Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Macro-micro coupled simulation of competitive dendrite growth in different areas of the welding pool

Han Ri-Hong Dong Wen-Chao Lu Shan-Ping Li Dian-Zhong Li Yi-Yi

Citation:

Macro-micro coupled simulation of competitive dendrite growth in different areas of the welding pool

Han Ri-Hong, Dong Wen-Chao, Lu Shan-Ping, Li Dian-Zhong, Li Yi-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A macro-micro coupled model is developed to simulate the competitive dendrite growths in different areas of the welding pool in the solidification process. The transient solidification conditions in welding pool are obtained by the three-dimensional (3D) macro-scale FEM model. The thermal conditions used in the micro-scale cellular automata model is obtained from the macro-scale FEM model by using the interpolation algorithm. The simulation results indicate that the micro-scale cellular automata model developed in this paper can simulate the morphologies of dendrites with various growth directions accurately. The solidification conditions in welding pool have obvious effects on the competitive dendrite growth. The dendrites with their preferential orientations parallel to the direction of the highest temperature gradient are more competitive. The morphology of grain structure is determined by the competition among different dendritic arrays. The dendritic arrays with more favorable growth direction can gradually crowd out other dendritic arrays and occupy more space through dendrite branching. The area near the central line of welding pool has a lower temperature gradient, a higher solidification rate, and a higher cooling rate in the solidification process, and such solidification conditions lead to the finer microstructure. The simulation results of the secondary dendrite arm spacing are in agreement with the experimental results under the corresponding solidification conditions.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51104142).
    [1]

    Echebarria B, Karma A, Plapp M 2004 Phys. Rev. E 70 061604

    [2]

    Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390 (in Chinese) [陈云, 康秀红, 李殿中 2009 物理学报 58 390]

    [3]

    Karma A 2001 Phys. Rev. Lett. 87 115701

    [4]

    Nastac L 1999 Acta Mater. 47 4253

    [5]

    Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741

    [6]

    Beltran-Sanchez L, Stefanescu D M 2003 Metall. Mater. Trans. A 34 367

    [7]

    Beltran-Sanchez L, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471

    [8]

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿中, 钱百年 2004 物理学报 53 3477]

    [9]

    Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2012 物理学报 61 108101]

    [10]

    Michelic S C, Thuswaldner J M, Bernhard C 2010 Acta Mater. 58 2738

    [11]

    Li Y, Kim J 2012 Int. J. Heat Mass Transfer 55 7926

    [12]

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278 (in Chinese) [潘诗琰, 朱鸣芳 2009 物理学报 58 278]

    [13]

    Pan S, Zhu M 2010 Acta Mater. 58 340

    [14]

    Lu Y, Beckermann C, Ramirez J C 2005 J. Cryst. Growth 280 320

    [15]

    Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2012 物理学报 61 108101]

    [16]

    Pavlyk V, Dilthey U 2004 Model. Simul. Mater. Sci. Eng. 12 S33

    [17]

    Yin H, Felicelli S D 2010 Acta Mater. 58 1455

    [18]

    Tan W, Wen S, Bailey N, Shin Y C 2011 Metall. Mater. Trans. B 42 1306

    [19]

    Farzadi A, Do-Quang M, Serajzadeh S, Kokabi A, Amberg G 2008 Model. Simul. Mater. Sci. Eng. 16 065005

    [20]

    Fallah V, Amoorezaei M, Provatas N, Corbin S, Khajepour A 2012 Acta Mater. 60 1633

    [21]

    Huang A G, Yu S F, Li Z Y 2008 Trans. China Weld. Inst. 29 45 (in Chinese) [黄安国, 余圣甫, 李志远 2008 焊接学报 29 45]

    [22]

    Wei Y, Zhan X, Dong Z, Yu L 2007 Sci. Technol. Weld. Joi. 12 138

    [23]

    Zhan X, Wei Y, Dong Z 2008 J. Mater. Process. Tech. 208 1

    [24]

    Zhan X, Dong Z, Wei Y, Ma R 2009 J. Cryst. Growth 311 4778

    [25]

    Dong Z, Wang S, Ma R, Wei Y, Song K, Zhai G 2011 J. Mater. Sci. Technol. 27 183

    [26]

    Zheng W J, Dong Z B, Wei Y H, Song K J, Guo J L, Wang Y 2014 Comp. Mater. Sci. 82 525

    [27]

    Ye Y H, Chen X 2002 Chin. Phys. Lett. 19 788

    [28]

    Dong W C, Lu S P, Li D Z, Li Y Y 2011 Int. J. Heat Mass Transfer 54 1420

    [29]

