Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Midrapidity average transverse momentum of identified charged particles in high-energy heavy-ion collisions

Xie Zhen Li Jing-Xing Zheng Hua Zhang Wen-Chao Zhu Li-Lin Liu Xing-Quan Tan Zhi-Guang Zhou Dai-Mei Bonasera Aldo

Citation:

Midrapidity average transverse momentum of identified charged particles in high-energy heavy-ion collisions

Xie Zhen, Li Jing-Xing, Zheng Hua, Zhang Wen-Chao, Zhu Li-Lin, Liu Xing-Quan, Tan Zhi-Guang, Zhou Dai-Mei, Bonasera Aldo
cstr: 32037.14.aps.73.20240905
PDF
HTML
Get Citation
  • The average transverse momentum $\left\langle p_{\mathrm{T}} \right\rangle$ of final particles is an important observable in high-energy heavy-ion collision experiments. It reflects the properties of soft hadrons and thermonuclear matter, and it can also be used to deduce the information about the evolution of collision systems. By using the phenomenological linear and power-law functions, we study the dependence of the average transverse momentum $\langle p_{\mathrm{T}}\rangle$ at midrapidity in Au + Au and Pb + Pb collisions from the STAR, PHENIX and ALICE Collaborations on four normalized physical quantities, i.e. the collision centrality, the average number of binary collisions per participant pair $\dfrac{2N_{{\mathrm{coll}}}}{N_{{\mathrm{part}}}}$, the average pseudorapidity density of charged particles per participant pair $\dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta}$ and the average pseudorapidity density of charged particles per binary collision $\dfrac{1}{N_{{\mathrm{coll}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $. The results show that the average transverse momentum $\langle p_{\mathrm{T}} \rangle$ of identified particles exhibits a good linear relationship with collision centrality, and it follows a nice power-law relationship with the average number of binary collisions per participant pair $\dfrac{2N_{{\mathrm{coll}}}}{N_{{\mathrm{part}}}}$, the average pseudorapidity density of charged particles per participant pair $\dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta}$, and the average pseudorapidity density of charged particles per binary collision $\dfrac{1}{N_{{\mathrm{coll}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta}$. It is also found that the fitting parameters in the proposed phenomenological functions for the average transverse momentum $\langle p_{\mathrm{T}} \rangle$ with collision centrality and the average number of binary collisions per participant pair follow a power-law function with collision energy, which endows the phenomenological approach with predictive ability. Therefore, the collision centrality and the average number of binary collisions per participant pair are good physical quantities for studying the average transverse momentum of identified particles in high-energy heavy-ion collisions. The results in this study can be used to predict the average transverse momentum of identified particles at other collision energy of which the experimental data are not available so far. The mass ordering of the average transverse momentum of identified particles, i.e. $\text{π}^{-},\;{\mathrm{K}}^{-} $ and $\bar{{\mathrm{p}}}$, is also discussed and explained by the particle production time related to energy conservation, at a given collision centrality and energy.
      Corresponding author: Zheng Hua, zhengh@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11905120), the Open Fund of Key Laboratory of Quark and Lepton Physics in Central China Normal University, China (Grant No. QLPL2024P01), and the Natural Science Foundation of Sichuan Province, China (Grant No. 2024NSFSC0420).
    [1]

    Hwa R C, Wang X N 2004 Quark-Gluon Plasma 3 (Singapore: World Scientific

    [2]

    Hwa R C, Wang X N 2010 Quark-Gluon Plasma 4 (Singapore: World Scientific

    [3]

    L P Csernai 1994 Introduction to Relativistic Heavy Ion Collisions (New York: Wiley

    [4]

    Adams J, Aggarwal M M, Ahammed Z, et al. 2005 Nucl. Phys. A 757 102Google Scholar

    [5]

    C Y Wong 1994 Introduction to High-Energy Heavy-Ion Collisions (Singapore: World Scientific

    [6]

    Abelev B I, Adams J, Aggarwal M M, et al. 2007 Phys. Rev. C 75 064901Google Scholar

    [7]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Phys. Rev. C 96 044904Google Scholar

    [8]

    Adam J, Adamczyk L, Adams J R, et al. 2020 Phys. Rev. C 101 024905Google Scholar

    [9]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. 2009 Phys. Rev. C 79 034909Google Scholar

    [10]

    Abelev B, Adam J, Adamova D, et al. 2013 Phys. Rev. C 88 044910Google Scholar

    [11]

    Acharya S, Adamova D, Adhya S P, et al. 2020 Phys. Rev. C 101 044907Google Scholar

    [12]

    Adams J, Adler C, Aggarwal M M, et al. 2004 Phys. Rev. Lett. 92 052302Google Scholar

    [13]

    Back B B, Baker M D, Ballintijn M, et al. 2005 Nucl. Phys. A 757 28Google Scholar

    [14]

    Wang M, Tao J Q, Zheng H, Zhang W C, Zhu L L, Bonasera A 2022 Nucl. Sci. Tech. 33 37Google Scholar

    [15]

    Abelev B B, Adam J, Adamova D, et al. 2015 JHEP 2015 190Google Scholar

    [16]

    Adler C, Ahammed Z, Allgower C, et al. 2002 Phys. Rev. Lett. 89 202301Google Scholar

    [17]

    Chatrchyan S, Khachatryan V, Sirunyan A M, et al. 2014 Phys. Rev. C 90 024908Google Scholar

    [18]

    Qin G Y, Wang X N 2015 Int. J. Mod. Phys. E 24 1530014Google Scholar

    [19]

    Cao S S, Wang X N 2021 Rep. Prog. Phys. 84 024301Google Scholar

    [20]

    Adcox K, Adler S S, Afanasiev S, et al. 2005 Nucl. Phys. A 757 184Google Scholar

    [21]

    Zhang S L, Liao J, Qin G Y, Wang E, Xing H 2023 Sci. Bull. 68 2003Google Scholar

    [22]

    Hwa R C, Zhu L 2018 Phys. Rev. C 97 054908Google Scholar

    [23]

    Zhu L, Zheng H, Da K, Gong H, Ye Z, Liu G, Hwa R C 2023 Phys. Rev. C 107 064907Google Scholar

    [24]

    Zhu L, Zheng H, Kong R 2019 Eur. Phys. J. A 55 205Google Scholar

    [25]

