-
As a typical material of two-dimensional semiconductor transition metal chalcogenides, MoS2 has excellent physical properties such as tunable band gap. Therefore, MoS2 moirésuperlattice is an ideal system for investigating the electron transport in condensed matter and the design of optoelectronic devices. On the other hand, interlayer conductance serves as a significant indicator for analyzing coupling effects in moiré superlattice. Here, in order to clarify the influence of tunable band gap on the interlayer conductance, we have developed a tunneling theory for calculating the interlayer conductance of MoS2 moiré superlattices by using optical methods in diffraction physics. In this theory, the electron tunneling can be considered as the diffraction of electron waves by the periodic gratings. Accordingly, the influences of the periodicity of MoS2 moiré superlattices and the coherence of the tunneling electrons can be well included in the theory. In addition, the effect of the tunable band gap of MoS2 is taken into account. Based on the theory, we have investigated the properties of the interlayer conductance of MoS2 moirésuperlattice. The theoretical results show that, due to the diffraction effect, there exist two partial waves of the tunneling electron at the interface which can resonate with the interface potential. Accordingly, the interlayer conductance curves exhibit a double-peak structure. Furthermore, we have analyzed the influences of the tunneling layer and the metal electrodes to the interlayer conductance: the thicknesses of the upper MoS2 lattice affects the peak and the lower one primarily influence the background. The coherence of tunneling electrons will be enhanced when the parameter of interface potential strength increases. The chemical potential of the metal electrode mainly influences the properties of the peak, and the influence is more significant than that in graphite moirésuperlattice.
-
Keywords:
- MoS2 moiré superlattice /
- tunneling conductance /
- diffraction physics /
- twistronics
-
[1] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
[2] Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401
[3] Li T X, 2022 Acta Phys. Sin. 71 127309
[4] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66
[5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
[6] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71
[7] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[9] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
[10] Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G, Wang F 2014 Nat. Commun. 5 4966
[11] Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R, Zhang G 2020 Nat. Commun. 11 2153
[12] Xu M, Ji H, Zheng L, Li W, Wang J, Wang H, Luo L, Lu Q, Gan X, Liu Z, Wang X, Huang W 2024 Nat. Commun. 15 562
[13] Zhou J, Huang H, Zhao Z, Dou Z, Zhou L, Zhang T, Huang Z, Feng Y, Shi D, Liu N, Yang J, Nie J C, Wang Q, Dong J, Liu Y, Dou R, Xue Q 2024 Adv. Mater. 36 2408227
[14] Garcia-Ruiz A, Liu M H 2024 Nano Lett. 24 16317
[15] Yang M M, Cong R D, Wu C L, Zhang Y, Gao Q, Hu X W, Zhang Y F, Tan L, Liang B L, Zhao X H, Li X L 2024 Surf. Interfaces 52 104790
[16] Li H, Wei X, Wu G, Gao S, Chen Q, Peng L M 2018 Ultramicroscopy 193 90
[17] Koren E, Leven I, Lörtscher E, Knoll A, Hod O, Duerig U 2016 Nat. Nanotechnol. 11 752
[18] Chari T, Ribeiro-Palau R, Dean C R, Shepard K 2016 Nano Lett. 16 4477
[19] Yu Z, Song A, Sun L, Li Y, Gao L, Peng H, Ma T, Liu Z, Luo J 2020 Small 16 1902844
[20] Zhang S, Song A, Chen L, Jiang C, Chen C, Gao L, Hou Y, Liu L, Ma T, Wang H, Feng X Q, Li Q 2020 Sci. Adv. 6 eabc5555
[21] Inbar A, Birkbeck J, Xiao J, Taniguchi T, Watanabe K, Yan B, Oreg Y, Stern A, Berg E, Ilani S 2023 Nature 614 682
[22] Birkbeck J, Xiao J, Inbar A, Taniguchi T, Watanabe K, Berg E, Glazman L, Guinea F, Von Oppen F, Ilani S 2025 Nature 641 345
[23] Fang H, Xiao M 2021 ACS Appl. Electron. Mater. 3 2543
[24] Tao Y, Liu C, Xiao M, Fang H 2024 Chin. Phys. B 33 107301
[25] Liao M, Wu Z W, Du L, Zhang T, Wei Z, Zhu J, Yu H, Tang J, Gu L, Xing Y 2018 Nat. Commun. 9 4068
[26] Molinàs-Mata P, 1996 Phys. Rev. A 54 2060
[27] Kočinac S L S, Milanović V 2008 Phys. Lett. A 372 191
[28] Kittle C 2005 Introduction of Solid State Physics (New York: John Wiley & Sons, Inc) p229
[29] Cowley J M 1995 Diffraction Physics (Amsterdam: Elsevier) p177
[30] Fang H, Xiao M, Rui W, Du J, Tao Z 2016 Sci. Rep. 6 24300
[31] Ataca C, Ciraci S 2011 J. Phys. Chem. C 115 13303
[32] Zhang G, Huang S, Chaves A, Song C, Özçelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071
Metrics
- Abstract views: 62
- PDF Downloads: 0
- Cited By: 0