搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过博弈的室内行人疏散动力学研究

谢积鉴 薛郁

引用本文:
Citation:

通过博弈的室内行人疏散动力学研究

谢积鉴, 薛郁

Research on the dynamics of indoor pedestrian evacuation via game

Xie Ji-Jian, Xue Yu
PDF
导出引用
  • 在室内行人疏散过程中,行人博弈对疏散效率有着重要的影响.本文把抵制博弈策略更新的强度定义为抵制强度. 为了研究抵制强度对疏散效率的影响, 通过在行人博弈策略更新的概率中引入抵制强度,基于元胞自动机模型数值计算在不同的行人密度, 出口宽度下疏散总时间随抵制强度变化的关系.结果表明: 室内行人疏散过程中, 抵制强度小会使得争抢行为极其容易蔓延. 当行人密度小且出口宽大时, 输入以急速疏散为主的规范信息,鼓励行人模仿优胜者更新博弈策略, 当行人密度大且出口狭小时, 输入以避让为主的规范信息抑制行人争抢,都能提高疏散效率. 最后找出不同条件下与最短疏散总时间相对应的优化抵制强度, 为提高室内行人疏散效率提供一个新的视角.
    In the process of indoor pedestrian evacuation, the game between pedestrians greatly influence evacuation efficiency. In this paper, we introduce the boycott strength into the updated game strategy coefficient in order to investigate the influence of boycott strength on the evacuation efficiency. The relations between the evacuation time and boycott strength for different pedestrian densities and exit widths are obtained by numerical simulations based on cellular automaton model. The results show that the vying behaviors are extremely easy to spread and the crowd will turn into a vying state when the boycott strength is small. When the pedestrian density is low and the exit is wide, we encourage the pedestrians to imitate the winners to update their game strategies via offering the information about standardizing roles about rapid evacuation. When the pedestrian density is high and the exit is narrow, the information about standardizing roles about avoiding to congestion is provided. Thus, the evacuation efficiency can be enhanced. Finally, the optimal boycott strength corresponding to the shortest evacuation time in different conditions is yielded. Our study provides a new perspective to enhance the efficiency of indoor pedestrian evacuation.
    • 基金项目: 国家自然科学基金(批准号: 11262003, 11047003)、 广西壮族自治区"十百千人才工程"专项基金(批准号: 2005205) 和广西壮族自治区研究生创新基础项目(批准号: 105930903077)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11262003, 11047003), the Special Foundation for the New Century Talents Program of Guangxi Zhuang Autonomous Region (Grant No. 2005205), and the Graduate Student Innovative Foun-dation of Guangxi Zhuang Autonomous Region (Grant No. 105930903077).
    [1]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282

    [2]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487

    [3]

    Helbing D 2001 Rev. Mod. Phys. 73 1067

    [4]

    Nagatani T 2002 Rep. Prog. Phys. 65 1331

    [5]

    Kuang H, Li X L, Song T, Dai S Q 2008 Phys. Rev. E 78 66117

    [6]

    Nagatani T 1998 Physica A 261 599

    [7]

    Nagatani T 1999 Physica A 264 581

    [8]

    Okazaki S 1979 Transactions of Architectural Institute of Japan 283 111

    [9]

    Jia B, Gao Z Y, Li K P, Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing: Science Press) p10 (in Chinese) [贾斌,高自友,李克平,李新刚 2007 基于元胞自动机的交通系统建模与模拟 (北京:科学出版社) 第10 页]

    [10]

    Hao Q Y, Jiang R, Hu M B, Jia B, Wu Q S 2011 Phys. Rev. E 84 036107

    [11]

    Zheng X P, Cheng Y 2011 Physica A 390 1042

    [12]

    Yue H, Shao C F, Yao Z S 2009 Acta Phys. Sin. 58 4523 (in Chinese) [岳昊, 邵春福, 姚智胜 2009 物理学报 58 4523]

    [13]

