Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of different compositional ratios on the physical structure, optical and photocatalytic properties of thin films during alloying of Zn2+ and TiO2

Xiao Wen-Yue Dong Xiao-Shuo Mamatrishat Mamat Niu Na-Na Li Guo-Dong Zhu Ze-Tao Bi Jie-Hao

Citation:

Effects of different compositional ratios on the physical structure, optical and photocatalytic properties of thin films during alloying of Zn2+ and TiO2

Xiao Wen-Yue, Dong Xiao-Shuo, Mamatrishat Mamat, Niu Na-Na, Li Guo-Dong, Zhu Ze-Tao, Bi Jie-Hao
PDF
Get Citation
  • A batch of TiO2 films with different Zn2+ compositions were prepared on a single crystal silicon substrate using sol-gel method to observe the changes in optical and photocatalytic properties during the alloying process of Zn2+ and TiO2. XRD was used to observe the changes in the crystal structure of the films during the alloying process and to track the formation of ZnTiO3 compounds. SEM and AFM were used to observe the phenomenon of large number of holes on the surface of the films due to the limited solubility of the crystal lattice for Zn2+ during the alloying process. XPS and optical bandgap were used to observe the changes at the level of the electronic structure of the films during the alloying process of Zn2+ with TiO2. Finally, by degrading the MB solution, it is shown that a small amount of Zn2+ doping is completely dissolved in TiO2 and destroys the TiO2 crystalline quality. As the compositional share of Zn2+ continues to increase to 15%, the limited solubility of TiO2 for Zn2+ is verified in the XPS peak fitting, resulting in a large number of hole structures in the film, and the active specific surface area of the film is enhanced, while Zn2+ effectively traps the photogenerated e-/h+. In order to continue to observe the effect of Zn2+ concentration on TiO2, we increased the concentration of Zn2+ to 40% and observed the phenomenon during the alloying process of Zn2+ with TiO2. It is shown that the appearance of the compound ZnTiO3 can act as a complex centre for e-/h+ as well as a significant decrease in the percentage of TiO2 leads to a gradual decrease in the photocatalytic efficiency of the films after alloying.
  • [1]

    Gloeckler M, Sankin I, Zhao Z 2013 IEEE J. Photovolt. 3 1389

    [2]

    Sobayel K, Shahinuzzaman M, Amin N, Karim M R, Dar M A, Gul R, Alghoul M A, Sopian K, Hasan A K M, Akhtaruzzaman M 2020 Sol. Energy 207 479

    [3]

    Zhou J, Xu X, Wu H, Wang J, Lou L, Yin K, Gong Y, Shi J, Luo Y, Li D, Xin H, Meng Q 2023 Nat. Energy 8 526

    [4]

    Zhang Z F, Yuan X, Lu Y S, He D M, Yan Q H, Cao H Y, Hong F, Jiang Z M, Xu R, Ma Z Q, Song H W, Xu F 2024 Acta Phys. Sin. 73 098803

    [5]

    Wang J, Chen H, Wei S H, Yin W J 2019 Adv. Mater. 31 1806593

    [6]

    Keller J, Kiselman K, Donzel Gargand O, Martin N M, Babucci M, Lundberg O, Wallin E, Stolt L, Edoff M 2024 Nat. Energy 9 467

    [7]

    Journal of Physics: Condensed MatterTodorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B 2013 Adv. Energy Mater. 3 34

    [8]

    Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A, Mitzi D, Guha S 2010 Appl. Phys. Lett. 97

    [9]

    Mitzi D B, Gunawan O, Todorov T K, Wang K, Guha S 2011 Sol. Energy Mater. Sol. Cells 95 1421

    [10]

    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K 2010 Prog. Photovoltaics 18 453

    [11]

    Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522

    [12]

    Shin D, Saparov B, Mitzi D B 2017 Adv. Energy Mater. 7 1602366

    [13]

    Chen S, Yang J, Gong X G, Walsh A, Wei S-H 2010 Phys. Rev. B 81 245204

    [14]

    Rey G, Larramona G, Bourdais S, Choné C, Delatouche B, Jacob A, Dennler G, Siebentritt S 2018 Sol. Energy Mater. Sol. Cells 179 142

