Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles calculations of point defect migration mechanisms in InP

Yan Li-Bin Bai Yu-Rong Li Pei Liu Wen-Bo He Huan He Chao-Hui Zhao Xiao-Hong

Citation:

First-principles calculations of point defect migration mechanisms in InP

Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong
cstr: 32037.14.aps.73.20240754
PDF
HTML
Get Citation
  • As an important second-generation semiconductor material, indium phosphide (InP) possesses excellent advantages such as a wide bandgap, high electron mobility, high photoelectric conversion efficiency, and strong radiation resistance. It is considered an excellent material for electronic devices in aerospace applications. However, point defects generated by space radiation particles in InP electronic devices can cause their electrical performance to degrade severely. In this study, first-principles calculations are employed to investigate the stable structures of point defects in InP and calculate the migration energy values of nearest-neighbor defects. Four stable structures of In vacancies and three stable structures of P vacancies are identified by constructing the stable structures of point defects in different charge states. The migration process of vacancy defects is studied, revealing that the migration energy of P vacancies is higher than that of In vacancies. Moreover, charged vacancy defects exhibit higher migration energy values than neutral vacancies. Regarding the migration process of interstitial defects, it is found that the migration energy of interstitial defects is smaller than that of vacancy defects. In the calculation of In interstitial migration process with different charge states, two different migration processes are found. Besides, during the migration calculations of P interstitial, a special intermediate state is discovered, resulting in multiple paths migrating to the nearest-neighbor position in the migration energy barrier diagram. The research results are helpful to understand the formation mechanism and migration behavior of defects in InP materials, and are important in designing and manufacturing InP devices with long-term stable operation in space environment.
      Corresponding author: Liu Wen-Bo, liuwenbo@xjtu.edu.cn ; He Huan, huanhe@xjtu.edu.cn ; He Chao-Hui, hechaohui@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104260).
    [1]

    Mokkapati S, Jagadish C 2009 Mater. Today 12 22Google Scholar

    [2]

    Beling A, Campbell J C 2009 J. Lightwave Technol. 27 343Google Scholar

    [3]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [4]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [5]

    Rathi S, Jogi J, Gupta M, Gupta R S 2009 Microelectron. Reliab. 49 1508Google Scholar

    [6]

    Bauer S, Sichkovskyi V, Schnabel F, Sengül A, Reithmaier J P 2019 J. Cryst. Growth 516 34Google Scholar

    [7]

    Shamirzaev T S, Debus J, Abramkin D S, Dunker D, Yakovlev D R, Dmitriev D V, Gutakovskii A K, Braginsky L S, Zhuravlev K S, Bayer M 2011 Phys. Rev. B 84 155318Google Scholar

    [8]

    Mehrer H 2007 Diffusion in Solids (Berlin, Heidelberg: Springer Verlag

    [9]

    Wright A F, Modine N A 2016 J. Appl. Phys. 120 215705Google Scholar

    [10]

    Wampler W R, Myers S M 2015 J. Appl. Phys. 117 045707Google Scholar

    [11]

    Myers S M, Cooper P J, Wampler W R 2008 J. Appl. Phys. 104 044507Google Scholar

    [12]

    贺朝会, 唐杜, 李永宏, 臧航 2019 原子能科学技术 53 2106Google Scholar

    He C H, Tang D, Li Y H, Zang H 2019 At. Energy Sci. Technol. 53 2106Google Scholar

    [13]

    唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 084209Google Scholar

    Tang D, He C H, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 084209Google Scholar

    [14]

    Ogura M, Mizuta M, Onaka K, Kukimoto H 1983 Jpn. J. Appl. Phys. 22 1502Google Scholar

    [15]

    Tapster P R 1983 J. Cryst. Growth 64 200Google Scholar

    [16]

    Rybicki G C, Zorman C A 1994 J. Appl. Phys. 75 3187Google Scholar

    [17]

    Walters R J, Summers G P 1991 J. Appl. Phys. 69 6488Google Scholar

    [18]

    Ando K, Yamaguchi M, Uemura C 1986 Phys. Rev. B 34 3041Google Scholar

    [19]

    McAfee S R, Capasso F, Lang D V, Hutchinson A, Bonner W A 1981 J. Appl. Phys. 52 6158Google Scholar

    [20]

    Liu J, Song Y, Xu X, Li W, Yang J, Li X 2023 J. Appl. Phys. 134 115702Google Scholar

    [21]

    Mishra R, Restrepo O D, Kumar A, Windl W 2012 J. Mater. Sci. 47 7482Google Scholar

    [22]

    Zollo G, Gala F 2012 New J. Phys. 14 053036Google Scholar

    [23]

    El-Mellouhi F, Mousseau N 2006 Phys. Rev. B 74 205207Google Scholar

    [24]