    Tao J Q, Wang M, Zheng H, Zhang W C, Zhu L L, Bonasera A 2021 J. Phys. G 48 105102Google Scholar

    [26]

    Gao Y, Zheng H, Zhu L L, Bonasera A 2017 Eur. Phys. J. A 53 197Google Scholar

    [27]

    Tao J Q, He H B, Zheng H, Zhang W C, Liu X Q, Zhu L L, Bonasera A 2023 Nucl. Sci. Tech. 34 172Google Scholar

    [28]

    Zhu L, Zheng H, Hwa R C 2021 Phys. Rev. C 104 014902Google Scholar

    [29]

    She Z L, Lei A K, Yan Y L, Zhou D M, Zhang W C, Zheng H, Zheng L, Xie Y L, Chen G, Sa B H 2024 Phys. Rev. C 110 014910Google Scholar

    [30]

    Wu W H, Tao J Q, Zheng H, Zhang W C, Liu X Q, Zhu L L, Bonasera A 2023 Nucl. Sci. Tech. 34 151Google Scholar

    [31]

    Zhao W, Zhu L, Zheng H, Ko C M, Song H 2018 Phys. Rev. C 98 054905Google Scholar

    [32]

    Lin Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar

    [33]

    Fu B, Liu S Y F, Pang L, Song H, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [34]

    Pang L G, Petersen H, Wang X N 2018 Phys. Rev. C 97 064918Google Scholar

    [35]

    Ye K F, Wang Q, Shi J H, Qin Z Y, Zhang W C, Lei A K, She Z L, Yan Y L, Sa B H 2024 Phys. Rev. C 109 035201Google Scholar

    [36]

    Lan S W, Shi S S 2022 Nucl. Sci. Tech. 33 21Google Scholar

    [37]

    Zheng H, Zhu L 2016 Adv. High Energy Phys. 2016 9632126Google Scholar

    [38]

    Zheng H, Zhu L 2015 Adv. High Energy Phys. 2015 180491Google Scholar

    [39]

    Zheng H, Zhu L, Bonasera A 2015 Phys. Rev. D 92 074009Google Scholar

    [40]

    Zhu L L, Wang B, Wang M, Zheng H 2022 Nucl. Sci. Tech. 33 45Google Scholar

    [41]

    Zhu L L, Zheng H, Yang C B 2008 Nucl. Phys. A 802 122Google Scholar

    [42]

    Tao J, Wu W, Wang M, Zheng H, Zhang W, Zhu L, Bonasera A 2022 Particles 5 146Google Scholar

    [43]

    Wong C Y, Wilk G 2012 Acta Phys. Polon. B 43 2047Google Scholar

    [44]

    Wong C Y, Wilk G, Cirto L J L, Tsallis C 2015 Phys. Rev. D 91 114027Google Scholar

    [45]

    Deppman A, Megias E, Menezes D P 2020 Phys. Rev. D 101 034019Google Scholar

    [46]

    Yang P P, Liu F H, Olimov K K 2023 Entropy 25 1571Google Scholar

    [47]

    Pradhan G S, Sahu D, Rath R, Sahoo R, Cleymans J 2024 Eur. Phys. J. A 60 52Google Scholar

    [48]

    Wu J, Lin Y, Li Z, Luo X, Wu Y 2021 Phys. Rev. C 104 034902Google Scholar

    [49]

    Bernhard J E, Moreland J S, Bass S A 2019 Nat. Phys. 15 1113Google Scholar

    [50]

    He Y Y, Pang L G, Wang X N 2019 Phys. Rev. Lett. 122 252302Google Scholar

    [51]

    Heffernan M R, Gale C, Jeon S, Paquet J F 2024 Phys. Rev. C 109 065207Google Scholar

    [52]

    Feng Y T, Shao F L, Song J 2022 Phys. Rev. C 106 034910Google Scholar

    [53]

    Van Hove L 1982 Phys. Lett. B 118 138Google Scholar

    [54]

    Olimov K K, Liu F H, Musaev K A, Olimov A K, Tukhtaev B J, Saidkhanov N S, Yuldashev B S, Olimov K, Gulamov K G 2021 Int. J. Mod. Phys. E 30 2150029Google Scholar

    [55]

    Olimov K K, Lebedev I A, Tukhtaev B J, Fedosimova A I, Liu F H, Khudoyberdieva S A, Kanokova S Z 2023 Int. J. Mod. Phys. E 32 2350066Google Scholar

    [56]

    ALICE Publications 2018 https://cds.cern.ch/record/2636623

    [57]

    Aamodt K, Abrahantes Quintana A, Adamova D, et al. 2011 Phys. Rev. Lett. 106 032301Google Scholar

    [58]

    Adam J, Adamova D, Aggarwal M M, et al. 2016 Phys. Rev. Lett. 116 222302Google Scholar

    [59]

    Adare A, Afanasiev S, Aidala C, et al. 2016 Phys. Rev. C 93 024901Google Scholar

  • 图 1  采用线性函数公式(1)对不同碰撞能量下, 中心快度区鉴别粒子的平均横动量$ \langle p_{\mathrm{T}} \rangle $与碰撞中心度关系的拟合结果. 金核-金核碰撞能量为7.7 GeV (a); 11.5 GeV (b); 14.5 GeV (c); 19.6 GeV (d); 27 GeV (e); 39 GeV (f); 62.4 GeV (g); 130 GeV (h); 200 GeV (i). 铅核-铅核碰撞能量为2.76 TeV (j); 5.02 TeV (k). 实验数据来自文献[711]

    Figure 1.  Linear fits with Eq. (1) to the experimental midrapidity $ \langle p_{\mathrm{T}} \rangle $ versus centrality for the identified particles in Au + Au collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{7.7\;GeV}}$ (a), 11.5 GeV (b), 14.5 GeV (c), 19.6 GeV (d), 27 GeV (e), 39 GeV (f), 62.4 GeV (g), 130 GeV (h), 200 GeV (i), and in Pb + Pb collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{2.76\;TeV}}$ (j), 5.02 TeV (k). The experimental data are taken from Refs. [711].

    图 2  (1)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}} \rangle $随碰撞中心度关系的拟合参数 (a) 斜率绝对值$ |a_1 | $; (b) 截距 $ b_1 $与每核子对质心碰撞能量$ \sqrt{s_{{{\rm NN}}}} $的关系

    Figure 2.  The collision energy $ \sqrt{s_{{{\rm NN}}}} $ dependence of the fitting parameters from Eq. (1): (a) For the absolute values of slope $ |a_1 | $; (b) for the intercepts $ b_1 $.