    [15]

    Gershon T, Lee Y S, Antunez P, Mankad R, Singh S, Bishop D, Gunawan O, Hopstaken M, Haight R 2016 Adv. Energy Mater. 6 1502468

    [16]

    Gong Y, Qiu R, Niu C, Fu J, Jedlicka E, Giridharagopal R, Zhu Q, Zhou Y, Yan W, Yu S, Jiang J, Wu S, Ginger D S, Huang W, Xin H 2021 Adv. Funct. Mater. 31 2101927

    [17]

    Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R, Gershon T S 2016 J. Chem. Phys. 144

    [18]

    Yuan Z K, Chen S, Xiang H, Gong X G, Walsh A, Park J S, Repins I, Wei S H 2015 Adv. Funct. Mater. 25 6733

    [19]

    Zhang J, Liao J, Shao L X, Xue S W, Wang Z G 2018 Chinese Physics Letters 35 083101

    [20]

    Su Z, Tan J M R, Li X, Zeng X, Batabyal S K, Wong L H 2015 Adv. Energy Mater. 5 1500682

    [21]

    Bao W, Sachuronggui, Qiu F Y 2016 Chin. Phys. B 25 127102

    [22]

    Yan C, Sun K, Huang J, Johnston S, Liu F, Veettil B P, Sun K, Pu A, Zhou F, Stride J A, Green M A, Hao X 2017 ACS Energy Lett. 2 930

    [23]

    Luan H, Yao B, Li Y, Liu R, Ding Z, Zhang Z, Zhao H, Zhang L 2021 J. Alloy. Compd. 876 160160

    [24]

    Su Z, Liang G, Fan P, Luo J, Zheng Z, Xie Z, Wang W, Chen S, Hu J, Wei Y, Yan C, Huang J, Hao X, Liu F 2020 Adv. Mater. 32 2000121

    [25]

    Wang C, Chen S, Yang J H, Lang L, Xiang H-J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411

    [26]

    Shin D, Saparov B, Zhu T, Huhn W P, Blum V, Mitzi D B 2016 Chem. Mater. 28 4771

    [27]

    Ge J, Yu Y, Yan Y 2016 ACS Energy Lett. 1 583

    [28]

    Chen Z, Sun K, Su Z, Liu F, Tang D, Xiao H, Shi L, Jiang L, Hao X, Lai Y 2018 ACS Appl. Energ. Mater. 1 3420

    [29]

    Hong F, Lin W, Meng W, Yan Y 2016 Phys. Chem. Chem. Phys. 18 4828

    [30]

    Xiao Z, Meng W, Li J V, Yan Y 2017 ACS Energy Lett. 2 29

    [31]

    Zhu T, Huhn W P, Wessler G C, Shin D, Saparov B, Mitzi D B, Blum V 2017 Chem. Mater. 29 7868

    [32]

    Teymur B, Kim Y, Huang J, Sun K, Hao X, Mitzi D B 2022 Adv. Energy Mater. 12 2201602

    [33]

    Du Y, Wang S, Tian Q, Zhao Y, Chang X, Xiao H, Deng Y, Chen S, Wu S, Liu S 2021 Adv. Funct. Mater. 31 2010325

    [34]

    Kuo D H, Tsega M 2014 Jpn. J. Appl. Phys. 53 035801

    [35]

    Sun Q, Shi C, Xie W, Li Y, Zhang C, Wu J, Zheng Q, Deng H, Cheng S 2024 Adv. Sci. 11 2306740

    [36]

    Maeda T, Kawabata A, Wada T 2015 Phys. Status Solidi, Conf. 12 631

    [37]

    Chen S, Gong X G, Walsh A, Wei S H 2009 Phys. Rev. B 79 165211

    [38]

    Liao J H, Kanatzidis M G 1993 Chem. Mater. 5 1561

    [39]

    Löken S, Tremel W 1998 Z. Anorg. Allg. Chem. 624 1588

    [40]

    Li J, Guo H Y, Proserpio D M, Sironi A 1995 J. Solid State Chem. 117 247

    [41]

