Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical Study on the Electronic Structure and Efficient Photocatalytic Hydrogen Evolution of Boron-Doped Fibrous Red Phosphorene

Lu Yi-Lin Dong Shengjie Cui Fangchao Chen Dongming Mao Zhuo

Citation:

Theoretical Study on the Electronic Structure and Efficient Photocatalytic Hydrogen Evolution of Boron-Doped Fibrous Red Phosphorene

Lu Yi-Lin, Dong Shengjie, Cui Fangchao, Chen Dongming, Mao Zhuo
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Under the dual challenges of the energy crisis and environmental pollution, the technology of photocatalytic water splitting for hydrogen production has become a research hotspot in clean energy due to its green and sustainable characteristics. As a novel quasi-one-dimensional semiconductor material, fibrous red phosphorene (FRP) exhibits remarkable photocatalytic hydrogen evolution potential, owing to its moderate bandgap, high carrier mobility, and excellent air stability. Based on first-principles calculations, we systematically investigated the regulatory mechanisms of a series of non-metallic elements X (B, C, N, O, Si, S, As, and Se) doping on the electronic structure and catalytic performance of single-layer FRP. The results show that the element X can effectively enhance the hydrogen evolution reaction (HER) activity of single-layer FRP. Among them, four doped systems (S-doped at site 1, B-doped at sites 1/2/5) exhibit excellent catalytic activity for HER. In particular, the B-doped system at site 2 has the most ideal free energy of hydrogen adsorption (ΔGH*), and its overpotential (η = -0.074 V) is comparable to that of the noble metal Pt catalyst. Through the analysis of the electronic structure, it is found that the enhancement of the HER catalytic activity is closely related to the downward shift of the X pz-band center at the adsorption site. There is a direct proportional relationship between ΔGH* and the X pz-band center (R2 ≥ 0.78), indicating that the X pz-band center can serve as a key electronic descriptor for regulating the HER activity. Further verification by calculations using the HSE06 hybrid functional shows that the band edge positions of the B-doped system can span both sides of the redox potential of water, and the light absorption range covers the visible light region, indicating the thermodynamic feasibility and spectral response advantages of this system in the application of photocatalytic overall water splitting. This study provides important theoretical guidance for the design of efficient FRP-based photocatalytic materials based on the non-metallic doping strategy.
  • [1]

    Fujishima A, Honda K 1972Nature 238 37

    [2]

    Yin W J, Tang H, Wei S H, et al 2010Phys. Rev. B 82045106

    [3]

    Wei W, Dai Y, Guo M, Yu L, Huang B 2009J. Phys. Chem. C 113 15046

    [4]

    Qian C, Qin K, Zhaoxiong X 2021Acta Chim. Sin. 79 10(in Chinese). (陈钱, 匡勤, 谢兆雄2021化学学报79 10.)

    [5]

    Zou J, Liao G, Jiang J, Xiong Z, Bai S, Wang H, Wu P, Zhang P, Li X 2022Chin. J. Struct. Chem. 41 25

    [6]

    Zhang Z, Zhu Y, Chen X, Zhang H, Wang J 2019Adv. Mater. 31 1806626

    [7]

    Wang X, Ma M, Zhao X, Jiang P, Wang Y, Wang J, Zhang J, Zhang F 2023Small Struct. 4 2300123

    [8]

    Zhu Y, Ren J, Zhang X, Yang D 2020Nanoscale 12 13297

    [9]

    Chen Z, Zhu Y, Wang Q, Liu W, Cui Y, Tao X, Zhang D 2019Electrochim. Acta 295 230

    [10]

    Bachhuber F, Appen J, Dronskowski R, Schmidt P, Nilges T, Pfitzner A, Weihrich R 2014Angew. Chem. Int. Ed. 53 11629

    [11]

    Smith J B, Hagaman D, DiGuiseppi D, Schweitzer-Stenner R, Ji H F 2016Angew. Chem. Int. Ed. 55 11829

    [12]

    Amaral P E M, Nieman G P, Schwenk G R, Jing H, Zhang R, Cerkez E B, Strongin D, Ji H F 2019Angew. Chem. Int. Ed. 58 6766

    [13]

    Thurn H, Kerbs H 2010Angew. Chem. Int. Ed. 5 1047

    [14]

    Thurn H, Krebs H 1966Angew. Chem. Int. Ed. Engl. 5 1047

    [15]

    Tsai H-S, Lai C-C, Hsiao C-H, Medina H, Su T-Y, Ouyang H, Chen T-H, Liang J-H, Chueh Y-L 2015ACS Appl. Mater. Interfaces 7 13723

    [16]

    Shen Z, Hu Z, Wang W, Lee S F, Chan D K L, Li Y, Gu T, Yu J C 2014Nanoscale 6 14163

