Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on photocatalytic activity of ferroelectric materials

Wu Hua-Ping Ling Huan Zhang Zheng Li Yan-Biao Liang Li-Hua Chai Guo-Zhong

Citation:

Research progress on photocatalytic activity of ferroelectric materials

Wu Hua-Ping, Ling Huan, Zhang Zheng, Li Yan-Biao, Liang Li-Hua, Chai Guo-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Photocatalytic technology is considered to be the most promising treatment technology of environmental pollution. In this technology, the electronhole pairs generated by the light-responsive materials under sunlight irradiation will produce the oxidation-reduction reactions with the outside world. At present, there are still a series of problems needed to be solved in the photocatalytic technology, among which the recombination of photogenerated electron-hole pairs is a very important limitation. In recent years, the ferroelectric materials have attracted much attention as a new type of photocatalyst because the spontaneous polarizations of ferroelectric materials are expected to solve the recombination problem of electronhole pairs in the catalytic reaction process. However, there are no systematic analyses of the specific mechanisms for ferroelectric materials. In this paper, we review the effects of ferroelectric polarization of ferroelectric materials on photocatalytic activity from three aspects. Firstly, the polarization can give rise to depolarization field and band bending, thereby affecting the separation rate of electron-hole pairs, and speeding up the transmission rate. Therefore, in the first part, the effects of depolarization field and energy band bending on catalytic activity are summarized. This can conduce to understanding the influence of polarization on catalytic activity more clearly from the intrinsic mechanism. Next, the built-in electric field induced by the polarization of ferroelectric material can increase the separation rate of photogenerated carriers and improve the catalytic activity. However, the static built-in electric field easily leads to free carrier saturation due to the electrostatic shielding, which reduces the carrier separation rate. Thus, in order to eliminate the electrostatic shielding, the effects of three external field including temperature, stress (strain) and electric field, which can regulate polarization, on the separation of electronhole pairs and photocatalytic activity are summarized in the second part. Finally, detailed discussion is presented on how to exert effective external fields, such as strain, temperature, and applied electric field, and how to study the force catalysis or temperature catalysis under the no-light condition according to the piezoelectricity effect and pyroelectric effect of ferroelectric material in the last part.
      Corresponding author: Wu Hua-Ping, wuhuaping@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372280, 11672269, 51475424, 51675485), the Project of Public Welfare of Zhejiang Province Technology Department, China (Grant No. 2016C31041), and the National Key Laboratory Open Foundation of China (Grant No. GZ15205).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Wang Y Z, Hu C 1998 Chin. J. Environ. (in Chinese)[王怡中, 胡春1998环境科学]

    [3]

    Legrini O, Oliveros E, Braun A M 1993 Chem. Rev. 93 671

    [4]

    Cui Y M, Dan D J, Zhu Y R 2001 Chin. J. Inorg. Chem. 17 401 (in Chinese)[崔玉民, 单德杰, 朱亦仁2001无机化学学报17 401]

    [5]

    Hadjiivanov K, Vasileva E, Kantcheva M, Klissursri D 1991 Mater. Chem. Phys. 28 367

    [6]

    Gao Y M, Lee W, Trehan R, Kershaw R, Dwight K, Wold A 1991 Mater. Res. Bull. 26 1247

    [7]

    Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C 2004 Nature Mater. 3 787

    [8]

    Mohan S, Subramanian B 2013 RSC Adv. 3 23737

    [9]

    Wang H C, Lin Y H, Feng Y N, Shen Y 2013 J. Electroceram. 31 271

    [10]

    Humayun M, Zada A, Li Z J, Xie M Z, Zhang X L, Yang Q, Raziq F, Jing L Q 2016 Appl. Catal. B:Environ. 180 219

    [11]

    Giocondi J L, Rohrer G S 2001 Chem. Mater. 13 241

    [12]

    Saito K, Koga K, Kudo A 2011 Dalton T. 40 3909

    [13]

    Shi J, Zhao P, Wang X D 2013 Adv. Mater. 25 916

    [14]

    Zheng Y, Wang B, Woo C H 2009 Acta Mech. Solida Sin. 22 524

    [15]

    Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905

    [16]

    Shuai J L, Liu X X, Yang B 2016 Acta Phys. Sin. 65 118101 (in Chinese)[帅佳丽, 刘向鑫, 杨彪2016物理学报65 118101]

    [17]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2016 Nanoscale 8 1147

    [18]

    Dunn S, Stock M 2012 Mrs Online Proceeding Library 1446

    [19]