    Levasseur-Smith K, Mousseau N 2008 J. Appl. Phys. 103 113502Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Basic Parameters of Indium Phosphide (InP) https://www.ioffe.ru/SVA/NSM/Semicond/InP/basic.html [2024-04-04]

    [29]

    Pluengphon P, Bovornratanaraks T, Pinsook U 2017 J. Alloys Compd. 700 98Google Scholar

    [30]

    Bastos C M O, Sabino F P, Sipahi G M, Da Silva J L F 2018 J. Appl. Phys. 123 065702Google Scholar

    [31]

    Martienssen W, Warlimont H 2005 Springer Handbook of Condensed Matter and Materials Data (Berlin, Heidelberg: Springer Press) p647

    [32]

    Malouin M A, El-Mellouhi F, Mousseau N 2007 Phys. Rev. B 76 045211Google Scholar

    [33]

    Schultz P A, von Lilienfeld O A 2009 Modell. Simul. Mater. Sci. Eng. 17 0840007Google Scholar

  • 图 1  InP中不同本征点缺陷稳定结构(红色为In原子, 灰色为P原子, 深蓝色为In/P间隙原子) (a) VIn; (b) VP; (c) Ini; (d) Pi

    Figure 1.  Stable structures of different intrinsic point defects in InP (red balls denote In atoms, gray balls denote P atoms, and dark blue balls denote In/P interstitial atoms): (a) VIn; (b) VP; (c) Ini; (d) Pi.

    图 2  InP不同带电点缺陷稳定结构(红色为In原子, 灰色为P原子, 深蓝色为In/P间隙原子) (a) ${\text{V}}_{{\text{In}}}^{ - {3}}$; (b) ${\text{V}}_{\text{P}}^ + $; (c) $ {\text{P}}^{+}_{\text{i}} $; (d) $ {\text{In}}_{\text{i}}^{+} $; (e) $ {\text{P}}_{\text{i}}^{{\text{+3}}} $; (f) $ {\text{In}}_{\text{i}}^{{\text{+3}}} $

    Figure 2.  Stable structures of different charged point defects in InP (red balls denote In atoms, gray balls denote P atoms, and dark blue balls denote In/P interstitial atoms): (a) ${\text{V}}_{{\text{In}}}^{ - {3}}$; (b) ${\text{V}}_{\text{P}}^ + $; (c) $ {\text{P}}^{+}_{\text{i}} $; (d) $ {\text{In}}_{\text{i}}^{+} $; (e) $ {\text{P}}_{\text{i}}^{{\text{+3}}} $; (f) $ {\text{In}}_{\text{i}}^{{\text{+3}}} $.

    图 3  InP中不同In空位点缺陷迁移能垒图(红色为In原子, 灰色为P原子, 黄色为迁移的In原子, 绿色为迁移的P原子) (a) VIn; (b) ${\text{V}}_{{\text{In}}}^{ - {3}}$

    Figure 3.  Migration energy barrier diagram for different In vacancy defects in InP (red balls denote In atoms, gray balls denote P atoms, the yellow ball denote the migrating In atom and the green ball is the migrating P atom): (a) VIn; (b) ${\text{V}}_{{\text{In}}}^{ - {3}}$.

    图 4  InP中不同P空位点缺陷迁移能垒图(红色为In原子, 灰色为P原子, 黄色为迁移的In原子, 绿色为迁移的P原子) (a) VP; (b) ${\text{V}}_{\text{P}}^ + $

    Figure 4.  Migration energy barrier diagram for different P vacancy defects in InP (red balls denote In atoms, gray balls denote P atoms and the green ball is the migrating P atom): (a) VP; (b) ${\text{V}}_{\text{P}}^ + $.

    图 5  InP中${\rm In}^{+3}_{\rm i} $迁移能垒图(红色为In原子, 灰色为P原子, 深蓝色为In间隙原子) (a) 迁移能垒图; (b) 能垒图各结构相对位置

    Figure 5.  ${\rm In}^{+3}_{\rm i} $ point defect migration energy barrier diagram in InP (red balls denote In atoms, gray balls denote P atoms, and dark blue balls denote In interstitial atoms): (a) Migration energy barrier diagram; (b) relative positions of structures in energy barrier diagram.

    图 6  InP中$ {\text{In}}_{\text{i}}^{+} $迁移能垒图(红色为In原子, 灰色为P原子, 深蓝色为In间隙原子) (a) 迁移能垒图; (b) 能垒图各结构相对位置

    Figure 6.  $ {\text{In}}_{\text{i}}^{+} $ point defect migration energy barrier diagram in InP (red balls denote In atoms, gray balls denote P atoms, and dark blue balls denote In interstitial atoms): (a) Migration energy barrier diagram; (b) relative positions of structures in energy barrier diagram.