    Chen X, Huang X, Fu A, Li J, Zhang L D, Guo H Y 2000 Chem. Mater. 12 2385

    [42]

    An Y, Baiyin M, Liu X, Ji M, Jia C, Ning G 2004 Inorg. Chem. Commun. 7 114

    [43]

    Mansuetto M F, Ibers J A 1995 IEEE J. Solid-State Circuit 117 30

    [44]

    Pell M A, Ibers J A 2002 J. Am. Chem. Soc. 117 6284

    [45]

    Huang F Q, Ibers J A 2001 Inorg. Chem. 40 2602

    [46]

    Sun B, He J, Zhang X, Bu K, Zheng C, Huang F 2017 J. Alloy. Compd. 725 557

    [47]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1

    [48]

    Hafner J 2008 J. Comput. Chem. 29 2044

    [49]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [50]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [51]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Ángyán J G 2006 J. Chem. Phys. 124

    [52]

    Ong S P, Wang L, Kang B, Ceder G 2008 Chem. Mater. 20 1798

    [53]

    Ong S P, Jain A, Hautier G, Kang B, Ceder G 2010 Electrochem. Commun. 12 427

    [54]

    Wang A, Kingsbury R, McDermott M, Horton M, Jain A, Ong S P, Dwaraknath S, Persson K A 2021 Sci Rep 11 15496

    [55]

    Togo A 2022 J. Phys. Soc. Jpn. 92 012001

    [56]

    Togo A, Chaput L, Tadano T, Tanaka I 2023 J. Phys.: Condens. Matter 35 353001

    [57]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033

    [58]

    Jin H, Zhang H, Li J, Wang T, Wan L, Guo H, Wei Y 2019 J. Phys. Chem. Lett. 10 5211

    [59]

    Singh A K, Montoya J H, Gregoire J M, Persson K A 2019 Nat. Commun. 10 443

    [60]

    Liu Y T, Li X B, Zheng H, Chen N K, Wang X P, Zhang X L, Sun H B, Zhang S 2021 Adv. Funct. Mater. 31 2009803

    [61]

    Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, Ceder G 2016 Sci. Adv. 2 e1600225

    [62]

    Morales García Á, Valero R, Illas F 2017 J. Phys. Chem. C 121 18862

    [63]

    Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401

    [64]

    Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kimerling L C, Alamariu B A 2006 Appl. Phys. Lett. 89

    [65]

    Gan Y, Miao N, Lan P, Zhou J, Elliott S R, Sun Z 2022 J. Am. Chem. Soc. 144 5878

    [66]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [67]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701

    [68]

    Wang V, Tang G, Liu Y C, Wang R T, Mizuseki H, Kawazoe Y, Nara J, Geng W T 2022 J. Phys. Chem. Lett. 13 11581

    [69]

    Zheng F, Tan L Z, Liu S, Rappe A M 2015 Nano Lett. 15 7794

    [70]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461

    [71]

    Yang D, Lv J, Zhao X, Xu Q, Fu Y, Zhan Y, Zunger A, Zhang L 2017 Chem. Mater. 29 524

    [72]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovolt. 5 401

    [73]

    Pandey M, Rasmussen F A, Kuhar K, Olsen T, Jacobsen K W, Thygesen K S 2016 Nano Lett. 16 2234

    [74]

