Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on the electronic structure and efficient photocatalytic hydrogen evolution of boron-doped fibrous red phosphorene

LU Yilin DONG Shengjie CUI Fangchao CHEN Dongming MAO Zhuo

Citation:

Theoretical study on the electronic structure and efficient photocatalytic hydrogen evolution of boron-doped fibrous red phosphorene

LU Yilin, DONG Shengjie, CUI Fangchao, CHEN Dongming, MAO Zhuo
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Under the dual challenges of the energy crisis and environmental pollution, the technology of photocatalytic water splitting for hydrogen production has become a research hotspot in clean energy due to its green and sustainable characteristics. As a novel quasi-one-dimensional semiconductor material, fibrous red phosphorene (FRP) exhibits remarkable photocatalytic hydrogen evolution potential, owing to its moderate bandgap, high carrier mobility, and excellent air stability. Based on first-principles calculations, we systematically investigated the regulatory mechanisms of a series of non-metallic elements X (B, C, N, O, Si, S, As, and Se) doping on the electronic structure and catalytic performance of single-layer FRP. The results show that the element X can effectively enhance the hydrogen evolution reaction (HER) activity of single-layer FRP. Among them, four doped systems (S-doped at site 1, B-doped at sites 1/2/5) exhibit excellent catalytic activity for HER. In particular, the B-doped system at site 2 has the most ideal free energy of hydrogen adsorption (ΔGH*), and its overpotential (η = –0.074 V) is comparable to that of the noble metal Pt catalyst. Through the analysis of the electronic structure, it is found that the enhancement of the HER catalytic activity is closely related to the downward shift of the X pz-band center at the adsorption site. There is a direct proportional relationship between ΔGH* and the X pz-band center (R2 ≥ 0.78), indicating that the X pz-band center can serve as a key electronic descriptor for regulating the HER activity. Further verification by calculations using the HSE06 hybrid functional shows that the band edge positions of the B-doped system can span both sides of the redox potential of water, and the light absorption range covers the visible light region, indicating the thermodynamic feasibility and spectral response advantages of this system in the application of photocatalytic overall water splitting. This study provides important theoretical guidance for the design of efficient FRP-based photocatalytic materials based on the non-metallic doping strategy.
  • 图 1  GGA-PBE泛函计算得到的单层FRP的 (a)优化结构俯视图和侧视图, 其中数字1—6表示H吸附顶位, 7表示H吸附的空心位, 8和9为H吸附的桥位; (b)能带结构和态密度; (c)析氢反应的吉布斯自由能图; (d)第一布里渊为区

    Figure 1.  (a) Top and side views of the optimized structure, where the numbers 1–6 represent the top sites for hydrogen adsorption, 7 represents the hollow site for hydrogen adsorption, and 8 and 9 are the bridge sites for hydrogen adsorption; (b) band structure and density of states; (c) Gibbs free energy illustration of hydrogen evolution reaction (HER); (d) the first Brillouin zone of FRP monolayer at the GGA-PBE level.

    图 2  GGA-PBE泛函计算得到的X掺杂单层FRP的(a)缺陷形成能和(b)氢吸附能

    Figure 2.  At the GGA-PBE level, the calculated (a) defect formation energies and (b) hydrogen adsorption energies of X-doped FRP monolayer.

    图 3  GGA-PBE泛函计算得到的掺杂体系在不同掺杂位点下的ΔGH*计算结果 (a)位点1; (b)位点2; (c)位点3; (d)位点4; (e)位点5; (f)位点6

    Figure 3.  At the GGA-PBE level, the calculated H adsorption Gibbs free energy ΔGH* of the doped systems on doping: (a) Site 1; (b) site 2; (c) site 3; (d) site 4; (e) site 5; (f) site 6.

    图 4  GGA-PBE泛函计算得到的掺杂体系在不同掺杂位点下的ΔGH*X pz带中心的相关性 (a)位点1; (b)位点2; (c)位点3; (d)位点4; (e)位点5; (f)位点6

    Figure 4.  At the GGA-PBE level, the ΔGH* as a function of the X pz band center at doping: (a) Site 1; (b) site 2; (c) site 3; (d) site 4; (e) site 5; (f) site 6.