    图 3  采用幂律函数公式(2)拟合不同碰撞能量下, 中心快度区鉴别粒子平均横动量$ \langle p_{\mathrm{T}} \rangle $与每核子对的平均碰撞次数关系的拟合结果. 金核-金核碰撞能量为14.5 GeV (a); 62.4 GeV (b); 130 GeV (c); 200 GeV (d). 铅核-铅核碰撞能量为2.76 TeV (e); 5.02 TeV (f). 实验数据来自文献[811, 56]

    Figure 3.  Power-law fits with Eq. (2) to the experimental midrapidity $ \langle p_{\mathrm{T}} \rangle $ versus $ {2 N_{{\mathrm{coll}}}}/{N_{{\mathrm{part}}}} $ for the identified particles in Au + Au collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{14.5\;GeV}}$ (a), 62.4 GeV (b), 130 GeV (c), 200 GeV (d), and in Pb + Pb collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{2.76\;TeV}}$ (e), 5.02 TeV (f). The experimental data are taken from Refs. [811, 56].

    图 4  (2)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $随每核子对的平均碰撞次数关系的拟合参数(a)系数$ a_2 $和(b)指数$ b_2 $与每核子对质心碰撞能量$ \sqrt{s_{{{\rm NN}}}} $的关系

    Figure 4.  Collision energy $ \sqrt{s_{{{\rm NN}}}} $ dependence of the fitting parameters from Eq. (2): (a) For the coefficient $ a_2 $; (b) for the power $ b_2 $

    图 5  采用幂律函数公式(3)拟合不同碰撞能量下, 中心快度区的平均横动量$ \langle p_{\mathrm{T}} \rangle $与每核子对平均产生的带电粒子多重数赝快度密度关系的拟合结果. 金核-金核碰撞能量$ \sqrt{s_{{{\rm NN}}}}={\rm{7.7\;GeV}}$ (a); 62.4 GeV (b); 200 GeV (c). 铅核-铅核碰撞能量$ \sqrt{s_{{{\rm NN}}}}= $$ {\rm{2.76\;TeV}}$(d). 实验数据来自文献[711, 5659]

    Figure 5.  Power-law fits with Eq. (3) to the experimental midrapidity $ \langle p_{\mathrm{T}} \rangle $ versus $ \dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $ for the identified particles in Au + Au collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{7.7\;GeV}}$ (a), 62.4 GeV (b), 200 GeV (c), and in Pb + Pb collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{2.76\;TeV}}$ (d). The experimental data are taken from Refs. [711, 5659].

    图 6  (3)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $随每核子对平均产生的带电粒子多重数赝快度密度的拟合参数(a)系数$ a_3 $和(b)指数$ b_3 $与每核子对质心碰撞能量$ \sqrt{s_{{{\rm NN}}}} $的关系

    Figure 6.  Collision energy $ \sqrt{s_{{{\rm NN}}}} $ dependence of the fitting parameters from Eq. (3): (a) For the coefficient $ a_3 $; (b) for the power $ b_3 $

    图 7  采用幂律函数公式(4)拟合不同碰撞能量下, 中心快度区的平均横动量$ \langle p_{\mathrm{T}}\rangle $与每次碰撞平均产生的带电粒子多重数赝快度密度关系的拟合结果. 金核-金核碰撞能量$ \sqrt{s_{{{\rm NN}}}}={\rm{14.5\;GeV}}$ (a); 62.4 GeV (b); 130 GeV (c); 200 GeV (d). 铅核-铅核碰撞能量$ \sqrt{s_{{{\rm NN}}}}={\rm{2.76\;TeV}}$ (e); 5.02 TeV (f). 实验数据来自文献[811, 5659]

    Figure 7.  Power-law fits with Eq. (4) to the experimental midrapidity $ \langle p_{\mathrm{T}}\rangle $ versus $ \frac{1}{N_{{\mathrm{coll}}}}\frac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $ for the identified particles in Au + Au collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{14.5\;GeV}}$ (a), 62.4 GeV (b), 130 GeV (c), 200 GeV (d), and in Pb + Pb collisions at $ \sqrt{s_{{{\rm NN}}}}={\rm{2.76\;TeV}}$ (e), 5.02 TeV (f). The experimental data are taken from Refs. [811, 5659].

    图 8  (4)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $随每次碰撞平均产生的带电粒子多重数赝快度密度的拟合参数(a)系数$ a_4 $和(b)指数$ b_4 $与每核子对质心碰撞能量$ \sqrt{s_{{{\rm NN}}}} $的关系

    Figure 8.  Collision energy $ \sqrt{s_{{{\rm NN}}}} $ dependence of the fitting parameters from Eq. (4): (a) For the coefficient $ a_4 $; (b) for the power $ b_4 $

    表 A1  (1)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $与碰撞中心度C关系的拟合参数及相应的$ \chi^2/{\rm NDF} $

    Table A1.  Fitting parameters of the $ \langle p_{\mathrm{T}}\rangle $ versus centrality for the identified particles from Eq. (1) and the corresponding $ \chi^2/{\rm NDF} $.

