Transport. Res. B 45 490

    [12]

    Seyfried A, Passon O, Steffen B, Boltes M 2009 Transport. Sci. 43 395

    [13]

    Xu Y, Huang H J 2012 Physica A 391 991

    [14]

    Zheng X P, Cheng Y 2011 Physica A 390 1042

    [15]

    Tanimoto J, Hagishima A, Tanaka Y 2010 Physica A 389 5611

    [16]

    Yue H, Shao C F, Guan H Z, Duan L M 2010 Acta Phys. Sin. 59 4499 (in Chinese) [岳昊, 邵春福, 关宏志, 段龙梅 2010 物理学报 59 4499]

    [17]

    Zhou J W, Kuang H, Liu M R, Kong L J 2009 Acta Phys. Sin. 58 3001 (in Chinese) [周金旺, 邝华, 刘慕仁, 孔令江 2009 物理学报 58 3001]

    [18]

    Sun Z, Jia B, Li X G 2012 Acta Phys. Sin. 61 100508 (in Chinese) [孙泽, 贾斌, 李新刚 2012 物理学报 61 100508]

  • [1]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282

    [2]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487

    [3]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487

    [4]

    Muramatsu M, Nagatani T 2000 Physica A 275 281

    [5]

    Muramatsu M, Nagatani T 2000 Physica A 286 377

    [6]

    Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507

    [7]

    Kirchner A, Schadschneider A 2002 Physica A 312 260

    [8]

    Song W G, Yu W F, Wang B H, Fan W C 2006 Physica A 371 658

    [9]

    Guo R Y, Huang H J 2008 J. Phys. A: Math. Theor. 41 385104

    [10]

    Nagai R, Fukamachi M, Nagatani T 2006 Physica A 367 449

    [11]

    Guo R Y, Huang H J, Wong S C 2011 Transport. Res. B 45 490

    [12]

    Seyfried A, Passon O, Steffen B, Boltes M 2009 Transport. Sci. 43 395

    [13]

    Xu Y, Huang H J 2012 Physica A 391 991

    [14]

    Zheng X P, Cheng Y 2011 Physica A 390 1042

    [15]

    Tanimoto J, Hagishima A, Tanaka Y 2010 Physica A 389 5611

    [16]

    Yue H, Shao C F, Guan H Z, Duan L M 2010 Acta Phys. Sin. 59 4499 (in Chinese) [岳昊, 邵春福, 关宏志, 段龙梅 2010 物理学报 59 4499]

    [17]

    Zhou J W, Kuang H, Liu M R, Kong L J 2009 Acta Phys. Sin. 58 3001 (in Chinese) [周金旺, 邝华, 刘慕仁, 孔令江 2009 物理学报 58 3001]

    [18]

    Sun Z, Jia B, Li X G 2012 Acta Phys. Sin. 61 100508 (in Chinese) [孙泽, 贾斌, 李新刚 2012 物理学报 61 100508]

计量
  • 文章访问数:  2587
  • PDF下载量:  667
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-01
  • 修回日期:  2012-07-20
  • 刊出日期:  2013-01-05

菱形网格的行人疏散元胞自动机模型

  • 1. 北京航空航天大学经济管理学院, 北京 100191;
  • 2. 内蒙古财经大学统计与数学学院, 呼和浩特 010051
    基金项目: 

    国家重点基础研究发展计划(批准号: 2012CB725400)资助的课题.

摘要: 利用改进的层次域元胞自动机模型, 研究了正菱形网格空间中的行人疏散问题. 这类网格可以避免行人贴近房间墙壁或障碍物, 转移概率考虑了各种逃生受阻因素. 数值仿真显示, 出口处的行人分布与实验快照展示的行人分布基本相同, 疏散时间和出口宽度呈线性关系, 行人流率接近实验结果.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回