    [17]

    Sun Z, Chen W, Zhang B, Gao L, Tao K, Li Q, Sun J L, Yan Q 2023Nature Communications 144398

    [18]

    He S, Liu D, Zhang G, Chu F, Xu G, Li G, Liu J, Yang Y, Zhang Y 2024ACS omega 9 43368

    [19]

    Du L, Zhao Y, Wu L, Hu X, Yao L, Wang Y, Bai X, Dai Y, Qiao J, Uddin M G, Li X 2021Nature Communications 12 4822

    [20]

    Chu F, Zhou W, Zhou R, Li S, Liu D, Zheng Z, Li J, Zhang Y 2022J. Phys. Chem. Lett. 13 10778

    [21]

    Lu Y L, Dong S, Li J, Wu Y, Wang L, Zhao H 2020Phys. Chem. Chem. Phys. 2213713

    [22]

    Hu Z, Guo W 2021Small 17 2008004

    [23]

    Wang X, An C, Zhang S, Wang S, Li J, Zhu Y 2024Separation and Purification Technology 340126733

    [24]

    Dai S, Zhou W, Liu Y, Lu Y L, Sun L, Wu P 2018Appl. Surf. Sci. 448 281

    [25]

    Han J N, Huang J M, Cao S G, Li Z H, Zhang Z. H 2023 Acta Phys. Sin. 72 19(in Chinese). (韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华2023物理学报, 72 19.)

    [26]

    Zhang L, Liu Y, Xu Z, Gao G 20232D Mater. 10 045005

    [27]

    Zhang L, Liu Y, Wu M, Gao G 2025Adv. Funct. Mater. 35 2417857

    [28]

    Huang G, Li K, Luo Y, Zhang Q, Pan Y, Gao H 2024Acta Chim. Sinica 82 314(in Chinese). (黄广峥, 李坤玮, 罗艳楠, 张强, 潘远龙, 高洪2024化学学报82 314.)

    [29]

    Liu H, Cao X, Ding L X, Wang H 2022Adv. Funct. Mater. 32 2111161

    [30]

    Hu H, Shi Z, Khan K, Cao R, Liang W, Tareen A K, Zhang Y, Huang W, Guo Z, Luo X, Zhang H 2020J. Mater. Chem. A 8 5421

    [31]

    Lu Y L, Dong S, He H, Li J, Wang X, Zhao H, Wu P 2019Comput. Mater. Sci. 163 209

    [32]

    Lu Y L, Dong S J, Cui F C, Zhang K C, Liu C M, Li J S, Zhuo M 2024 Acta Phys. Sin. 73 016301(in Chinese). (卢一林, 董盛杰, 崔方超, 张开成, 刘春梅, 李杰森, 毛卓2024物理学报73 016301)

    [33]

    Lu Y L, Dong S, Cui F, Zhang K, Liu C, Li J, Mao Z 2025Int. J. Hydrogen Energy 101 222-233

    [34]

    Lu Y L, Dong S, Li J, Wu Y, Zhao H 2022Physica E 138115068

    [35]

    He Q, Wang D D, Qiu H, Si N, Yuan Q, Wang R, Liu S, Wang Y 2024ACS nano 19427

    [36]

    Zhao X, Gu M, Zhai R, Zhang Y, Jin M, Wang Y, Li J, Cheng Y, Xiao B, Zhang J 2023Small 19 2302859

    [37]

    Kresse G, Hafner J 1993Phys. Rev. B 47 R558

    [38]

    Kresse G, Hafner J 1994Phys. Rev. B 4914251

    [39]

    Blochl P E 1994Phys. Rev. B 50 17953

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 773865.

    [41]

    Monkhorst H J, Pack J D 1976Phys. Rev. B 135188

    [42]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [43]

    Heyd J, Scuseria G E, Ernzerhof M 2003J. Chem. Phys. 118 8207

    [44]

    Ruck M, Hoppe D, Wahl B, Simon P, Wang Y, Seifert G 2005Angew. Chem. Int Ed. 447616

    [45]

    Zhang B, Mao Z, Wu P 2021Appl. Surf. Sci. 565 150546

    [46]

    Casolo S, Lovvik O M, Martinazzo R, Tantardini G F 2009J. Chem. Phys. 130 10

    [47]

    Kulish V V, Malyi O I, Persson C, Wu P 2015Phys. Chem. Chem. Phys. 17 992

    [48]

    Eftekhari A 2017Int. J. Hydrogen Energy 42 11053

    [49]

    Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005J. Electrochem. Soc. 152 J23

    [50]

    Zhao Y, Ma D, Zhang J, Lu Z, Wang Y 2019Phys. Chem. Chem. Phys. 21 20432

    [51]

