-
Due to the ability to directly convert thermal energy into electrical energy, thermoelectric devices operating in the medium-to-high temperature range hold significant potential for applications such as deep space exploration and industrial waste heat recovery. Among candidate materials, half-Heusler alloys have emerged as promising options for device fabrication in this temperature range, owing to their excellent mechanical properties, thermal stability, and favorable thermoelectric performance. However, research on half-Heusler-based thermoelectric devices remains far behind that on the materials, limiting their large-scale industrial application. In this study, high-performance p-type Hf0.5Zr0.5CoSb0.8Sn0.2 and n-type Hf0.75Zr0.25NiSn0.99Sb0.01 half-Heusler alloys were firstly synthesized. Then the single-pair thermoelectric module was successfully brazing assembled by the self-designed graphite mold. After that, 3D finite element modeling and 1D numerical modeling were conducted to simulate the module behavior, both showing strong agreement with experimental measurements, thereby validating the accuracy of the simulation models. Using the established simulation models, the influence of geometric parameters on module performance was investigated. It was found that optimizing the leg height and cross-sectional area ratio is critical for achieving maximum conversion efficiency. Additionally, a self-integrated comprehensive testing system (Model: TE-X-MS) was developed to systematically characterize key thermoelectric properties, including output power and conversion efficiency. The fabricated device achieved a maximum output power of 0.28 W and a peak conversion efficiency of 7.34% under a temperature difference of 538K, which is comparable to the best-performing devices reported to date. These results provide valuable reference into the fabrication, modeling, and characterization of half-Heusler thermoelectric devices for practical applications.
-
Keywords:
- Half-Heusler alloy /
- Thermoelectric generator /
- Finite element simulation /
- numerical simulation
-
[1] Wang Y N, Chen S P, Fan W H, Guo J Y, Wu Y C, Wang W X 2020 Acta Phys. Sin. 69 246801 (in Chinese) [王雅宁,陈少平,樊文浩,郭敬云,吴玉程,王文先 2020 物理学报 69 246801]
[2] Yang S G, Lin X, He J S, Zhai L J, Chen L, Lv M H, Liu H X, Zhang Y, Sun Z G 2023 Acta Phys. Sin. 72 228401(in Chinese) [杨士冠,林鑫,何俊松,翟立军,程林,吕明豪,刘虹霞,张艳,孙志刚 2023 物理学报72 228401]
[3] Xie Z X, Yu X, Jia P Z, Chen X K, Deng Y X, Zhang Y, Zhou W X 2023 Acta Phys. Sin. 72 124401(in Chinese) [谢忠祥,喻霞,贾聘真,陈学坤,邓元祥,张勇,周五星 2023 物理学报 72 124401]
[4] He H L, Fang Z X, Niu C P, Wu Y, Rong M Z 2021 Energy Convers. Manag. 241 114314
[5] Yu K, Wu Y, He H L, Niu C P, Rong M Z, Wu D, Liu S X, Zhang Y Q 2021 J. Alloys Compd. 885 161378
[6] Zhang P, Ouyang T, Tang C, He C, Li J, Zhang C, Zhong J 2021 Chinese Physics B 30 128401
[7] Xu Y, Xu X Y, Zhang W, OuYang T, Tang C 2019 Acta Phys. Sin. 68 247202 (in Chinese) [许易, 许小言, 张薇, 欧阳滔,唐超 2019物理学报68 247202]
[8] Lu J, Cui C, Ouyang T, Li J, He C, Tang C, Zhong J 2023 Chinese Physics B 32 048401
[9] Zhang P, Ouyang T, Tang C, He C Y, Li J, Zhang C X, Zhong J X 2020 Chinese Physics B 29 118401
[10] Ovik R, Long B D, Barma M C, Riaz M, Sabri M F M, Said S M, Saidur R 2016
[11] Eddine A N, Chalet D, Faure X, Faure X, Chessé P 2018 Energy 143 682
[12] Renew. Sustain. Energy Rev. 64 635
[13] Haddad C, Périlhon C, Danlos A, François M X, Descombes G 2014 Energy Procedia 50 1056
[14] Shen Z G, Tian L L, Liu X 2019 Energy Convers. Manag. 195 1138
[15] Holgate T C, Bennett R, Hammel T, Caillat T, Keyser S, Sievers B 2015 J. Electron. Mater. 44 1814
[16] Bai S Q, Liao J C, Xia X G, Chen L D 2020 J. Deep Space Explor. 7 525 (in Chinese) [柏胜强,廖锦城,夏绪贵,陈立东 2020深空探测学报 7 525]
[17] Xiao Y, Zhao L D 2018 npj Quantum Mater. 3 55
[18] Rogl G, Rogl P 2017 Curr. Opin. Green Sustain. Chem. 4 50
[19] Huang L H, Zhang Q Y, Yuan B, Xiang L, Yan X, Ren Z F 2016 Mater. Res. Bull. 76 107
[20] Gelbstein Y, Gotesman G, Lishzinker Y, Dashevsky Z, Dariel M P 2008 Scr. Mater. 58 251
[21] Rull-Bravo M, Moure A, Fernández J F, Martín-González M 2015 RSC Adv. 5 41653.
[22] Rogl G, Grytsiv A, Gürth M, Tavassoli A, Ebner C, Wünschek. A, Puchegger.S, Soprunyuk.V, Schranz.W, Bauer.E, Müller.H, Zehetbauer.M, Rogl.P 2016 Acta Mater. 107 178.
[23] Silpawilawan W, Kurosaki K, Ohishi Y, Muta.H, Yamanaka.S 2017 J. Mater. Chem. C 5 6677
[24] Poon S J 2018 Metals 8 989
[25] He H L, Zhao Y B, Ren H R, Niu C P, Fang Z X, Wu Y, Rong M Z 2022 Appl. Therm. Eng. 215 118900
[26] Nozariasbmarz A, Saparamadu U, Li W, Kang H B, Dettor C, Zhu H T, Poudel B, Priya S 2021 J. Power Sources 493 229695
[27] Yu J J, Xing Y F, Hu C L, Huang Z J, Qiu Q Y, Wang C, Xia K Y, Wang Z Y, Bai S Q, Zhao X B, Chen L D, Zhu T J. 2020 Adv. Energy Mater. 10 2000888.
[28] Xing Y F, Liu R H, Liao J C, Zhang Q H, Xia X G, Wang C, Huang H, Chu J, Gu M, Zhu T J, Zhu C X, Xu F F, Yao D X, Zeng Y P, Bai S Q, Uher C, Chen L D 2019 Energy Environ. Sci. 12 3390
[29] Miao P, Han S, Gao Z H, Fu C G, Zhu T J 2022 Mater. China 41 1029 (in Chinese) [苗圃,韩屾,高梓恒,付晨光,朱铁军 2022中国材料进展41 1029]
[30] Moh'd A A N, Tashtoush B M, Jaradat A A 2015 Energy 90 1239
[31] Chen W H, Huang S R, Wang X D, Wu P H, Lin Y L 2017 Energy 133 257
[32] Meng F K, Chen L G, Sun F R 2016 Low-Carbon Technol. 11 375
[33] Ouyang Z, Li D 2016 Scientific reports 6 24123
Metrics
- Abstract views: 50
- PDF Downloads: 0
- Cited By: 0