    图 5  GGA-PBE泛函计算得到的掺杂体系在位点1下的投影能带结构图 (a) B掺杂; (b) N掺杂; (c) O掺杂; (d) S掺杂; (e) As掺杂; (f) Se掺杂, 其中蓝色方形的大小代表X p轨道的权重

    Figure 5.  At the GGA-PBE level, orbital-resolved energy band structures of the doped systems at site 1: (a) B doping; (b) N doping; (c) O doping; (d) S doping; (e) As doping; (f) Se doping, the size of the blue square represents the weight of the X p orbital projection.

    图 6  GGA-PBE泛函计算得到的掺杂体系在位点1下的态密度图 (a) B掺杂; (b) N掺杂; (c) O掺杂; (d) S掺杂; (e) As掺杂; (f) Se掺杂

    Figure 6.  At the GGA-PBE level, the density of states of the doped systems for doped system at site 1: (a) B doping; (b) N doping; (c) O doping; (d) S doping; (e) As doping; (d) Se doping.

    图 7  GGA-PBE泛函计算得到的氢吸附于活性位点1时掺杂体系的投影态密度图

    Figure 7.  At the GGA-PBE level, the projected DOS of an H atom adsorbed on the active site 1 of the doped systems.

    图 8  (a) GGA-PBE泛函计算得到的氢分别吸附于活性位点3、位点2和位点6时掺杂体系的投影态密度图; (b) 掺杂体系与吸附物H(Ads)之间成键的示意图

    Figure 8.  (a) At the GGA-PBE level, the projected DOS of an H atom adsorbed on the active site 3, site 2, and site 6 of the doped systems; (b) schematic illustration of bond formation between the doped systems and the adsorbate (Ads).

    图 9  GGA-PBE泛函计算得到的过电位随ΔGH*变化的火山曲线图, 插图为–0.25—0.25 eV区间内过电势与ΔGH*关系放大图

    Figure 9.  At the GGA-PBE level, the volcano curves of overpotential as functions of ΔGH* for all the doped systems, the inset represents the magnification of overpotential as functions of ΔGH* in the range of –0.25–0.25 eV.

    图 10  HSE06杂化泛函计算得到的火山顶四种掺杂体系与单层磷烯(FRP, VP[57]和BP[58])、单层二硫化物(SnS2[57]和MoS2[59])、单层g-C3N4[60]及BiVO4(001)[58]表面的导带和价带的带边位置与水分解氧化还原电位的相对关系, 图中灰色区域表示杂质带.

    Figure 10.  At HSE06 level, the conduction and valence band edge positions and the redox potential of water splitting of the four doped systems at the volcano peak, single-layer phosphorene (FRP, VP[57], and BP[58]), single-layer disulfides (SnS2[57] and MoS2[59]), single-layer g-C3N4[60], and BiVO4 (001)[58] surface. The gray area represents the impurity band.

    图 11  HSE06杂化泛函计算得到的火山顶部4种掺杂体系的光吸收谱(左轴). 彩色区域为AM 1.5G太阳光谱图(右轴)[61]

    Figure 11.  At HSE06 level, optical absorbance spectra of the four doped systems at the volcano peak (left axis). The incident AM 1.5G solar flux spectrum (right axis) [61].

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [2]

    Yin W J, Tang H, Wei S H, Al-Jassim W M, Turner J, Yan Y F 2010 Phys. Rev. B 82 045106Google Scholar

    [3]

    Wei W, Dai Y, Guo M, Yu L, Huang B B 2009 J. Phys. Chem. C 113 15046Google Scholar

    [4]

    陈钱, 匡勤, 谢兆雄 2021 化学学报 79 10Google Scholar

    Chen Q, Kuang Q, Xie Z X 2021 Acta Chim. Sin. 79 10Google Scholar

    [5]