    Yuan J, Wang C, Liu Y, Wu P, Zhou W 2018J Phys Chem C 123 526

    [52]

    Zhou S, Yang X, Pei W, Liu N, Zhao J 2018Nanoscale 1010876

    [53]

    Pei W, Zhou S, Bai Y, Zhao J 2018Carbon 133 260

    [54]

    Yuan J, Wang C, Liu Y, Wu P, Zhou W 2018 J Phys Chem C 123 526

    [55]

    Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005J Electrochem Soc 152J23

    [56]

    Tsai C, Abild-Pedersen F, Nørskov J K 2014Nano Lett 141381

    [57]

    Lu Y L, Dong S J, Cui F C, Bo T T, Mao Z 2025Acta Chim. Sinica 83 377(in Chinese). (卢一林, 董盛杰, 崔方超, 薄婷婷, 毛卓2025化学学报83 377)

    [58]

    Chen Y, Shi T, Liu P, Ma X, Shui L, Shang C, Chen Z, Wang X, Kempa K, Zhou G 2018 J. Mater. Chem. A 6 19167

    [59]

    Liao J, Sa B, Zhou J, Ahuja R, Sun Z 2014J. Phys. Chem. C 118 17594

    [60]

    Liu J, Cheng B, Yu J 2016Phys. Chem. Chem. Phys. 18 31175

    [61]

    Kresse G, Hafner J 1994Phys Rev B 4914251

  • [1] WANG Kun, XU Heyan, ZHENG Xiong, ZHANG Haifeng. First-principles study of, electronic structure, elastic properties and hardness of Cr-doped CuZr2. Acta Physica Sinica, doi: 10.7498/aps.74.20250264
    [2] HU Junping, LIANG Sisi, DUAN Huixian, TIAN Juncheng, CHEN Shuo, DAI Boyang, HUANG Chunlai, LIU Yu, LYU Ying, WAN Lijia, OUYANG Chuying. Theoretical prediction of nitrogen-oxygen-anchored monatomic copper-doped graphene as an anode for alkaline ion batteries. Acta Physica Sinica, doi: 10.7498/aps.74.20241461
    [3] WAN Yuwei, WANG Rui, ZHOU Wenquan, WANG Yiping, CAI Yanan, WANG Chang. First-principles study of NH3 adsorption on Ag- and Cu doped graphene oxide. Acta Physica Sinica, doi: 10.7498/aps.74.20241737
    [4] Lei Xue-Ling, Zhu Ju-Yong, Ke Qiang, Ouyang Chu-Ying. First-principles study of catalytic mechanism of boron-doped graphene oxide on oxygen evolution reaction of lithium peroxide. Acta Physica Sinica, doi: 10.7498/aps.73.20240197
    [5] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, doi: 10.7498/aps.70.20201287
    [6] Wang Yi-Fei, Li Xiao-Wei. First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta Physica Sinica, doi: 10.7498/aps.67.20172220
    [7] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, doi: 10.7498/aps.67.20172356
    [8] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, doi: 10.7498/aps.67.20172290
    [9] Li Cong, Zheng You-Jin, Fu Si-Nian, Jiang Hong-Wei, Wang Dan. First-principle study of the magnetism and photocatalyticactivity of RE(La/Ce/Pr/Nd) doping anatase TiO2. Acta Physica Sinica, doi: 10.7498/aps.65.037102
    [10] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, doi: 10.7498/aps.65.056801
    [11] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, doi: 10.7498/aps.64.087101
    [12] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, doi: 10.7498/aps.64.207101
    [13] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, doi: 10.7498/aps.63.163101
    [14] Wang Tao, Chen Jian-Feng, Le Yuan. First-principles investigation of iodine doped rutile TiO2(110) surface. Acta Physica Sinica, doi: 10.7498/aps.63.207302
    [15] Zhang Xue-Jun, Zhang Guang-Fu, Jin Hui-Xia, Zhu Liang-Di, Liu Qing-Ju. First-principles study on anatase TiO2 photocatalyst codoped with nitrogen and cobalt. Acta Physica Sinica, doi: 10.7498/aps.62.017102
    [16] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, doi: 10.7498/aps.62.187102
    [17] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, doi: 10.7498/aps.62.047101
    [18] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, doi: 10.7498/aps.62.037103
    [19] Liang Pei, Wang Le, Xiong Si-Yu, Dong Qian-Min, Li Xiao-Yan. Research on the photocatalysis synergistic effect of Mo-X(B, C, N, O, F) codoped TiO2. Acta Physica Sinica, doi: 10.7498/aps.61.053101
    [20] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, doi: 10.7498/aps.58.5624
Metrics
  • Abstract views:  76
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  18 June 2025

/

返回文章
返回