    Lu S P, Dong W C, Li D Z, Li Y Y 2009 Acta Phys. Sin. 58 S94 (in Chinese) [陆善平, 董文超, 李殿中, 李依依 2009 物理学报 58 S94]

    [30]

    Shi Y, Han R H, Huang J K, Fan D 2012 Acta Phys. Sin. 61 20205 (in Chinese) [石玗, 韩日宏, 黄健康, 樊丁 2012 物理学报 61 20205]

    [31]

    Luo S, Zhu M Y 2013 Comp. Mater. Sci. 71 10

    [32]

    Yin H, Felicelli S D 2009 Model. Simul. Mater. Sci. Eng. 17 075011

    [33]

    Wang W, Lee P, McLean M 2003 Acta Mater. 51 2971

    [34]

    Nakagawa M, Natsume Y, Ohsasa K 2006 ISIJ Int. 46 909

    [35]

    Paul A, DebRoy T 1988 Metall. Mater. Trans. B 19 851

  • [1]

    Echebarria B, Karma A, Plapp M 2004 Phys. Rev. E 70 061604

    [2]

    Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390 (in Chinese) [陈云, 康秀红, 李殿中 2009 物理学报 58 390]

    [3]

    Karma A 2001 Phys. Rev. Lett. 87 115701

    [4]

    Nastac L 1999 Acta Mater. 47 4253

    [5]

    Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741

    [6]

    Beltran-Sanchez L, Stefanescu D M 2003 Metall. Mater. Trans. A 34 367

    [7]

    Beltran-Sanchez L, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471

    [8]

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿中, 钱百年 2004 物理学报 53 3477]

    [9]

    Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2012 物理学报 61 108101]

    [10]

    Michelic S C, Thuswaldner J M, Bernhard C 2010 Acta Mater. 58 2738

    [11]

    Li Y, Kim J 2012 Int. J. Heat Mass Transfer 55 7926

    [12]

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278 (in Chinese) [潘诗琰, 朱鸣芳 2009 物理学报 58 278]

    [13]

    Pan S, Zhu M 2010 Acta Mater. 58 340

    [14]

    Lu Y, Beckermann C, Ramirez J C 2005 J. Cryst. Growth 280 320

    [15]

    Shi Y F, Xu Q Y, Liu B C 2012 Acta Phys. Sin. 61 108101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2012 物理学报 61 108101]

    [16]

    Pavlyk V, Dilthey U 2004 Model. Simul. Mater. Sci. Eng. 12 S33

    [17]

    Yin H, Felicelli S D 2010 Acta Mater. 58 1455

    [18]

    Tan W, Wen S, Bailey N, Shin Y C 2011 Metall. Mater. Trans. B 42 1306

    [19]

    Farzadi A, Do-Quang M, Serajzadeh S, Kokabi A, Amberg G 2008 Model. Simul. Mater. Sci. Eng. 16 065005

    [20]

    Fallah V, Amoorezaei M, Provatas N, Corbin S, Khajepour A 2012 Acta Mater. 60 1633

    [21]

    Huang A G, Yu S F, Li Z Y 2008 Trans. China Weld. Inst. 29 45 (in Chinese) [黄安国, 余圣甫, 李志远 2008 焊接学报 29 45]

    [22]

    Wei Y, Zhan X, Dong Z, Yu L 2007 Sci. Technol. Weld. Joi. 12 138

    [23]

    Zhan X, Wei Y, Dong Z 2008 J. Mater. Process. Tech. 208 1

    [24]

    Zhan X, Dong Z, Wei Y, Ma R 2009 J. Cryst. Growth 311 4778

    [25]

    Dong Z, Wang S, Ma R, Wei Y, Song K, Zhai G 2011 J. Mater. Sci. Technol. 27 183

    [26]

    Zheng W J, Dong Z B, Wei Y H, Song K J, Guo J L, Wang Y 2014 Comp. Mater. Sci. 82 525

    [27]

    Ye Y H, Chen X 2002 Chin. Phys. Lett. 19 788

    [28]

    Dong W C, Lu S P, Li D Z, Li Y Y 2011 Int. J. Heat Mass Transfer 54 1420

    [29]

    Lu S P, Dong W C, Li D Z, Li Y Y 2009 Acta Phys. Sin. 58 S94 (in Chinese) [陆善平, 董文超, 李殿中, 李依依 2009 物理学报 58 S94]

    [30]

    Shi Y, Han R H, Huang J K, Fan D 2012 Acta Phys. Sin. 61 20205 (in Chinese) [石玗, 韩日宏, 黄健康, 樊丁 2012 物理学报 61 20205]

    [31]

    Luo S, Zhu M Y 2013 Comp. Mater. Sci. 71 10

    [32]