    Zou J, Liao G D, Jiang J Z, Xiong Z G, Bai S S, Wang H T, Wu P X, Zhang P, Li X 2022 Chin. J. Struct. Chem. 41 2201025

    [6]

    Zhang Z J, Zhu Y F, Chen X J, Zhang H J, Wang J 2019 Adv. Mater. 31 1806626Google Scholar

    [7]

    Wang X, Ma M, Zhao X W, Jiang P, Wang Y, Wang J H, Zhang J Y, Zhang F X 2023 Small Struct. 4 2300123Google Scholar

    [8]

    Zhu Y K, Ren J, Zhang X L, Yang D J 2020 Nanoscale 12 13297Google Scholar

    [9]

    Chen Z Y, Zhu Y B, Wang Q M, Liu W Y, Cui Y T, Tao X Y, Zhang D K 2019 Electrochim. Acta 295 230Google Scholar

    [10]

    Bachhuber F, Appen J, Dronskowski R, Schmidt P, Nilges T, Pfitzner A, Weihrich R 2014 Angew. Chem. Int. Ed. 53 11629Google Scholar

    [11]

    Smith J B, Hagaman D, DiGuiseppi D, Schweitzer-Stenner R, Ji H F 2016 Angew. Chem. Int. Ed. 55 11829Google Scholar

    [12]

    Amaral P E M, Nieman G P, Schwenk G R, Jing H, Zhang R, Cerkez E B, Strongin D, Ji H F 2019 Angew. Chem. Int. Ed. 58 6766Google Scholar

    [13]

    Thurn H, Kerbs H 2010 Angew. Chem. Int. Ed. 5 1047

    [14]

    Thurn H, Krebs H 1966 Angew. Chem. Int. Ed. Engl. 5 1047

    [15]

    Tsai H S, Lai C C, Hsiao C H, Medina H, Su T Y, Ouyang H, Chen T H, Liang J H, Chueh Y L 2015 ACS Appl. Mater. Interfaces 7 13723Google Scholar

    [16]

    Shen Z R, Hu Z F, Wang W J, Lee S F, Chan D K L, Li Y C, Gu T, Yu J C 2014 Nanoscale 6 14163Google Scholar

    [17]

    Sun Z J, Chen W J, Zhang B W, Gao L, Tao K Z, Li Q, Sun J L, Yan Q F 2023 Nat. Commun. 14 4398Google Scholar

    [18]

    He S, Liu D M, Zhang G Q, Chu F H, Xu G L, Li G L, Liu J F, Yang Y H, Zhang Y Z 2024 ACS Omega 9 43368Google Scholar

    [19]

    Du L J, Zhao Y C, Wu L L, Hu X R, Yao L D, Wang Y D, Bai X Y, Dai Y Y, Qiao J S, Uddin M G, Li X M, Lahtinen J, Bai X D, Zhang G Y, Ji W, Sun Z P 2021 Nat. Commun. 12 4822Google Scholar

    [20]

    Chu F H, Zhou W C, Zhou R K, Li S Y, Liu D M, Zheng Z L, Li J Z, Zhang Y Z 2022 J. Phys. Chem. Lett. 13 10778Google Scholar

    [21]

    Lu Y L, Dong S J, Li J S, Wu Y Q, Wang L, Zhao H 2020 Phys. Chem. Chem. Phys. 22 13713Google Scholar

    [22]

    Hu Z F, Guo W Q 2021 Small 17 2008004Google Scholar

    [23]

    Wang X H, An C Y, Zhang S J, Wang S S, Li J Z, Zhu Y K 2024 Sep. Purif. Technol. 340 126733Google Scholar

    [24]

    Dai S H, Zhou W, Liu Y Y, Lu Y L, Sun L L, Wu P 2018 Appl. Surf. Sci. 448 281Google Scholar

    [25]

    韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华 2023 物理学报 72 197101Google Scholar

    Han J N, Huang J M, Cao S G, Li Z H, Zhang Z H 2023 Acta Phys. Sin. 72 197101Google Scholar

    [26]

    Zhang L, Liu Y Q, Xu Z Y, Gao G Y 2023 2D Mater. 10 045005

    [27]