    图 7  InP中$ {\text{P}}_{\text{i}}^{{\text{+3}}} $迁移能垒图(红色为In原子, 灰色为P原子, 深蓝色为P间隙原子) (a) 迁移能垒图; (b) 迁移路径峰值对应结构

    Figure 7.  Migration energy barrier diagram for $ {\text{P}}_{\text{i}}^{{\text{+3}}} $ point defect in InP (red balls denote In atoms, gray balls denote P atoms, and dark blue balls denote P interstitial atoms): (a) Migration energy barrier diagram; (b) peak corresponding structures.

    表 1  不同方法计算的InP弹性性质的理论与实验值对比

    Table 1.  Comparison of theoretical and experimental values of InP’s elastic properties calculated by different methods.

    本工作PBE[29]PBE[30]实验
    C11/GPa86.086.887.4101[31]
    C12/GPa46.645.545.956[31]
    C44/GPa41.642.041.946[31]
    B0/GPa59.759.359.771
    DownLoad: CSV

    表 2  不同本征点缺陷稳定结构体系能量和缺陷形成能汇总表

    Table 2.  Summary table of energy and formation energy for different intrinsic point defect stable structural systems.

    缺陷种类 结构 单位原子能量
    /(eV·atom–1)
    缺陷形成能
    /eV
    VIn –4.150 4.176/4.18[21]
    VP –4.158 2.412/2.33[21]
    Ini Td In –4.201 3.453
    Td P –4.202 3.366/3.366[21]
    100-split[In-P] –4.196 4.249
    100-split[In-In] –4.189 5.191
    Pi C3v h –4.220 3.622
    C1hp 001In –4.222 3.336
    D2d 001P –4.224 3.124/3.1[21]
    DownLoad: CSV
  • [1]

    Mokkapati S, Jagadish C 2009 Mater. Today 12 22Google Scholar

    [2]

    Beling A, Campbell J C 2009 J. Lightwave Technol. 27 343Google Scholar

    [3]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [4]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [5]

    Rathi S, Jogi J, Gupta M, Gupta R S 2009 Microelectron. Reliab. 49 1508Google Scholar

    [6]

    Bauer S, Sichkovskyi V, Schnabel F, Sengül A, Reithmaier J P 2019 J. Cryst. Growth 516 34Google Scholar

    [7]

    Shamirzaev T S, Debus J, Abramkin D S, Dunker D, Yakovlev D R, Dmitriev D V, Gutakovskii A K, Braginsky L S, Zhuravlev K S, Bayer M 2011 Phys. Rev. B 84 155318Google Scholar

    [8]

    Mehrer H 2007 Diffusion in Solids (Berlin, Heidelberg: Springer Verlag

    [9]

    Wright A F, Modine N A 2016 J. Appl. Phys. 120 215705Google Scholar

    [10]

    Wampler W R, Myers S M 2015 J. Appl. Phys. 117 045707Google Scholar

    [11]

    Myers S M, Cooper P J, Wampler W R 2008 J. Appl. Phys. 104 044507Google Scholar

    [12]

    贺朝会, 唐杜, 李永宏, 臧航 2019 原子能科学技术 53 2106Google Scholar

    He C H, Tang D, Li Y H, Zang H 2019 At. Energy Sci. Technol. 53 2106Google Scholar

    [13]

    唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 084209Google Scholar

    Tang D, He C H, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 084209Google Scholar

    [14]

    Ogura M, Mizuta M, Onaka K, Kukimoto H 1983 Jpn. J. Appl. Phys. 22 1502Google Scholar

    [15]

    Tapster P R 1983 J. Cryst. Growth 64 200Google Scholar

    [16]

    Rybicki G C, Zorman C A 1994 J. Appl. Phys. 75 3187Google Scholar

    [17]

    Walters R J, Summers G P 1991 J. Appl. Phys. 69 6488Google Scholar

    [18]

    Ando K, Yamaguchi M, Uemura C 1986 Phys. Rev. B 34 3041Google Scholar

    [19]

    McAfee S R, Capasso F, Lang D V, Hutchinson A, Bonner W A 1981 J. Appl. Phys. 52 6158Google Scholar

    [20]

    Liu J, Song Y, Xu X, Li W, Yang J, Li X 2023 J. Appl. Phys. 134 115702Google Scholar

    [21]

    Mishra R, Restrepo O D, Kumar A, Windl W 2012 J. Mater. Sci. 47 7482Google Scholar

    [22]

    Zollo G, Gala F 2012 New J. Phys. 14 053036Google Scholar

    [23]