    碰撞系统, 碰撞能量 粒子种类 截距$ b_1 /(\mathrm{GeV}\cdot c^{-1}) $ 斜率$ a_1 /(\mathrm{GeV}\cdot c^{-1}) $ $ \chi^2/{\rm NDF} $
    $ \text{π}^{-} $ $ 0.382\pm 0.011 $ $ -7.01\times10^{-4} \pm 2.47\times10^{-4} $ 0.311/7
    Au+Au, 7.7 GeV $ {\mathrm{K}}^{-} $ $ 0.545 \pm 0.013 $ $ -1.59\times10^{-3}\pm 2.72\times10^{-4} $ 0.337/7
    $ \bar{{\mathrm{p}}} $ $ 0.794\pm 0.030 $ $ -4.05\times10^{-3} \pm 6.07\times10^{-4} $ 0.211/7
    $ \text{π}^{-} $ $ 0.388\pm 0.011 $ $ -5.39\times10^{-4} \pm 2.50\times10^{-4} $ 0.397/7
    Au+Au, 11.5 GeV $ {\mathrm{K}}^{-} $ $ 0.566 \pm 0.016 $ $ -1.46\times10^{-3}\pm 3.47\times10^{-4} $ 0.531/7
    $ \bar{{\mathrm{p}}} $ $ 0.815\pm0.036 $ $ -3.87\times10^{-3} \pm 7.24\times10^{-4} $ 0.097/7
    $ \text{π}^{-} $ $ 0.397\pm 0.012 $ $ -6.19\times10^{-4} \pm 2.69\times10^{-4} $ 0.238/7
    Au+Au, 14.5 GeV $ {\mathrm{K}}^{-} $ $ 0.572 \pm 0.018 $ $ -1.44\times10^{-3}\pm 3.79\times10^{-4} $ 0.323/7
    $ \bar{{\mathrm{p}}} $ $ 0.827\pm0.039 $ $ -3.37\times10^{-3} \pm 8.04\times10^{-4} $ 0.122/7
    $ \text{π}^{-} $ $ 0.398\pm 0.014 $ $ -5.08\times10^{-4} \pm 3.12\times10^{-4} $ 0.195/7
    Au+Au, 19.6 GeV $ {\mathrm{K}}^{-} $ $ 0.578 \pm 0.020 $ $ -1.42\times10^{-3}\pm 4.30\times10^{-4} $ 0.149/7
    $ \bar{{\mathrm{p}}} $ $ 0.845\pm0.042 $ $ -3.55\times10^{-3} \pm 8.64\times10^{-4} $ 0.066/7
    $ \text{π}^{-} $ $ 0.410\pm 0.014 $ $ -6.08\times10^{-4} \pm 3.19\times10^{-4} $ 0.093/7
    Au+Au, 27 GeV $ {\mathrm{K}}^{-} $ $ 0.588 \pm 0.020 $ $ -1.24\times10^{-3}\pm 4.48\times10^{-4} $ 0.179/7
    $ \bar{{\mathrm{p}}} $ $ 0.857\pm0.043 $ $ -3.52\times10^{-3} \pm 8.81\times10^{-4} $ 0.134/7
    $ \text{π}^{-} $ $ 0.417\pm 0.015 $ $ -5.84\times10^{-4} \pm3.25\times10^{-4} $ 0.151/7
    Au+Au, 39 GeV $ {\mathrm{K}}^{-} $ $ 0.615 \pm 0.021 $ $ -1.22\times10^{-3}\pm 4.71\times10^{-4} $ 0.138/7
    $ \bar{{\mathrm{p}}} $ $ 0.882\pm 0.054 $ $ -3.46\times10^{-3} \pm 1.11\times10^{-3} $ 0.091/7
    $ \text{π}^{-} $ $ 0.409\pm 0.007 $ $ -5.46\times10^{-4} \pm 2.11\times10^{-4} $ 0.755/7
    Au+Au, 62.4 GeV $ {\mathrm{K}}^{-} $ $ 0.663\pm0.016 $ $ -1.80\times10^{-3}\pm 3.20\times10^{-4} $ 0.712/7
    $ \bar{{\mathrm{p}}} $ $ 0.984\pm 0.025 $ $ -3.87\times10^{-3} \pm 5.46\times10^{-4} $ 0.501/7
    $ \text{π}^{-} $ $ 0.400\pm0.009 $ $ -6.57\times10^{-4} \pm 3.24\times10^{-4} $ 0.384/6
    Au+Au, 130 GeV $ {\mathrm{K}}^{-} $ $ 0.666 \pm 0.020 $ $ -1.54\times10^{-3} \pm 4.19\times10^{-4} $ 0.478/6
    $ \bar{{\mathrm{p}}} $ $ 1.01\pm 0.042 $ $ -3.77\times10^{-3}\pm8.05\times10^{-4} $ 0.275/6
    $ \text{π}^{-} $ $ 0.427\pm0.012 $ $ -7.75\times10^{-4} \pm 2.73\times10^{-4} $ 0.234/7
    Au+Au, 200 GeV $ {\mathrm{K}}^{-} $ $ 0.720\pm0.033 $ $ -2.18 \times10^{-3} \pm 6.49\times10^{-4} $ 0.145/7
    $ \bar{{\mathrm{p}}} $ $ 1.10\pm0.050 $ $ -4.58\times10^{-3}\pm 9.55\times10^{-4} $ 0.222/7
    $ \text{π}^{-} $ $ 0.532\pm0.010 $ $ -9.28\times10^{-4} \pm 2.34\times10^{-4} $ 1.099/7
    Pb+Pb, 2.76 TeV $ {\mathrm{K}}^{-} $ $ 0.886 \pm 0.017 $ $ -1.95\times10^{-3} \pm 3.80\times10^{-4} $ 0.960/7
    $ \bar{{\mathrm{p}}} $ $ 1.40\pm 0.020 $ $ -5.26\times10^{-3}\pm 4.58\times10^{-4} $ 3.124/7
    $ \text{π}^{-} $ $ 0.586\pm0.012 $ $ -1.16\times10^{-3} \pm 2.88\times10^{-4} $ 0.707/7
    Pb+Pb, 5.02 TeV $ {\mathrm{K}}^{-} $ $ 0.943 \pm 0.008 $ $ -1.84\times10^{-3} \pm 1.93\times10^{-4} $ 6.723/7
    $ \bar{{\mathrm{p}}} $ $ 1.50\pm 0.013 $ $ -5.97\times10^{-3}\pm 2.91\times10^{-4} $ 12.752/7
    DownLoad: CSV

    表 A2  (2)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $与每核子对的平均碰撞次数$ {2 N_{{\mathrm{coll}}}}/{N_{{\mathrm{part}}}} $关系的拟合参数及相应的$ \chi^2/{\rm NDF} $

    Table A2.  Fitting parameters of the $ \langle p_{\mathrm{T}}\rangle $ versus $ {2 N_{{\mathrm{coll}}}}/{N_{{\mathrm{part}}}} $ for the identified particles from Eq. (2) and the corresponding $ \chi^2/{\rm NDF} $.