    Park S, Lee C W, Kang M G, Kim S, Kim H J, Kwon J E, Park S Y, Kang C Y, Hong K S, Nam K T 2014 Phys. Chem. Chem. Phys. 16 10408

    [20]

    Cui Y F, Briscoe J, Dunn S 2013 Chem. Mater. 25 4215

    [21]

    Li L, Salvador P A, Rohrer G S 2013 Nanoscale 6 24

    [22]

    Dunn S, Shaw C P, Huang Z, Whatmore R W 2002 Nanotechnology 13 456

    [23]

    He H Q, Yin J, Li Y X, Zhang Y, Qiu H S, Xu J B, Xu T, Wang C Y 2014 Appl. Catal. B-Environ. 156 35

    [24]

    Stock M, Dunn S 2012 J. Phys. Chem. C 116 20854

    [25]

    Yang X L, Su X D, Shen M R, Zheng F G, Xin Y, Zhang L, Hua M C, Chen Y J, Harris V G 2012 Adv. Mater. 24 1202

    [26]

    Popescu D G, Husanu M A, Trupina L, Hrib L, Pintilie L, Barinov A, Lizzit S, Lacovig P, Teodorescu C M 2015 Phys. Chem. Chem. Phys. 17 509

    [27]

    Yu H, Wang X H, Hao W C, Li L T 2015 RSC Adv. 5 72410

    [28]

    Yang W, Rodriguez B J, Gruverman A, Nemanich R J 2005 J. Phys. Condens. Mater. 17 1415

    [29]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [30]

    Dunn S, Jones P M, Gallardo D E 2007 J. Am. Chem. Soc. 129 8724

    [31]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [32]

    Yan F, Chen G N, Lu L, Spanier J E 2012 ACS Nano 6 2353

    [33]

    Yang W, Yu Y, Starr M B, Yin X, Li Z, Kvit A, Wang S, Zhao P, Wang X 2015 Nano Lett. 15 7574

    [34]

    Giocondi J L, Rohrer G S 2001 J. Phys. Chem. B 105 8275

    [35]

    Benedek N A, Fennie C J 2013 J. Phys. Chem. C 117 13339

    [36]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2014 Energy Environ. Sci. 7 25

    [37]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2015 Nanoscale 7 10667

    [38]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2013 Energy Environ. Sci. 7 25

    [39]

    Schultz A M, Zhang Y L, Salvador P A, Rohrer G S 2011 ACS Appl. Mater. Inter. 3 1562

    [40]

    Ji W, Yao K, Lim Y F, Liang Y C, Suwardi A 2013 Appl. Phys. Lett. 103 062901

    [41]

    Cui Y F, Goldup S M, Dunn S 2015 RSC Adv. 5 30372

    [42]

    Li L, Rohrer G S, Salvador P A 2012 J. Am. Ceram. Soc. 95 1414

    [43]

    Li L, Zhang Y L, Schultz A M, Liu X, Salvador P A, Rohrer G S 2012 Cat. Sci. Tec. 2 1945

    [44]

    Zhang Y L, Schultz A M, Salvador P A, Rohrer G S 2011 J. Mater. Chem. 21 4168

    [45]

    Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L 2015 Nano Lett. 15 2372

    [46]

    Gutmann E, Benke A, Gerth K, Bottcher H, Mehner E, Klein C, Krause-Buchholz U, Bergmann U, Pompe W, Meyer D C 2012 J. Phys. Chem. C 116 5383

    [47]

    Su R, Shen Y J, Li L L, Zhang D W, Yang G, Gao C B, Yang Y D 2015 Small 11 202

    [48]

    Zhang G H, Zhu J, Jiang G L, Wang B, Zheng Y 2016 Acta Phys. Sin. 65 107701 (in Chinese)[张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃2016物理学报65 107701]

    [49]

    Wu H P, Ma X F, Zhang Z, Zeng J, Wang J, Chai G Z 2016 AIP Adv. 6 015309

    [50]

    Wu H P, Ma X F, Zhang Z, Zhu J, Wang J, Chai G Z 2016 J. Appl. Phys. 119 104421

    [51]

    Wu H P, Chai G Z, Xu B, Li J Q, Zhang Z 2013 Appl. Phys. A 113 155

    [52]

    Lin H, Wu Z, Jia Y M, Li W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Wang Y Z, Hu C 1998 Chin. J. Environ. (in Chinese)[王怡中, 胡春1998环境科学]

    [3]

    Legrini O, Oliveros E, Braun A M 1993 Chem. Rev. 93 671

    [4]

    Cui Y M, Dan D J, Zhu Y R 2001 Chin. J. Inorg. Chem. 17 401 (in Chinese)[崔玉民, 单德杰, 朱亦仁2001无机化学学报17 401]