    Zhou J W, Kuang H, Liu M R, Kong L J 2009 Acta Phys. Sin. 58 3001 (in Chinese) [周金旺,邝华, 刘慕仁,孔令江 2009 物理学报 58 3001]

    [14]

    Xue Y, Tian H H, He H D, Lu W Z, Wei Y F 2009 Eur. Phys. J. B 69 289

    [15]

    Tian H H, Xue Y, He H D, Wei Y F, Lu W Z 2009 Physica A 388 2895

    [16]

    Xie J J, Xue Y 2011 Seventh International Conference on Natural Computation Shanghai, China, July 26-28, 2011 p2283

    [17]

    Wu Z X, Rong Z H, Wang W X 2008 Advances in Mechanics 38 794 (in Chinese) [吴枝喜,荣智海, 王文旭 2008 力学进展 38 794]

    [18]

    Grimm V, Revilla E, Berger U, Jeltsch F, Mooij W M, Railsback S F, Thulke H H, Weiner J, Wiegand T, Deangelis D L 2005 Science 310 987

    [19]

    Szabo G, Toke C 1998 Phys. Rev. E 5869

    [20]

    Szabo G, Hauert C 2002 Phys. Rev. Lett. 89 118101

    [21]

    Szabo G, Vukov J, Szolnoki A 2005 Phys. Rev. E 72 047107

    [22]

    Vukov J, Szabo G, Szolnoki A 2006 Phys. Rev. E 73 067103

    [23]

    Vukov J, Szabo G, Szolnoki A 2008 Phys. Rev. E 77 026109

    [24]

    Zhao L, Zhou X, Liang Z, Wu J R 2012 Chin. Phys. B 21 018701

    [25]

    Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507

  • [1]

    Helbing D, Molnar P 1995 Phys. Rev. E 51 4282

    [2]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487

    [3]

    Helbing D 2001 Rev. Mod. Phys. 73 1067

    [4]

    Nagatani T 2002 Rep. Prog. Phys. 65 1331

    [5]

    Kuang H, Li X L, Song T, Dai S Q 2008 Phys. Rev. E 78 66117

    [6]

    Nagatani T 1998 Physica A 261 599

    [7]

    Nagatani T 1999 Physica A 264 581

    [8]

    Okazaki S 1979 Transactions of Architectural Institute of Japan 283 111

    [9]

    Jia B, Gao Z Y, Li K P, Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing: Science Press) p10 (in Chinese) [贾斌,高自友,李克平,李新刚 2007 基于元胞自动机的交通系统建模与模拟 (北京:科学出版社) 第10 页]

    [10]

    Hao Q Y, Jiang R, Hu M B, Jia B, Wu Q S 2011 Phys. Rev. E 84 036107

    [11]

    Zheng X P, Cheng Y 2011 Physica A 390 1042

    [12]

    Yue H, Shao C F, Yao Z S 2009 Acta Phys. Sin. 58 4523 (in Chinese) [岳昊, 邵春福, 姚智胜 2009 物理学报 58 4523]

    [13]

    Zhou J W, Kuang H, Liu M R, Kong L J 2009 Acta Phys. Sin. 58 3001 (in Chinese) [周金旺,邝华, 刘慕仁,孔令江 2009 物理学报 58 3001]

    [14]

    Xue Y, Tian H H, He H D, Lu W Z, Wei Y F 2009 Eur. Phys. J. B 69 289

    [15]

    Tian H H, Xue Y, He H D, Wei Y F, Lu W Z 2009 Physica A 388 2895

    [16]

    Xie J J, Xue Y 2011 Seventh International Conference on Natural Computation Shanghai, China, July 26-28, 2011 p2283

    [17]

    Wu Z X, Rong Z H, Wang W X 2008 Advances in Mechanics 38 794 (in Chinese) [吴枝喜,荣智海, 王文旭 2008 力学进展 38 794]

    [18]

    Grimm V, Revilla E, Berger U, Jeltsch F, Mooij W M, Railsback S F, Thulke H H, Weiner J, Wiegand T, Deangelis D L 2005 Science 310 987

