-
The cellular and dendritic formations are two kinds of typical morphology in the solidification, and there are many theoretical models and experimental researches on them. Most models and researches are based on purely diffusive transport mechanism. However, convection effects are of importance in the evolution of cellular and dendritic growth. Since the metal materials are not transparency and the researches on microstructure only after quenching, it is difficult to observe the dynamic microstructure evolution in real time. In this paper, the effect of liquid flow on the cellular and dendritic growth was investigated by the in-situ observation of SCN-1.8 wt% Ace transparent alloy during the directional solidification under the liquid flow. The cellular tip splitting is found in the presence of liquid flow and the cellular microstructure is smaller after the cellular tip splitting. The cellular spacing decreases as the flow rate becomes larger, but the spacing will become steady ultimately. At high growth rate the dendritic spacing increases with the increase of the flow rate, because the upstream side branches, which are accelerated by liquid flow, will suppress adjacent branches. But, at low growth rate the dendritic spacing decreases with the increase of the flow rate, because the lateral branches will exceed the tip of dendrite to form new dendrite by liquid flow.
-
Keywords:
- directional solidification /
- cellular spacing /
- dendrite spacing /
- liquid flow
[1] Kurz W, Fisher D J 1986 Fundamentals of solidification (3rd Edn.) (Switzerland: Trans Tech Publications Ltd) p23
[2] Billia B, Trivedi R 1993 Handbook of crystal growth (London: North-holland) p1007
[3] Eshelman M A, Seetharaman V, Trivedi R 1988 Acta Metall. 36 1165
[4] Suk M J, Park Y M, Kim Y D 2007 Scripta Mater. 57 985
[5] Kaya H, Cadirli E, Keslioglu K, Marasli N 2005 J. Crstal. Growth 276 583
[6] Hansen G, Liu S, Lu S Z, Hellawell A 2002 J. Cryst. Growth 234 731
[7] Laxmanan V 1998 Scipta Mater. 38 1289
[8] Seetharaman V, Eshelman M A, Trivedi R 1988 Acta Metall. 30 1175
[9] Gunduz M, Cadirli E 2002 Mater. Sci. Eng. A 327 167
[10] Burden M H, Hunt J D 1974 J. Cryst. Growth 22 99
[11] Hunt J D 1979 Solidification and Casting of Metals (London: Metals Society) p35
[12] Kurz W, Fisher D J 1981 Acta Metall. 29 11
[13] Trivedi R 1984 Metall. Trans. A 15 977
[14] Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611
[15] Lin X, Li Y M, Liu Z X, Li T, Huang W D 2001 Sci. Techn. Adv. Mater. 2 293
[16] Liu S, Lu D Y, Huang T, Zhou Y H 1993 Acta Metall Sin. 29 147 (in Chinese) [刘山, 鲁德洋, 黄韬, 周尧和 1993 金属学报 29 147]
[17] Trivedi R, Mazumder P, Tewari S N 2002 J. Cryst. Growth 222 365
[18] Spinelli J E, Rosa D M, Ferreira I L 2004 Mater. Sci. Eng. A 383 271
[19] Sun D K, Zhu M F, Yang C R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 S285 (in Chinese) [孙东科, 朱明芳, 杨朝蓉, 潘诗琰, 戴挺 2009 物理学报 58 S285]
[20] Shi Y F, Xu Q Y, Liu B C 2011 Acta Phys. Sin. 60 126101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2011 物理学报 60 126101]
[21] Wang J Y, Zhai W, Jin K X, Chen C L 2011 Acta Phys. Sin. 60 098106 (in Chinese) [王建元, 翟薇, 金克新, 陈长乐 2011 物理学报 60 098106]
[22] Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]
-
[1] Kurz W, Fisher D J 1986 Fundamentals of solidification (3rd Edn.) (Switzerland: Trans Tech Publications Ltd) p23
[2] Billia B, Trivedi R 1993 Handbook of crystal growth (London: North-holland) p1007
[3] Eshelman M A, Seetharaman V, Trivedi R 1988 Acta Metall. 36 1165
[4] Suk M J, Park Y M, Kim Y D 2007 Scripta Mater. 57 985
[5] Kaya H, Cadirli E, Keslioglu K, Marasli N 2005 J. Crstal. Growth 276 583
[6] Hansen G, Liu S, Lu S Z, Hellawell A 2002 J. Cryst. Growth 234 731
[7] Laxmanan V 1998 Scipta Mater. 38 1289
[8] Seetharaman V, Eshelman M A, Trivedi R 1988 Acta Metall. 30 1175
[9] Gunduz M, Cadirli E 2002 Mater. Sci. Eng. A 327 167
[10] Burden M H, Hunt J D 1974 J. Cryst. Growth 22 99
[11] Hunt J D 1979 Solidification and Casting of Metals (London: Metals Society) p35
[12] Kurz W, Fisher D J 1981 Acta Metall. 29 11
[13] Trivedi R 1984 Metall. Trans. A 15 977
[14] Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611
[15] Lin X, Li Y M, Liu Z X, Li T, Huang W D 2001 Sci. Techn. Adv. Mater. 2 293
[16] Liu S, Lu D Y, Huang T, Zhou Y H 1993 Acta Metall Sin. 29 147 (in Chinese) [刘山, 鲁德洋, 黄韬, 周尧和 1993 金属学报 29 147]
[17] Trivedi R, Mazumder P, Tewari S N 2002 J. Cryst. Growth 222 365
[18] Spinelli J E, Rosa D M, Ferreira I L 2004 Mater. Sci. Eng. A 383 271
[19] Sun D K, Zhu M F, Yang C R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 S285 (in Chinese) [孙东科, 朱明芳, 杨朝蓉, 潘诗琰, 戴挺 2009 物理学报 58 S285]
[20] Shi Y F, Xu Q Y, Liu B C 2011 Acta Phys. Sin. 60 126101 (in Chinese) [石玉峰, 许庆彦, 柳百成 2011 物理学报 60 126101]
[21] Wang J Y, Zhai W, Jin K X, Chen C L 2011 Acta Phys. Sin. 60 098106 (in Chinese) [王建元, 翟薇, 金克新, 陈长乐 2011 物理学报 60 098106]
[22] Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]
Catalog
Metrics
- Abstract views: 6072
- PDF Downloads: 460
- Cited By: 0