    [5]

    Hadjiivanov K, Vasileva E, Kantcheva M, Klissursri D 1991 Mater. Chem. Phys. 28 367

    [6]

    Gao Y M, Lee W, Trehan R, Kershaw R, Dwight K, Wold A 1991 Mater. Res. Bull. 26 1247

    [7]

    Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C 2004 Nature Mater. 3 787

    [8]

    Mohan S, Subramanian B 2013 RSC Adv. 3 23737

    [9]

    Wang H C, Lin Y H, Feng Y N, Shen Y 2013 J. Electroceram. 31 271

    [10]

    Humayun M, Zada A, Li Z J, Xie M Z, Zhang X L, Yang Q, Raziq F, Jing L Q 2016 Appl. Catal. B:Environ. 180 219

    [11]

    Giocondi J L, Rohrer G S 2001 Chem. Mater. 13 241

    [12]

    Saito K, Koga K, Kudo A 2011 Dalton T. 40 3909

    [13]

    Shi J, Zhao P, Wang X D 2013 Adv. Mater. 25 916

    [14]

    Zheng Y, Wang B, Woo C H 2009 Acta Mech. Solida Sin. 22 524

    [15]

    Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905

    [16]

    Shuai J L, Liu X X, Yang B 2016 Acta Phys. Sin. 65 118101 (in Chinese)[帅佳丽, 刘向鑫, 杨彪2016物理学报65 118101]

    [17]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2016 Nanoscale 8 1147

    [18]

    Dunn S, Stock M 2012 Mrs Online Proceeding Library 1446

    [19]

    Park S, Lee C W, Kang M G, Kim S, Kim H J, Kwon J E, Park S Y, Kang C Y, Hong K S, Nam K T 2014 Phys. Chem. Chem. Phys. 16 10408

    [20]

    Cui Y F, Briscoe J, Dunn S 2013 Chem. Mater. 25 4215

    [21]

    Li L, Salvador P A, Rohrer G S 2013 Nanoscale 6 24

    [22]

    Dunn S, Shaw C P, Huang Z, Whatmore R W 2002 Nanotechnology 13 456

    [23]

    He H Q, Yin J, Li Y X, Zhang Y, Qiu H S, Xu J B, Xu T, Wang C Y 2014 Appl. Catal. B-Environ. 156 35

    [24]

    Stock M, Dunn S 2012 J. Phys. Chem. C 116 20854

    [25]

    Yang X L, Su X D, Shen M R, Zheng F G, Xin Y, Zhang L, Hua M C, Chen Y J, Harris V G 2012 Adv. Mater. 24 1202

    [26]

    Popescu D G, Husanu M A, Trupina L, Hrib L, Pintilie L, Barinov A, Lizzit S, Lacovig P, Teodorescu C M 2015 Phys. Chem. Chem. Phys. 17 509

    [27]

    Yu H, Wang X H, Hao W C, Li L T 2015 RSC Adv. 5 72410

    [28]

    Yang W, Rodriguez B J, Gruverman A, Nemanich R J 2005 J. Phys. Condens. Mater. 17 1415

    [29]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [30]

    Dunn S, Jones P M, Gallardo D E 2007 J. Am. Chem. Soc. 129 8724

    [31]

    Kalinin S V, Bonnell D A, Alvarez T, Lei X, Hu Z, Ferris J H, Zhang Q, Dunn S 2002 Nano Lett. 2 589

    [32]

    Yan F, Chen G N, Lu L, Spanier J E 2012 ACS Nano 6 2353

    [33]

    Yang W, Yu Y, Starr M B, Yin X, Li Z, Kvit A, Wang S, Zhao P, Wang X 2015 Nano Lett. 15 7574

    [34]

    Giocondi J L, Rohrer G S 2001 J. Phys. Chem. B 105 8275

    [35]

    Benedek N A, Fennie C J 2013 J. Phys. Chem. C 117 13339

    [36]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2014 Energy Environ. Sci. 7 25

    [37]

    Sakar M, Balakumar S, Saravanan P, Bharathkumar S 2015 Nanoscale 7 10667

    [38]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2013 Energy Environ. Sci. 7 25

    [39]

    Schultz A M, Zhang Y L, Salvador P A, Rohrer G S 2011 ACS Appl. Mater. Inter. 3 1562

    [40]

    Ji W, Yao K, Lim Y F, Liang Y C, Suwardi A 2013 Appl. Phys. Lett. 103 062901

    [41]

    Cui Y F, Goldup S M, Dunn S 2015 RSC Adv. 5 30372

    [42]