    碰撞系统, 碰撞能量 粒子种类 系数$ a_2/(\mathrm{GeV}\cdot c^{-1})$ 指数$ b_2 $ $ \chi^2/{\rm NDF} $
    $ \text{π}^{-} $ $ 0.330\pm0.019 $ $ 0.118\pm 0.049 $ 0.180/7
    Au+Au, 14.5 GeV $ {\mathrm{K}}^{-} $ $ 0.418\pm0.025 $ $ 0.198\pm 0.052 $ 0.235/7
    $ \bar{{\mathrm{p}}} $ $ 0.482\pm 0.045 $ $ 0.343\pm 0.082 $ 0.110/7
    $ \text{π}^{-} $ $ 0.344\pm0.019 $ $ 0.104\pm 0.040 $ 0.519/7
    Au+Au, 62.4 GeV $ {\mathrm{K}}^{-} $ $ 0.462\pm0.021 $ $ 0.214\pm 0.038 $ 0.413/7
    $ \bar{{\mathrm{p}}} $ $ 0.566\pm 0.034 $ $ 0.330\pm 0.047 $ 0.352/7
    $ \text{π}^{-} $ $ 0.318\pm0.032 $ $ 0.132\pm 0.066 $ 0.375/6
    Au+Au, 130 GeV $ {\mathrm{K}}^{-} $ $ 0.481\pm 0.033 $ $ 0.186 \pm0.051 $ 0.448/6
    $ \bar{{\mathrm{p}}} $ $ 0.583\pm 0.049 $ $ 0.318\pm 0.067 $ 0.215/6
    $ \text{π}^{-} $ $ 0.338\pm0.020 $ $ 0.128 \pm 0.045 $ 0.149/7
    Au+Au, 200 GeV $ {\mathrm{K}}^{-} $ $ 0.482\pm0.038 $ $ 0.221\pm 0.065 $ 0.184/7
    $ \bar{{\mathrm{p}}} $ $ 0.617\pm 0.050 $ $ 0.322 \pm 0.066 $ 0.304/7
    $ \text{π}^{-} $ $ 0.430\pm0.017 $ $ 0.096 \pm 0.024 $ 0.623/7
    Pb+Pb, 2.76 TeV $ {\mathrm{K}}^{-} $ $ 0.674 \pm 0.027 $ $ 0.124 \pm 0.024 $ 0.527/7
    $ \bar{{\mathrm{p}}} $ $ 0.848\pm 0.029 $ $ 0.227\pm 0.020 $ 1.731/7
    $ \text{π}^{-} $ $ 0.460\pm 0.020 $ $ 0.105\pm 0.026 $ 0.405/7
    Pb+Pb, 5.02 TeV $ {\mathrm{K}}^{-} $ $ 0.741 \pm 0.014 $ $ 0.105\pm 0.011 $ 3.765/7
    $ \bar{{\mathrm{p}}} $ $ 0.889\pm 0.017 $ $ 0.230\pm 0.011 $ 7.564/7
    DownLoad: CSV

    表 A3  (3)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $随每核子对平均产生的带电粒子多重数赝快度密度$ \dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $的拟合参数及相应的$ \chi^2/{\rm NDF} $

    Table A3.  Fitting parameters of the $ \langle p_{\mathrm{T}}\rangle $ versus $ \dfrac{2}{N_{{\mathrm{part}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $ for the identified particles from Eq. (3) and the corresponding $ \chi^2/{\rm NDF} $.

    碰撞系统, 碰撞能量 粒子种类 系数$ a_3 /(\mathrm{GeV}\cdot c^{-1})$ 指数$ b_3 $ $ \chi^2/{\rm NDF} $
    $ \text{π}^{-} $ $ 0.366\pm0.007 $ $ 0.220\pm 0.142 $ 0.263/5
    Au+Au, 7.7 GeV $ {\mathrm{K}}^{-} $ $ 0.509\pm 0.008 $ $ 0.418\pm 0.117 $ 0.551/5
    $ \bar{{\mathrm{p}}} $ $ 0.700\pm 0.019 $ $ 0.828 \pm 0.200 $ 0.548/5
    $ \text{π}^{-} $ $ 0.366\pm0.01 $6 $ 0.195\pm 0.170 $ 0.063/5
    Au+Au, 14.5 GeV $ {\mathrm{K}}^{-} $ $ 0.494\pm 0.022 $ $ 0.361\pm 0.174 $ 0.237/5
    $ \bar{{\mathrm{p}}} $ $ 0.631\pm 0.044 $ $ 0.689 \pm 0.269 $ 0.235/5
    $ \text{π}^{-} $ $ 0.351\pm0.047 $ $ 0.232\pm 0.299 $ 0.105/5
    Au+Au, 19.6 GeV $ {\mathrm{K}}^{-} $ $ 0.427\pm 0.057 $ $ 0.590\pm 0.304 $ 0.462/5
    $ \bar{{\mathrm{p}}} $ $ 0.473\pm 0.093 $ $ 1.15 \pm 0.465 $ 0.621/5
    $ \text{π}^{-} $ $ 0.346\pm0.045 $ $ 0.261\pm 0.254 $ 0.081/5
    Au+Au, 27 GeV $ {\mathrm{K}}^{-} $ $ 0.460\pm0.060 $ $ 0.378\pm 0.254 $ 0.123/5
    $ \bar{{\mathrm{p}}} $ $ 0.489\pm 0.094 $ $ 0.893 \pm 0.371 $ 0.245/5
    $ \text{π}^{-} $ $ 0.333\pm0.070 $ $ 0.290\pm 0.309 $ 0.083/5
    Au+Au, 39 GeV $ {\mathrm{K}}^{-} $ $ 0.428\pm 0.090 $ $ 0.472\pm 0.315 $ 0.146/5
    $ \bar{{\mathrm{p}}} $ $ 0.405\pm 0.153 $ $ 1.02 \pm 0.546 $ 0.142/5
    $ \text{π}^{-} $ $ 0.317\pm0.038 $ $ 0.260\pm 0.136 $ 0.331/6
    Au+Au, 62.4 GeV $ {\mathrm{K}}^{-} $ $ 0.357\pm 0.036 $ $ 0.644\pm 0.127 $ 0.662/6
    $ \bar{{\mathrm{p}}} $ $ 0.379\pm 0.050 $ $ 0.997 \pm 0.158 $ 0.507/6
    $ \text{π}^{-} $ $ 0.290\pm0.042 $ $ 0.257\pm 0.127 $ 0.356/6
    Au+Au, 130 GeV $ {\mathrm{K}}^{-} $ $ 0.410\pm 0.045 $ $ 0.388\pm 0.105 $ 0.452/6
    $ \bar{{\mathrm{p}}} $ $ 0.440\pm 0.062 $ $ 0.674 \pm 0.142 $ 0.481/6
    $ \text{π}^{-} $ $ 0.266\pm0.056 $ $ 0.344 \pm 0.171 $ 0.278/6
    Au+Au, 200 GeV $ {\mathrm{K}}^{-} $ $ 0.286\pm0.087 $ $ 0.683\pm 0.247 $ 0.190/6
    $ \bar{{\mathrm{p}}} $ $ 0.291\pm 0.089 $ $ 0.989 \pm0.259 $ 0.383/6
    $ \text{π}^{-} $ $ 0.325\pm 0.036 $ $ 0.230 \pm 0.058 $ 0.862/7
    Pb+Pb, 2.76 TeV $ {\mathrm{K}}^{-} $ $ 0.471\pm0.052 $ $ 0.295\pm 0.058 $ 1.182/7
    $ \bar{{\mathrm{p}}} $ $ 0.442\pm0.041 $ $ 0.538\pm 0.048 $ 3.699/7
    $ \text{π}^{-} $ $ 0.305\pm0.045 $ $ 0.282\pm 0.071 $ 0.924/7
    Pb+Pb, 5.02 TeV $ {\mathrm{K}}^{-} $ $ 0.502\pm 0.030 $ $ 0.272\pm 0.029 $ 8.162/7
    $ \bar{{\mathrm{p}}} $ $ 0.373\pm0.023 $ $ 0.602\pm 0.030 $ 20.985/7
    DownLoad: CSV