    [19]

    Szabo G, Toke C 1998 Phys. Rev. E 5869

    [20]

    Szabo G, Hauert C 2002 Phys. Rev. Lett. 89 118101

    [21]

    Szabo G, Vukov J, Szolnoki A 2005 Phys. Rev. E 72 047107

    [22]

    Vukov J, Szabo G, Szolnoki A 2006 Phys. Rev. E 73 067103

    [23]

    Vukov J, Szabo G, Szolnoki A 2008 Phys. Rev. E 77 026109

    [24]

    Zhao L, Zhou X, Liang Z, Wu J R 2012 Chin. Phys. B 21 018701

    [25]

    Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507

  • [1] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型. 物理学报, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [2] 董力耘, 陈立, 段晓茵. 基于教室人群疏散实验的行人流建模和模拟. 物理学报, 2015, 64(22): 220505. doi: 10.7498/aps.64.220505
    [3] 禹尔东, 吴正, 郭明旻. 双出口房间人群疏散的实验研究和数学建模. 物理学报, 2014, 63(9): 094501. doi: 10.7498/aps.63.094501
    [4] 陈亮, 郭仁拥, 塔娜. 双出口房间内疏散行人流的仿真和实验研究. 物理学报, 2013, 62(5): 050506. doi: 10.7498/aps.62.050506
    [5] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型. 物理学报, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [6] null. 初始位置布局不平衡的疏散行人流仿真研究. 物理学报, 2012, 61(13): 130509. doi: 10.7498/aps.61.130509
    [7] 孙泽, 贾斌, 李新刚. 基于元胞自动机的行人和机动车相互干扰机理研究. 物理学报, 2012, 61(10): 100508. doi: 10.7498/aps.61.100508
    [8] 任刚, 陆丽丽, 王炜. 基于元胞自动机和复杂网络理论的双向行人流建模. 物理学报, 2012, 61(14): 144501. doi: 10.7498/aps.61.144501
    [9] 田昌海, 邓敏艺, 孔令江, 刘慕仁. 螺旋波动力学性质的元胞自动机有向小世界网络研究. 物理学报, 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
    [10] 温坚, 田欢欢, 薛郁. 考虑次近邻作用的行人交通格子流体力学模型. 物理学报, 2010, 59(6): 3817-3823. doi: 10.7498/aps.59.3817
    [11] 岳昊, 邵春福, 关宏志, 段龙梅. 基于元胞自动机的行人视线受影响的疏散流仿真研究. 物理学报, 2010, 59(7): 4499-4507. doi: 10.7498/aps.59.4499
    [12] 周金旺, 陈秀丽, 孔令江, 刘慕仁, 谭惠丽, 周建槐. 一种改进的多速双向行人流元胞自动机模型. 物理学报, 2009, 58(4): 2281-2285. doi: 10.7498/aps.58.2281
    [13] 岳昊, 邵春福, 姚智胜. 基于元胞自动机的行人疏散流仿真研究. 物理学报, 2009, 58(7): 4523-4530. doi: 10.7498/aps.58.4523
    [14] 周金旺, 邝华, 刘慕仁, 孔令江. 成对行为对行人疏散动力学的影响研究. 物理学报, 2009, 58(5): 3001-3007. doi: 10.7498/aps.58.3001
    [15] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究. 物理学报, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [16] 岳 昊, 邵春福, 陈晓明, 郝合瑞. 基于元胞自动机的对向行人交通流仿真研究. 物理学报, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [17] 郭四玲, 韦艳芳, 薛 郁. 元胞自动机交通流模型的相变特性研究. 物理学报, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [18] 吴可非, 孔令江, 刘慕仁. 双车道元胞自动机NS和WWH交通流混合模型的研究. 物理学报, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型. 物理学报, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型. 物理学报, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
计量
  • 文章访问数:  6056
  • PDF下载量:  637
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-02
  • 修回日期:  2012-03-23

/

返回文章
返回