-
Under the dual challenges of the energy crisis and environmental pollution, the technology of photocatalytic water splitting for hydrogen production has become a research hotspot in clean energy due to its green and sustainable characteristics. As a novel quasi-one-dimensional semiconductor material, fibrous red phosphorene (FRP) exhibits remarkable photocatalytic hydrogen evolution potential, owing to its moderate bandgap, high carrier mobility, and excellent air stability. Based on first-principles calculations, we systematically investigated the regulatory mechanisms of a series of non-metallic elements X (B, C, N, O, Si, S, As, and Se) doping on the electronic structure and catalytic performance of single-layer FRP. The results show that the element X can effectively enhance the hydrogen evolution reaction (HER) activity of single-layer FRP. Among them, four doped systems (S-doped at site 1, B-doped at sites 1/2/5) exhibit excellent catalytic activity for HER. In particular, the B-doped system at site 2 has the most ideal free energy of hydrogen adsorption (ΔGH*), and its overpotential (η = -0.074 V) is comparable to that of the noble metal Pt catalyst. Through the analysis of the electronic structure, it is found that the enhancement of the HER catalytic activity is closely related to the downward shift of the X pz-band center at the adsorption site. There is a direct proportional relationship between ΔGH* and the X pz-band center (R2 ≥ 0.78), indicating that the X pz-band center can serve as a key electronic descriptor for regulating the HER activity. Further verification by calculations using the HSE06 hybrid functional shows that the band edge positions of the B-doped system can span both sides of the redox potential of water, and the light absorption range covers the visible light region, indicating the thermodynamic feasibility and spectral response advantages of this system in the application of photocatalytic overall water splitting. This study provides important theoretical guidance for the design of efficient FRP-based photocatalytic materials based on the non-metallic doping strategy.
-
Keywords:
- fibrous red phosphorene /
- doping /
- photocatalysis /
- first-principles
-
[1] Fujishima A, Honda K 1972Nature 238 37
[2] Yin W J, Tang H, Wei S H, et al 2010Phys. Rev. B 82045106
[3] Wei W, Dai Y, Guo M, Yu L, Huang B 2009J. Phys. Chem. C 113 15046
[4] Qian C, Qin K, Zhaoxiong X 2021Acta Chim. Sin. 79 10(in Chinese). (陈钱, 匡勤, 谢兆雄2021化学学报79 10.)
[5] Zou J, Liao G, Jiang J, Xiong Z, Bai S, Wang H, Wu P, Zhang P, Li X 2022Chin. J. Struct. Chem. 41 25
[6] Zhang Z, Zhu Y, Chen X, Zhang H, Wang J 2019Adv. Mater. 31 1806626
[7] Wang X, Ma M, Zhao X, Jiang P, Wang Y, Wang J, Zhang J, Zhang F 2023Small Struct. 4 2300123
[8] Zhu Y, Ren J, Zhang X, Yang D 2020Nanoscale 12 13297
[9] Chen Z, Zhu Y, Wang Q, Liu W, Cui Y, Tao X, Zhang D 2019Electrochim. Acta 295 230
[10] Bachhuber F, Appen J, Dronskowski R, Schmidt P, Nilges T, Pfitzner A, Weihrich R 2014Angew. Chem. Int. Ed. 53 11629
[11] Smith J B, Hagaman D, DiGuiseppi D, Schweitzer-Stenner R, Ji H F 2016Angew. Chem. Int. Ed. 55 11829
[12] Amaral P E M, Nieman G P, Schwenk G R, Jing H, Zhang R, Cerkez E B, Strongin D, Ji H F 2019Angew. Chem. Int. Ed. 58 6766
[13] Thurn H, Kerbs H 2010Angew. Chem. Int. Ed. 5 1047
[14] Thurn H, Krebs H 1966Angew. Chem. Int. Ed. Engl. 5 1047
[15] Tsai H-S, Lai C-C, Hsiao C-H, Medina H, Su T-Y, Ouyang H, Chen T-H, Liang J-H, Chueh Y-L 2015ACS Appl. Mater. Interfaces 7 13723
[16] Shen Z, Hu Z, Wang W, Lee S F, Chan D K L, Li Y, Gu T, Yu J C 2014Nanoscale 6 14163
[17] Sun Z, Chen W, Zhang B, Gao L, Tao K, Li Q, Sun J L, Yan Q 2023Nature Communications 144398
[18] He S, Liu D, Zhang G, Chu F, Xu G, Li G, Liu J, Yang Y, Zhang Y 2024ACS omega 9 43368
[19] Du L, Zhao Y, Wu L, Hu X, Yao L, Wang Y, Bai X, Dai Y, Qiao J, Uddin M G, Li X 2021Nature Communications 12 4822
[20] Chu F, Zhou W, Zhou R, Li S, Liu D, Zheng Z, Li J, Zhang Y 2022J. Phys. Chem. Lett. 13 10778
[21] Lu Y L, Dong S, Li J, Wu Y, Wang L, Zhao H 2020Phys. Chem. Chem. Phys. 2213713
[22] Hu Z, Guo W 2021Small 17 2008004
[23] Wang X, An C, Zhang S, Wang S, Li J, Zhu Y 2024Separation and Purification Technology 340126733
[24] Dai S, Zhou W, Liu Y, Lu Y L, Sun L, Wu P 2018Appl. Surf. Sci. 448 281
[25] Han J N, Huang J M, Cao S G, Li Z H, Zhang Z. H 2023 Acta Phys. Sin. 72 19(in Chinese). (韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华2023物理学报, 72 19.)