    El-Mellouhi F, Mousseau N 2006 Phys. Rev. B 74 205207Google Scholar

    [24]

    Levasseur-Smith K, Mousseau N 2008 J. Appl. Phys. 103 113502Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Basic Parameters of Indium Phosphide (InP) https://www.ioffe.ru/SVA/NSM/Semicond/InP/basic.html [2024-04-04]

    [29]

    Pluengphon P, Bovornratanaraks T, Pinsook U 2017 J. Alloys Compd. 700 98Google Scholar

    [30]

    Bastos C M O, Sabino F P, Sipahi G M, Da Silva J L F 2018 J. Appl. Phys. 123 065702Google Scholar

    [31]

    Martienssen W, Warlimont H 2005 Springer Handbook of Condensed Matter and Materials Data (Berlin, Heidelberg: Springer Press) p647

    [32]

    Malouin M A, El-Mellouhi F, Mousseau N 2007 Phys. Rev. B 76 045211Google Scholar

    [33]

    Schultz P A, von Lilienfeld O A 2009 Modell. Simul. Mater. Sci. Eng. 17 0840007Google Scholar

  • [1] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [2] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [3] Zhang Mei-Ling, Chen Yu-Hong, Zhang Cai-Rong, Li Gong-Ping. Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: First principles study. Acta Physica Sinica, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [4] Liu Ru-Lin, Fang Liang, Hao Yue, Chi Ya-Qing. Density functional theory calculation of diffusion mechanism of intrinsic defects in rutile TiO2. Acta Physica Sinica, 2018, 67(17): 176101. doi: 10.7498/aps.67.20180818
    [5] Zhang Yun, Wang Xue-Wei, Bai Hong-Mei. First-principles study on the electronic structures and the absorption spectra of In: Mn: LiNbO3 crystals. Acta Physica Sinica, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [6] Lin Qiao-Lu, Li Gong-Ping, Xu Nan-Nan, Liu Huan, Wang Cang-Long. A first-principles study on magnetic properties of the intrinsic defects in rutile TiO2. Acta Physica Sinica, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [7] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [8] He Xu, He Lin, Tang Ming-Jie, Xu Ming. Effects of the vacancy point-defect on electronic structure and optical properties of LiF under high pressure: A first principles investigation. Acta Physica Sinica, 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [9] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [10] Liu Bai-Nian, Ma Ying, Zhou Yi-Chun. First-principles study of defect properties in tetragonal BaTiO3. Acta Physica Sinica, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [11] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [12] Wang Chun-Jiang, Yuan Yi, Wang Qiang, Liu Tie, Lou Chang-Sheng, He Ji-Cheng. Effect of high magnetic fields on the migration of second phases during the solidification of metals. Acta Physica Sinica, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [13] Ma Xin-Guo, Jiang Jian-Jun, Liang Pei. Theoretical study of native point defects on anatase TiO2 (101) surface. Acta Physica Sinica, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [14] Zhao You-Wen, Dong Zhi-Yuan. Generation and suppression of deep level defects in InP. Acta Physica Sinica, 2007, 56(3): 1476-1479. doi: 10.7498/aps.56.1476
    [15] Jin Fang-Wei, Ren Zhong-Ming, Ren Wei-Li, Deng Kang, Zhong Yun-Bo. On dynamics of precipitated grains migrating in molten metal under high gradient magnetic field. Acta Physica Sinica, 2007, 56(7): 3851-3860. doi: 10.7498/aps.56.3851
    [16] Ding Shao-Feng, Fan Guang-Han, Li Shu-Ti, Xiao Bing. First-principles study of the p-type doped InN. Acta Physica Sinica, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [17] Zhao You-Wen, Miao Shan-Shan, Dong Zhi-Yuan, Lü Xiao-Hong, Deng Ai-Hong, Yang Jun, Wang Bo. Thermally induced Fe atom transition from substitutional to interstitial sites in InP and its influence on material property. Acta Physica Sinica, 2007, 56(9): 5536-5541. doi: 10.7498/aps.56.5536
    [18] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [19] Li Xiao, Zhang Hai-Ying, Yin Jun-Jian, Liu Liang, Xu Jing-Bo, Li Ming, Ye Tian-Chun, Gong Min. Research of breakdown characteristic of InP composite channel HEMT. Acta Physica Sinica, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [20] Li Xiao, Liu Liang, Zhang Hai-Ying, Yin Jun-Jian, Li Hai-Ou, Ye Tian-Chun, Gong Min. A new small signal physical model of InP-based composite channel high electron mobility transistor. Acta Physica Sinica, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
Metrics
  • Abstract views:  1318
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2024
  • Accepted Date:  14 July 2024
  • Available Online:  23 August 2024
  • Published Online:  20 September 2024

/

返回文章
返回