    Li L, Rohrer G S, Salvador P A 2012 J. Am. Ceram. Soc. 95 1414

    [43]

    Li L, Zhang Y L, Schultz A M, Liu X, Salvador P A, Rohrer G S 2012 Cat. Sci. Tec. 2 1945

    [44]

    Zhang Y L, Schultz A M, Salvador P A, Rohrer G S 2011 J. Mater. Chem. 21 4168

    [45]

    Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L 2015 Nano Lett. 15 2372

    [46]

    Gutmann E, Benke A, Gerth K, Bottcher H, Mehner E, Klein C, Krause-Buchholz U, Bergmann U, Pompe W, Meyer D C 2012 J. Phys. Chem. C 116 5383

    [47]

    Su R, Shen Y J, Li L L, Zhang D W, Yang G, Gao C B, Yang Y D 2015 Small 11 202

    [48]

    Zhang G H, Zhu J, Jiang G L, Wang B, Zheng Y 2016 Acta Phys. Sin. 65 107701 (in Chinese)[张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃2016物理学报65 107701]

    [49]

    Wu H P, Ma X F, Zhang Z, Zeng J, Wang J, Chai G Z 2016 AIP Adv. 6 015309

    [50]

    Wu H P, Ma X F, Zhang Z, Zhu J, Wang J, Chai G Z 2016 J. Appl. Phys. 119 104421

    [51]

    Wu H P, Chai G Z, Xu B, Li J Q, Zhang Z 2013 Appl. Phys. A 113 155

    [52]

    Lin H, Wu Z, Jia Y M, Li W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

  • [1] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] Sun Yu-Ting, Li Ming-Ming, Wang Ling-Rui, Fan Zhen, Guo Er-Jia, Guo Hai-Zhong. Research progress of control of physical properties of topological phase change oxide films by external field. Acta Physica Sinica, 2023, 72(9): 096801. doi: 10.7498/aps.72.20222266
    [3] Yuan Guo-Liang, Wang Chen-Hao, Tang Wen-Bin, Zhang Rui, Lu Xu-Bing. Structure, performance regulation and typical device applications of HfO2-based ferroelectric films. Acta Physica Sinica, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [4] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [5] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [6] Zhang Li-Sheng. Photocatalytic properties of gold nanoarrays driven by surface plasmon. Acta Physica Sinica, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [7] Lin Cui, Bai Gang, Li Wei, Gao Cun-Fa. Strain tuning of negative capacitance in epitaxial PbZr0.2Ti0.8O3 thin films. Acta Physica Sinica, 2021, 70(18): 187701. doi: 10.7498/aps.70.20210810
    [8] Li Fei, Zhang Shu-Jun, Xu Zhuo. Piezoelectricity—An important property for ferroelectrics during last 100 years. Acta Physica Sinica, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [9] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [10] Pei Ming-Hui, Tian Yu, Zhang Jin-Xing. Control of surface structures and functionalities in perovskite-type ferroelectric oxides and their potential applications. Acta Physica Sinica, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [11] Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Physica Sinica, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [12] Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [13] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [14] Cui Zong-Yang, Xie Zhong-Shuai, Wang Yao-Jin, Yuan Guo-Liang, Liu Jun-Ming. Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors. Acta Physica Sinica, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [15] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [16] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [17] Shao Zi-Qiao, Bi Heng-Chang, Xie Xiao, Wan Neng, Sun Li-Tao. Photocatalytic activity of tungsten trioxide/silver oxide composite under visible light irradiation for methylene blue degradation. Acta Physica Sinica, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [18] Li Pei-Xin, Feng Ming-Yang, Wu Cai-Ping, Li Shao-Bo, Hou Lei-Tian, Ma Jia-Sai, Yin Chun-Hao. Study on the photocatalytic mechanism of tio2 sensitized by zinc porphyrin. Acta Physica Sinica, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [19] Zhao Juan, Hu Hui-Fang, Zeng Ya-Ping, Cheng Cai-Ping. Preparation of flower-like CuS hierarchical nanostructures and its visible light photocatalytic performance. Acta Physica Sinica, 2013, 62(15): 158104. doi: 10.7498/aps.62.158104
    [20] Liang Pei, Wang Le, Xiong Si-Yu, Dong Qian-Min, Li Xiao-Yan. Research on the photocatalysis synergistic effect of Mo-X(B, C, N, O, F) codoped TiO2. Acta Physica Sinica, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
Metrics
  • Abstract views:  11827
  • PDF Downloads:  832
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2017
  • Accepted Date:  01 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回