    Zhang L, Liu Y Q, Wu M H, Gao G Y 2025 Adv. Funct. Mater. 35 2417857Google Scholar

    [28]

    黄广峥, 李坤玮, 罗艳楠, 张强, 潘远龙, 高洪 2024 化学学报 82 314Google Scholar

    Huang G Z, Li K W, Luo Y N, Zhang Q, Pan Y L, Gao H 2024 Acta Chim. Sin. 82 314Google Scholar

    [29]

    Liu H H, Cao X R, Ding L X, Wang H H 2022 Adv. Funct. Mater. 32 2111161Google Scholar

    [30]

    Hu H G, Shi Z, Khan K, Cao R, Liang W Y, Tareen A K, Zhang Y, Huang W C, Guo Z N, Luo X L, Zhang H 2020 J. Mater. Chem. A 8 5421Google Scholar

    [31]

    Lu Y L, Dong S J, He H Y, Li J S, Wang X Y, Zhao H, Wu P 2019 Comput. Mater. Sci. 163 209Google Scholar

    [32]

    卢一林, 董盛杰, 崔方超, 张开成, 刘春梅, 李杰森, 毛卓 2024 物理学报 73 016301Google Scholar

    Lu Y L, Dong S J, Cui F C, Zhang K C, Liu C M, Li J S, Mao Z 2024 Acta Phys. Sin. 73 016301Google Scholar

    [33]

    Lu Y L, Dong S J, Cui F C, Zhang K C, Liu C M, Li J S, Mao Z 2025 Int. J. Hydrogen Energy 101 222Google Scholar

    [34]

    Lu Y L, Dong S J, He H Y, Li J S, Wu X Y, Zhao H 2022 Physica E 138 115068Google Scholar

    [35]

    He Q Y, Wang D D, Qiu H X, Si N, Yuan Q L, Wang R, Liu S Y, Wang Y M 2024 ACS Nano 19 427

    [36]

    Zhao X W, Gu M Y, Zhai R, Zhang Y H, Jin M T, Wang Y H, Li J F, Cheng Y H, Xiao B, Zhang J Y 2023 Small 19 2302859Google Scholar

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 R558Google Scholar

    [38]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [39]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [42]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [43]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [44]

    Ruck M, Hoppe D, Wahl B, Simon P, Wang Y, Seifert G 2005 Angew. Chem. Int Ed. 44 7616Google Scholar

    [45]

    Zhang B B, Mao Z, Wu P 2021 Appl. Surf. Sci. 565 150546Google Scholar

    [46]

    Casolo S, Lovvik O M, Martinazzo R, Tantardini G F 2009 J. Chem. Phys. 130 10

    [47]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 992Google Scholar

    [48]

    Eftekhari A 2017 Int. J. Hydrogen Energy 42 11053Google Scholar

    [49]

    Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. Electrochem. Soc. 152 J23Google Scholar

    [50]

    Zhao Y M, Ma D W, Zhang J, Lu Z S, Wang Y X 2019 Phys. Chem. Chem. Phys. 21 20432Google Scholar

    [51]

    Yuan J, Wang C, Liu Y Y, Wu P, Zhou W 2018 J. Phys. Chem. C 123 526

    [52]

    Zhou S, Yang X W, Pei W, Liu N S, Zhao J J 2018 Nanoscale 10 10876Google Scholar

    [53]

    Pei W, Zhou S, Bai Y Z, Zhao J J 2018 Carbon 133 260Google Scholar

    [54]

    Yuan J, Wang C, Liu Y Y, Wu P, Zhou W 2018 J. Phys. Chem. C 123 526

    [55]

    Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005 J. Electrochem. Soc. 152 J23Google Scholar

    [56]

    Tsai C, Abild-Pedersen F, Nørskov J K 2014 Nano Lett. 14 1381Google Scholar

    [57]

    卢一林, 董盛杰, 崔方超, 薄婷婷, 毛卓 2025 化学学报 83 377Google Scholar

    Lu Y L, Dong S J, Cui F C, Bo T T, Mao Z 2025 Acta Chim. Sin. 83 377Google Scholar