    表 A4  (4)式拟合鉴别粒子平均横动量$ \langle p_{\mathrm{T}}\rangle $随每次碰撞平均产生的带电粒子多重数赝快度密度$ \dfrac{1}{N_{{\mathrm{coll}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $的拟合参数及相应的$ \chi^2/{\rm NDF} $

    Table A4.  Fitting parameters of the $ \langle p_{\mathrm{T}}\rangle $ versus $ \dfrac{1}{N_{{\mathrm{coll}}}}\dfrac{{\mathrm{d}}N_{{\mathrm{ch}}}}{{\mathrm{d}}\eta} $ for the identified particles from Eq. (4) and the corresponding $ \chi^2/{\rm NDF} $.

    碰撞系统, 碰撞能量 粒子种类 系数$ a_4 /(\mathrm{GeV}\cdot c^{-1}) $ 指数$ b_4 $ $ \chi^2/{\rm NDF} $
    $ \text{π}^{-} $ $ 0.326\pm 0.044 $ $ -0.156\pm 0.128 $ 0.001/5
    Au+Au, 14.5 GeV $ {\mathrm{K}}^{-} $ $ 0.400\pm0.056 $ $ -0.290\pm 0.137 $ 0.026/5
    $ \bar{{\mathrm{p}}} $ $ 0.425\pm0.094 $ $ -0.547\pm 0.211 $ 0.052/5
    $ \text{π}^{-} $ $ 0.357\pm0.021 $ $ -0.185\pm 0.098 $ 0.411/6
    Au+Au, 62.4 GeV $ {\mathrm{K}}^{-} $ $ 0.484\pm0.021 $ $ -0.424\pm 0.086 $ 1.108/6
    $ \bar{{\mathrm{p}}} $ $ 0.606\pm 0.036 $ $ -0.674 \pm 0.109 $ 1.402/6
    $ \text{π}^{-} $ $ 0.331\pm0.026 $ $ -0.391 \pm 0.190 $ 0.347/6
    Au+Au, 130 GeV $ {\mathrm{K}}^{-} $ $ 0.519\pm0.025 $ $ -0.503\pm 0.137 $ 0.720/6
    $ \bar{{\mathrm{p}}} $ $ 0.665\pm 0.038 $ $ -0.850\pm 0.181 $ 0.384/6
    $ \text{π}^{-} $ $ 0.381\pm0.013 $ $ -0.251 \pm 0.124 $ 0.053/6
    Au+Au, 200 GeV $ {\mathrm{K}}^{-} $ $ 0.589\pm0.023 $ $ -0.430\pm 0.170 $ 0.420/6
    $ \bar{{\mathrm{p}}} $ $ 0.826\pm 0.033 $ $ -0.627\pm 0.174 $ 0.704/6
    $ \text{π}^{-} $ $ 0.526\pm 0.009 $ $ -0.171\pm 0.042 $ 0.511/7
    Pb+Pb, 2.76 TeV $ {\mathrm{K}}^{-} $ $ 0.874 \pm0.015 $ $ -0.221 \pm 0.043 $ 0.353/7
    $ \bar{{\mathrm{p}}} $ $ 1.36 \pm 0.018 $ $ -0.402\pm 0.036 $ 1.187/7
    $ \text{π}^{-} $ $ 0.587\pm 0.013 $ $ -0.167\pm 0.041 $ 0.204/7
    Pb+Pb, 5.02 TeV $ {\mathrm{K}}^{-} $ $ 0.946\pm 0.008 $ $ -0.169\pm 0.018 $ 1.997/7
    $ \bar{{\mathrm{p}}} $ $ 1.52\pm 0.014 $ $ -0.369\pm 0.018 $ 2.886/7
    DownLoad: CSV
  • [1]

    Hwa R C, Wang X N 2004 Quark-Gluon Plasma 3 (Singapore: World Scientific

    [2]

    Hwa R C, Wang X N 2010 Quark-Gluon Plasma 4 (Singapore: World Scientific

    [3]

    L P Csernai 1994 Introduction to Relativistic Heavy Ion Collisions (New York: Wiley

    [4]

    Adams J, Aggarwal M M, Ahammed Z, et al. 2005 Nucl. Phys. A 757 102Google Scholar

    [5]

    C Y Wong 1994 Introduction to High-Energy Heavy-Ion Collisions (Singapore: World Scientific

    [6]

    Abelev B I, Adams J, Aggarwal M M, et al. 2007 Phys. Rev. C 75 064901Google Scholar

    [7]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Phys. Rev. C 96 044904Google Scholar

    [8]

    Adam J, Adamczyk L, Adams J R, et al. 2020 Phys. Rev. C 101 024905Google Scholar

    [9]

    Abelev B I, Aggarwal M M, Ahammed Z, et al. 2009 Phys. Rev. C 79 034909Google Scholar

    [10]