[26] Zhang L, Liu Y, Xu Z, Gao G 20232D Mater. 10 045005
[27] Zhang L, Liu Y, Wu M, Gao G 2025Adv. Funct. Mater. 35 2417857
[28] Huang G, Li K, Luo Y, Zhang Q, Pan Y, Gao H 2024Acta Chim. Sinica 82 314(in Chinese). (黄广峥, 李坤玮, 罗艳楠, 张强, 潘远龙, 高洪2024化学学报82 314.)
[29] Liu H, Cao X, Ding L X, Wang H 2022Adv. Funct. Mater. 32 2111161
[30] Hu H, Shi Z, Khan K, Cao R, Liang W, Tareen A K, Zhang Y, Huang W, Guo Z, Luo X, Zhang H 2020J. Mater. Chem. A 8 5421
[31] Lu Y L, Dong S, He H, Li J, Wang X, Zhao H, Wu P 2019Comput. Mater. Sci. 163 209
[32] Lu Y L, Dong S J, Cui F C, Zhang K C, Liu C M, Li J S, Zhuo M 2024 Acta Phys. Sin. 73 016301(in Chinese). (卢一林, 董盛杰, 崔方超, 张开成, 刘春梅, 李杰森, 毛卓2024物理学报73 016301)
[33] Lu Y L, Dong S, Cui F, Zhang K, Liu C, Li J, Mao Z 2025Int. J. Hydrogen Energy 101 222-233
[34] Lu Y L, Dong S, Li J, Wu Y, Zhao H 2022Physica E 138115068
[35] He Q, Wang D D, Qiu H, Si N, Yuan Q, Wang R, Liu S, Wang Y 2024ACS nano 19427
[36] Zhao X, Gu M, Zhai R, Zhang Y, Jin M, Wang Y, Li J, Cheng Y, Xiao B, Zhang J 2023Small 19 2302859
[37] Kresse G, Hafner J 1993Phys. Rev. B 47 R558
[38] Kresse G, Hafner J 1994Phys. Rev. B 4914251
[39] Blochl P E 1994Phys. Rev. B 50 17953
[40] Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 773865.
[41] Monkhorst H J, Pack J D 1976Phys. Rev. B 135188
[42] Grimme S 2006 J. Comput. Chem. 27 1787
[43] Heyd J, Scuseria G E, Ernzerhof M 2003J. Chem. Phys. 118 8207
[44] Ruck M, Hoppe D, Wahl B, Simon P, Wang Y, Seifert G 2005Angew. Chem. Int Ed. 447616
[45] Zhang B, Mao Z, Wu P 2021Appl. Surf. Sci. 565 150546
[46] Casolo S, Lovvik O M, Martinazzo R, Tantardini G F 2009J. Chem. Phys. 130 10
[47] Kulish V V, Malyi O I, Persson C, Wu P 2015Phys. Chem. Chem. Phys. 17 992
[48] Eftekhari A 2017Int. J. Hydrogen Energy 42 11053
[49] Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005J. Electrochem. Soc. 152 J23
[50] Zhao Y, Ma D, Zhang J, Lu Z, Wang Y 2019Phys. Chem. Chem. Phys. 21 20432
[51] Yuan J, Wang C, Liu Y, Wu P, Zhou W 2018J Phys Chem C 123 526
[52] Zhou S, Yang X, Pei W, Liu N, Zhao J 2018Nanoscale 1010876
[53] Pei W, Zhou S, Bai Y, Zhao J 2018Carbon 133 260
[54] Yuan J, Wang C, Liu Y, Wu P, Zhou W 2018 J Phys Chem C 123 526
[55] Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U 2005J Electrochem Soc 152J23
[56] Tsai C, Abild-Pedersen F, Nørskov J K 2014Nano Lett 141381
[57] Lu Y L, Dong S J, Cui F C, Bo T T, Mao Z 2025Acta Chim. Sinica 83 377(in Chinese). (卢一林, 董盛杰, 崔方超, 薄婷婷, 毛卓2025化学学报83 377)
[58] Chen Y, Shi T, Liu P, Ma X, Shui L, Shang C, Chen Z, Wang X, Kempa K, Zhou G 2018 J. Mater. Chem. A 6 19167
[59] Liao J, Sa B, Zhou J, Ahuja R, Sun Z 2014J. Phys. Chem. C 118 17594
[60] Liu J, Cheng B, Yu J 2016Phys. Chem. Chem. Phys. 18 31175
[61] Kresse G, Hafner J 1994Phys Rev B 4914251
Metrics
- Abstract views: 76
- PDF Downloads: 2
- Cited By: 0