    [58]

    Chen Y X, Shi T T, Liu P Y, Ma X G, Shui L L, Shang C Q, Chen Z H, Wang X, Kempa K, Zhou G F 2018 J. Mater. Chem. A 6 19167Google Scholar

    [59]

    Liao J M, Sa B S, Zhou J, Ahuja R, Sun Z M 2014 J. Phys. Chem. C 118 17594Google Scholar

    [60]

    Liu J J, Cheng B, Yu J G 2016 Phys. Chem. Chem. Phys. 18 31175Google Scholar

    [61]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

  • [1] WANG Kun, XU Heyan, ZHENG Xiong, ZHANG Haifeng. First-principles study of electronic structure, elastic properties and hardness of Cr-doped CuZr2. Acta Physica Sinica, doi: 10.7498/aps.74.20250264
    [2] HU Junping, LIANG Sisi, DUAN Huixian, TIAN Juncheng, CHEN Shuo, DAI Boyang, HUANG Chunlai, LIU Yu, LYU Ying, WAN Lijia, OUYANG Chuying. Theoretical prediction of nitrogen-oxygen-anchored monatomic copper-doped graphene as an anode for alkaline ion batteries. Acta Physica Sinica, doi: 10.7498/aps.74.20241461
    [3] WAN Yuwei, WANG Rui, ZHOU Wenquan, WANG Yiping, CAI Yanan, WANG Chang. First-principles study of NH3 adsorption on Ag- and Cu doped graphene oxide. Acta Physica Sinica, doi: 10.7498/aps.74.20241737
    [4] Lei Xue-Ling, Zhu Ju-Yong, Ke Qiang, Ouyang Chu-Ying. First-principles study of catalytic mechanism of boron-doped graphene oxide on oxygen evolution reaction of lithium peroxide. Acta Physica Sinica, doi: 10.7498/aps.73.20240197
    [5] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, doi: 10.7498/aps.70.20201287
    [6] Wang Yi-Fei, Li Xiao-Wei. First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta Physica Sinica, doi: 10.7498/aps.67.20172220
    [7] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, doi: 10.7498/aps.67.20172356
    [8] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, doi: 10.7498/aps.67.20172290
    [9] Li Cong, Zheng You-Jin, Fu Si-Nian, Jiang Hong-Wei, Wang Dan. First-principle study of the magnetism and photocatalyticactivity of RE(La/Ce/Pr/Nd) doping anatase TiO2. Acta Physica Sinica, doi: 10.7498/aps.65.037102
    [10] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, doi: 10.7498/aps.65.056801
    [11] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, doi: 10.7498/aps.64.087101
    [12] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, doi: 10.7498/aps.64.207101
    [13] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, doi: 10.7498/aps.63.163101
    [14] Wang Tao, Chen Jian-Feng, Le Yuan. First-principles investigation of iodine doped rutile TiO2(110) surface. Acta Physica Sinica, doi: 10.7498/aps.63.207302
    [15] Zhang Xue-Jun, Zhang Guang-Fu, Jin Hui-Xia, Zhu Liang-Di, Liu Qing-Ju. First-principles study on anatase TiO2 photocatalyst codoped with nitrogen and cobalt. Acta Physica Sinica, doi: 10.7498/aps.62.017102
    [16] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, doi: 10.7498/aps.62.187102
    [17] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, doi: 10.7498/aps.62.047101
    [18] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, doi: 10.7498/aps.62.037103
    [19] Liang Pei, Wang Le, Xiong Si-Yu, Dong Qian-Min, Li Xiao-Yan. Research on the photocatalysis synergistic effect of Mo-X(B, C, N, O, F) codoped TiO2. Acta Physica Sinica, doi: 10.7498/aps.61.053101
    [20] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, doi: 10.7498/aps.58.5624
Metrics
  • Abstract views:  495
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2025
  • Accepted Date:  27 May 2025
  • Available Online:  18 June 2025
  • /

    返回文章
    返回