    Abelev B, Adam J, Adamova D, et al. 2013 Phys. Rev. C 88 044910Google Scholar

    [11]

    Acharya S, Adamova D, Adhya S P, et al. 2020 Phys. Rev. C 101 044907Google Scholar

    [12]

    Adams J, Adler C, Aggarwal M M, et al. 2004 Phys. Rev. Lett. 92 052302Google Scholar

    [13]

    Back B B, Baker M D, Ballintijn M, et al. 2005 Nucl. Phys. A 757 28Google Scholar

    [14]

    Wang M, Tao J Q, Zheng H, Zhang W C, Zhu L L, Bonasera A 2022 Nucl. Sci. Tech. 33 37Google Scholar

    [15]

    Abelev B B, Adam J, Adamova D, et al. 2015 JHEP 2015 190Google Scholar

    [16]

    Adler C, Ahammed Z, Allgower C, et al. 2002 Phys. Rev. Lett. 89 202301Google Scholar

    [17]

    Chatrchyan S, Khachatryan V, Sirunyan A M, et al. 2014 Phys. Rev. C 90 024908Google Scholar

    [18]

    Qin G Y, Wang X N 2015 Int. J. Mod. Phys. E 24 1530014Google Scholar

    [19]

    Cao S S, Wang X N 2021 Rep. Prog. Phys. 84 024301Google Scholar

    [20]

    Adcox K, Adler S S, Afanasiev S, et al. 2005 Nucl. Phys. A 757 184Google Scholar

    [21]

    Zhang S L, Liao J, Qin G Y, Wang E, Xing H 2023 Sci. Bull. 68 2003Google Scholar

    [22]

    Hwa R C, Zhu L 2018 Phys. Rev. C 97 054908Google Scholar

    [23]

    Zhu L, Zheng H, Da K, Gong H, Ye Z, Liu G, Hwa R C 2023 Phys. Rev. C 107 064907Google Scholar

    [24]

    Zhu L, Zheng H, Kong R 2019 Eur. Phys. J. A 55 205Google Scholar

    [25]

    Tao J Q, Wang M, Zheng H, Zhang W C, Zhu L L, Bonasera A 2021 J. Phys. G 48 105102Google Scholar

    [26]

    Gao Y, Zheng H, Zhu L L, Bonasera A 2017 Eur. Phys. J. A 53 197Google Scholar

    [27]

    Tao J Q, He H B, Zheng H, Zhang W C, Liu X Q, Zhu L L, Bonasera A 2023 Nucl. Sci. Tech. 34 172Google Scholar

    [28]

    Zhu L, Zheng H, Hwa R C 2021 Phys. Rev. C 104 014902Google Scholar

    [29]

    She Z L, Lei A K, Yan Y L, Zhou D M, Zhang W C, Zheng H, Zheng L, Xie Y L, Chen G, Sa B H 2024 Phys. Rev. C 110 014910Google Scholar

    [30]

    Wu W H, Tao J Q, Zheng H, Zhang W C, Liu X Q, Zhu L L, Bonasera A 2023 Nucl. Sci. Tech. 34 151Google Scholar

    [31]

    Zhao W, Zhu L, Zheng H, Ko C M, Song H 2018 Phys. Rev. C 98 054905Google Scholar

    [32]

    Lin Z W, Zheng L 2021 Nucl. Sci. Tech. 32 113Google Scholar

    [33]

    Fu B, Liu S Y F, Pang L, Song H, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [34]

    Pang L G, Petersen H, Wang X N 2018 Phys. Rev. C 97 064918Google Scholar

    [35]

    Ye K F, Wang Q, Shi J H, Qin Z Y, Zhang W C, Lei A K, She Z L, Yan Y L, Sa B H 2024 Phys. Rev. C 109 035201Google Scholar

    [36]

    Lan S W, Shi S S 2022 Nucl. Sci. Tech. 33 21Google Scholar

    [37]

    Zheng H, Zhu L 2016 Adv. High Energy Phys. 2016 9632126Google Scholar

    [38]

    Zheng H, Zhu L 2015 Adv. High Energy Phys. 2015 180491Google Scholar

    [39]

    Zheng H, Zhu L, Bonasera A 2015 Phys. Rev. D 92 074009Google Scholar

    [40]

    Zhu L L, Wang B, Wang M, Zheng H 2022 Nucl. Sci. Tech. 33 45Google Scholar

    [41]

    Zhu L L, Zheng H, Yang C B 2008 Nucl. Phys. A 802 122Google Scholar

    [42]

    Tao J, Wu W, Wang M, Zheng H, Zhang W, Zhu L, Bonasera A 2022 Particles 5 146Google Scholar

    [43]

    Wong C Y, Wilk G 2012 Acta Phys. Polon. B 43 2047Google Scholar

    [44]

    Wong C Y, Wilk G, Cirto L J L, Tsallis C 2015 Phys. Rev. D 91 114027Google Scholar

    [45]

    Deppman A, Megias E, Menezes D P 2020 Phys. Rev. D 101 034019Google Scholar

    [46]

    Yang P P, Liu F H, Olimov K K 2023 Entropy 25 1571Google Scholar

    [47]

    Pradhan G S, Sahu D, Rath R, Sahoo R, Cleymans J 2024 Eur. Phys. J. A 60 52Google Scholar

    [48]

    Wu J, Lin Y, Li Z, Luo X, Wu Y 2021 Phys. Rev. C 104 034902Google Scholar

    [49]

    Bernhard J E, Moreland J S, Bass S A 2019 Nat. Phys. 15 1113Google Scholar

    [50]

    He Y Y, Pang L G, Wang X N 2019 Phys. Rev. Lett. 122 252302Google Scholar

    [51]

    Heffernan M R, Gale C, Jeon S, Paquet J F 2024 Phys. Rev. C 109 065207Google Scholar

    [52]

    Feng Y T, Shao F L, Song J 2022 Phys. Rev. C 106 034910Google Scholar

    [53]

    Van Hove L 1982 Phys. Lett. B 118 138Google Scholar

    [54]

    Olimov K K, Liu F H, Musaev K A, Olimov A K, Tukhtaev B J, Saidkhanov N S, Yuldashev B S, Olimov K, Gulamov K G 2021 Int. J. Mod. Phys. E 30 2150029Google Scholar

    [55]