    Yin H, Felicelli S D 2009 Model. Simul. Mater. Sci. Eng. 17 075011

    [33]

    Wang W, Lee P, McLean M 2003 Acta Mater. 51 2971

    [34]

    Nakagawa M, Natsume Y, Ohsasa K 2006 ISIJ Int. 46 909

    [35]

    Paul A, DebRoy T 1988 Metall. Mater. Trans. B 19 851

  • [1] Zhang Shan, Zhang Hong-Wei, Miao Miao, Feng Miao-Miao, Lei Hong, Wang Qiang. Cellular automaton simulation on cooperative growth of M7C3 carbide and austenite in high Cr cast irons. Acta Physica Sinica, 2021, 70(21): 218102. doi: 10.7498/aps.70.20210725
    [2] Zhang Shi-Jie, Wang Ying-Ming, Wang Qi, Li Chen-Yu, Li Ri. Simulation of dendrite collision behavior based on cellular automata-lattice Boltzmann model. Acta Physica Sinica, 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [3] Fang Hui, Xue Hua, Tang Qian-Yu, Zhang Qing-Yu, Pan Shi-Yan, Zhu Ming-Fang. Cellular automaton simulation of molten pool migration due to temperature gradient zone melting. Acta Physica Sinica, 2019, 68(4): 048102. doi: 10.7498/aps.68.20181587
    [4] Liang Jing-Yun, Zhang Li-Li, Luan Xi-Dao, Guo Jin-Lin, Lao Song-Yang, Xie Yu-Xiang. Multi-section cellular automata model of traffic flow. Acta Physica Sinica, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [5] Wei Lei, Lin Xin, Wang Meng, Huang Wei-Dong. Cellular automaton simulation of the molten pool of laser solid forming process. Acta Physica Sinica, 2015, 64(1): 018103. doi: 10.7498/aps.64.018103
    [6] Guo Can, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Yao-Lin, Tang Sai. Investigation of atom-attaching process of three-dimensional body-center-cubic dendritic growth by phase-field crystal model. Acta Physica Sinica, 2015, 64(2): 028102. doi: 10.7498/aps.64.028102
    [7] Chen Rui, Xu Qing-Yan, Liu Bai-Cheng. Simulation of dendritic competitive growth during directional solidification using modified cellular automaton method. Acta Physica Sinica, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [8] Wang Lei, Wang Nan, Ji Lin, Yao Wen-Jing. Lamellarrod transition mechanism under high growth velocity condition. Acta Physica Sinica, 2013, 62(21): 216801. doi: 10.7498/aps.62.216801
    [9] Yong Gui, Huang Hai-Jun, Xu Yan. A cellular automata model of pedestrian evacuation in rooms with squared rhombus cells. Acta Physica Sinica, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [10] Wu Wei, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang. Modeling of dendritic growth and bubble formation. Acta Physica Sinica, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [11] Wei Lei, Lin Xin, Wang Meng, Huang Wei-Dong. Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth. Acta Physica Sinica, 2012, 61(9): 098104. doi: 10.7498/aps.61.098104
    [12] Li Qing-Ding, Dong Li-Yun, Dai Shi-Qiang. Investigation on traffic bottleneck induce by bus stopping with a two-lane cellular automaton model. Acta Physica Sinica, 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [13] Shan Bo-Wei, Lin Xin, Wei Lei, Huang Wei-Dong. A cellular automaton model for dendrite solidification of pure substance. Acta Physica Sinica, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [14] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. A cellular automaton model for studying the on-ramp control of highway. Acta Physica Sinica, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [15] Yue Hao, Shao Chun-Fu, Chen Xiao-Ming, Hao He-Rui. Simulation of bi-directional pedestrian flow based on cellular automata model. Acta Physica Sinica, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [16] Zhang Wen-Zhu, Yuan Jian, Yu Zhe, Xu Zan-Xin, Shan Xiu-Ming. Study of the global behavior of wireless sensor networks based on cellular automata. Acta Physica Sinica, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] Guo Si-Ling, Wei Yan-Fang, Xue Yu. On the characteristics of phase transition in CA traffic models. Acta Physica Sinica, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [18] Wu Ke-Fei, Kong Ling-Jiang, Liu Mu-Ren. The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. Acta Physica Sinica, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] Hua Wei, Lin Bo-Liang. One-dimensional traffic cellular automaton model with considering the vehicle moving status. Acta Physica Sinica, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] Mou Yong-Biao, Zhong Cheng-Wen. Cellular automaton model of traffic flow based on safety driving. Acta Physica Sinica, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
Metrics
  • Abstract views:  6904
  • PDF Downloads:  613
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2014
  • Accepted Date:  03 July 2014
  • Published Online:  05 November 2014

/

返回文章
返回