    Wexler R B, Gautam G S, Stechel E B, Carter E A 2021 J. Am. Chem. Soc. 143 13212

  • [1] Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao. Effects of defects on electrical transport properties of anatase TiO2 polycrystalline under high pressure: AC impedance measurement. Acta Physica Sinica, doi: 10.7498/aps.72.20230020
    [2] Zhang Li-Sheng. Photocatalytic properties of gold nanoarrays driven by surface plasmon. Acta Physica Sinica, doi: 10.7498/aps.70.20210424
    [3] Gao Xu-Dong, Yang De-Cao, Wei Wen-Jing, Li Gong-Ping. Simulation study of electron beam irradiation damage to ZnO and TiO2. Acta Physica Sinica, doi: 10.7498/aps.70.20211223
    [4] Li Peng-Cheng, Tang Chong-Yang, Cheng Liang, Hu Yong-Ming, Xiao Xiang-Heng, Chen Wan-Ping. Reduction of CO2 by TiO2 nanoparticles through friction in water. Acta Physica Sinica, doi: 10.7498/aps.70.20210210
    [5] Cui Zong-Yang, Xie Zhong-Shuai, Wang Yao-Jin, Yuan Guo-Liang, Liu Jun-Ming. Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors. Acta Physica Sinica, doi: 10.7498/aps.69.20200287
    [6] Yao Pan-Pan, Wang Ling-Rui, Wang Jia-Xiang, Guo Hai-Zhong. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure. Acta Physica Sinica, doi: 10.7498/aps.69.20200988
    [7] Wang Shao-Xia, Zhao Xu-Cai, Pan Duo-Qiao, Pang Guo-Wang, Liu Chen-Xi, Shi Lei-Qian, Liu Gui-An, Lei Bo-Cheng, Huang Yi-Neng, Zhang Li-Li. First principle study of influence of transition metal (Cr, Mn, Fe, Co) doping on magnetism of TiO2. Acta Physica Sinica, doi: 10.7498/aps.69.20200644
    [8] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, doi: 10.7498/aps.68.20190276
    [9] Wang Chun-Jie, Wang Yue, Gao Chun-Xiao. Grain boundary electrical characteristics for rutile TiO2 under pressure. Acta Physica Sinica, doi: 10.7498/aps.68.20190630
    [10] Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong. Research progress on photocatalytic activity of ferroelectric materials. Acta Physica Sinica, doi: 10.7498/aps.66.167702
    [11] Cheng Cheng, Wang Guo-Dong, Cheng Xiao-Yu. Effects of surface polarization on the bandgap and the absorption-peak wavelength of quantum dot at room temperature. Acta Physica Sinica, doi: 10.7498/aps.66.137802
    [12] Guo Zhao-Long, Zhao Hai-Xin, Zhao Wei. Preparation and characterization of self-cleaning and anti-reflection ZnO-SiO2 nanometric films. Acta Physica Sinica, doi: 10.7498/aps.65.064206
    [13] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, doi: 10.7498/aps.64.147301
    [14] Li Pei-Xin, Feng Ming-Yang, Wu Cai-Ping, Li Shao-Bo, Hou Lei-Tian, Ma Jia-Sai, Yin Chun-Hao. Study on the photocatalytic mechanism of tio2 sensitized by zinc porphyrin. Acta Physica Sinica, doi: 10.7498/aps.64.137601
    [15] Wang Tao, Chen Jian-Feng, Le Yuan. First-principles investigation of iodine doped rutile TiO2(110) surface. Acta Physica Sinica, doi: 10.7498/aps.63.207302
    [16] Liu Fang, Jiang Zhen-Yi. First-principles study on the electronic and optical properties of the (Eu,N)-codoped anatase TiO2 photocatalyst. Acta Physica Sinica, doi: 10.7498/aps.62.193103
    [17] Liang Pei, Wang Le, Xiong Si-Yu, Dong Qian-Min, Li Xiao-Yan. Research on the photocatalysis synergistic effect of Mo-X(B, C, N, O, F) codoped TiO2. Acta Physica Sinica, doi: 10.7498/aps.61.053101
    [18] Ma Hai-Min, Hong Liang, Yin Yi, Xu Jian, Ye Hui. Preparation and property of super-hydrophilic SiO2-TiO2 nano-particle layer. Acta Physica Sinica, doi: 10.7498/aps.60.098105
    [19] Lu Shuo, Zhang Yue, Shang Jia-Xiang. First principles study on structure and property of Si2 CN4(010) surface. Acta Physica Sinica, doi: 10.7498/aps.60.027302
    [20] Meng Qing-Yu, Chen Bao-Jiu, Zhao Xiao-Xia, Yan Bin, Wang Xiao-Jun, Xu Wu. Luminescence intensity of Ag+ doped Y2O3:Eu nanocrystals. Acta Physica Sinica, doi: 10.7498/aps.55.2623
Metrics
  • Abstract views:  52
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  12 August 2024

/

返回文章
返回