    Olimov K K, Lebedev I A, Tukhtaev B J, Fedosimova A I, Liu F H, Khudoyberdieva S A, Kanokova S Z 2023 Int. J. Mod. Phys. E 32 2350066Google Scholar

    [56]

    ALICE Publications 2018 https://cds.cern.ch/record/2636623

    [57]

    Aamodt K, Abrahantes Quintana A, Adamova D, et al. 2011 Phys. Rev. Lett. 106 032301Google Scholar

    [58]

    Adam J, Adamova D, Aggarwal M M, et al. 2016 Phys. Rev. Lett. 116 222302Google Scholar

    [59]

    Adare A, Afanasiev S, Aidala C, et al. 2016 Phys. Rev. C 93 024901Google Scholar

  • [1] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [2] Lin Shu, Tian Jia-Yuan. Medium correction to gravitational form factors. Acta Physica Sinica, 2023, 72(7): 071201. doi: 10.7498/aps.72.20222473
    [3] Sheng Xin-Li, Liang Zuo-Tang, Wang Qun. Global spin alignment of vector mesons in heavy ion collisions. Acta Physica Sinica, 2023, 72(7): 072502. doi: 10.7498/aps.72.20230071
    [4] Sun Xu, Zhou Chen-Sheng, Chen Jin-Hui, Chen Zhen-Yu, Ma Yu-Gang, Tang Ai-Hong, Xu Qing-Hua. Measurements of global polarization of QCD matter in heavy-ion collisions. Acta Physica Sinica, 2023, 72(7): 072401. doi: 10.7498/aps.72.20222452
    [5] Liu San-Qiu, Guo Hong-Mei. Transverse dispersion laws in ultra-relativistic plasma with fast electron distribution. Acta Physica Sinica, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [6] Liu Jian-Ye, Hao Huan-Feng, Zuo Wei, Li Xi-Guo. Medium effect of nucleon-nucleon cross section on the isoscaling parameter α. Acta Physica Sinica, 2008, 57(4): 2136-2140. doi: 10.7498/aps.57.2136
    [7] Jiang Zhi-Jin. The numbers of participants and nucleon-nucleon collisions in high-energy heavy-ion collisions. Acta Physica Sinica, 2007, 56(9): 5191-5195. doi: 10.7498/aps.56.5191
    [8] Bian Bao-An, Zhou Hong-Yu, Zhang Feng-Shou. Symmetry energy and isospin effects of threshold energy of radial flow in heavy ion collisions. Acta Physica Sinica, 2007, 56(3): 1334-1338. doi: 10.7498/aps.56.1334
    [9] Li Qiang, Jiang Zhi-Jin, Xia Hong-Fu. J/ψ anomalous suppression in high-energy heavy-ion collisions. Acta Physica Sinica, 2006, 55(10): 5161-5165. doi: 10.7498/aps.55.5161
    [10] Zhang Fang, Zuo Wei, Yong Gao-Chan. Probing the high density behavior of the symmetry energy by using the neutron-proton differential flow. Acta Physica Sinica, 2006, 55(11): 5769-5773. doi: 10.7498/aps.55.5769
    [11] Liu Jian-Ye, Xing Yong-Zhong, Guo Wen-Jun. Entrance channel effects on the role of isospin-dependent momentum interaction in isospin fractionation in heavy ion collisions. Acta Physica Sinica, 2006, 55(1): 91-97. doi: 10.7498/aps.55.91
    [12] Liu Jian-Ye, Guo Wen-Jun, Xing Yong-Zhong, Lee Xi-Guo, Zuo Wei. Nuclear reaction dynamics induced by halo-nuclei at intermediate energy heavy ion collisions. Acta Physica Sinica, 2006, 55(3): 1068-1076. doi: 10.7498/aps.55.1068
    [13] Yong Gao-Chan, Li Bao-An, Chen Lie-Wen, Zuo Wei. Flipped symmetry potential in heavy-ion collisions. Acta Physica Sinica, 2006, 55(10): 5166-5171. doi: 10.7498/aps.55.5166
    [14] Ning Ye, He Bin, Liu Chun-Lei, Yan Jun, Wang Jian-Guo. CDW-EIS calculation in He2++H impact ionization. Acta Physica Sinica, 2005, 54(7): 3075-3081. doi: 10.7498/aps.54.3075
    [15] Xing Yong-Zhong, Liu Jian-Ye, Guo Wen-Jun, Hao Huan-Feng. The isospin effects on the momentum dissipation induced by the Coulomb interacti on in the process of heavy-ion collissions. Acta Physica Sinica, 2005, 54(4): 1538-1542. doi: 10.7498/aps.54.1538
    [16] Guo Wen-Jun, Liu Jian-Ye, Xing Yong-Zhong. The isospin effect of momentum-dependent interaction in heavy ion collisions. Acta Physica Sinica, 2005, 54(7): 3082-3086. doi: 10.7498/aps.54.3082
    [17] Xing Yong-Zhong, Liu Jian-Ye, Guo Wen-Jun, Fang Yu-Tian. Dependence of isospin fractionation process on the neutron-proton ratio of a colliding system in intermediate energy heavy-ion collisions. Acta Physica Sinica, 2004, 53(7): 2106-2111. doi: 10.7498/aps.53.2106
    [18] Jiang Zhi-Jin. The study of centrality dependence of rapidity densities of charged-multiplicity. Acta Physica Sinica, 2004, 53(4): 1020-1022. doi: 10.7498/aps.53.1020
    [19] QIAN XING, JIANG DONG-XING, LIN JUN-SONG, LIU DA-MING, LI ZE. THE AVERAGE ANGULAR MOMENTUM IN HEAVY-ION INDUCED FUSION REACTION BY OFF-LINE γ TECHNIQUE. Acta Physica Sinica, 1996, 45(5): 754-759. doi: 10.7498/aps.45.754
    [20] WANG KE-MING, SHI BO-RONG, QU BAO-DONG, WANG ZHONG-LIE. CALCULATION OF THE MEAN PROJECT RANGE OF MeV HEAVY IONS IN SOLID TARGETS. Acta Physica Sinica, 1992, 41(11): 1820-1824. doi: 10.7498/aps.41.1820
Metrics
  • Abstract views:  1188
  • PDF Downloads:  45
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2024
  • Accepted Date:  22 July 2024
  • Available Online:  09 August 2024
  • Published Online:  20 September 2024

/

返回文章
返回