搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位加热诱导Nb扩散引起Nb0.8CoSb有序度的转变

李其柱 范浩涵 高梓恒 南鹏飞 朱铁军 葛炳辉

引用本文:
Citation:

原位加热诱导Nb扩散引起Nb0.8CoSb有序度的转变

李其柱, 范浩涵, 高梓恒, 南鹏飞, 朱铁军, 葛炳辉

Nb0.8CoSb ordering transformation caused by in situ heating-induced Nb diffusion

Li Qi-Zhu, Fan Hao-Han, Gao Zi-Heng, Nan Peng-Fei, Zhu Tie-Jun, Ge Bing-Hui
PDF
HTML
导出引用
  • 本文以覆盖Nb薄膜的半赫斯勒合金Nb0.8CoSb为研究对象, 成功利用原位加热透射电镜技术在高温下诱导Nb扩散, 致使Nb0.8CoSb转变为有序度更高的Nb0.8+δCoSb, 即倒空间漫散带代表的短程有序结构转变为超结构衍射点代表的长程有序结构. 进一步的分析表明, 这种超结构的调制波矢为$ q= ({a}^{*}+{b}^{*}-{c}^{*})/{3} $, 其形成主要源自于Sb和Nb组分的变化. 与离位合成的Nb0.84CoSb的微观结构进行对比, 发现二者中超结构不同, 这种超结构的调制波矢为 $ q= ({2a}^{*}-2{c}^{*})/3 $, 主要源自于Nb组分的变化. 此项研究揭示了组分导致超结构的多样性以及半赫斯勒合金结构相变的复杂性, 丰富了对半赫斯勒合金材料的理解, 对相变材料的设计以及功能调控具有重要指导意义.
    This study focuses on the investigation of Nb0.8CoSb half-Heusler alloy covered with Nb films. By employing in-situ heating transmission electron microscopy (TEM) technique, diffusion of Nb is observed at high temperature, showing the ordering transformation from Nb0.8CoSb to Nb0.8+δCoSb. Through observations of high-angle annular dark-field (HAADF) images and selected-area electron diffraction (SAED) patterns, it is found that under elevated temperatures, the diffuse streaks representing short-range disorder in Nb0.8CoSb sample transform into superlattice diffraction spots representing long-range order. The modulation wave vector of this superstructure is determined to be $ q={1}/{3}({a}^{*}+{b}^{*}-{c}^{*}) $. This structural evolution primarily arises from the diffusion of Nb atoms from the Nb film into the Nb0.8CoSb sample at high temperature, leading to compositional changes in Sb and Nb.Further comparative analysis reveals significant differences between in-situ synthesized Nb0.8+δCoSb samples and ex-situ synthesized Nb0.84CoSb samples despite both exhibiting superstructures. In the ex-situ synthesized Nb0.84CoSb, the modulation wave vector of the superstructure is $ q={1}/{3}({2a}^{*}-2{c}^{*}) $, which is mainly attributed to Nb compositional variations. Moreover, the superstructure in Nb0.84CoSb sample can remain stable from room temperature to high temperature, whereas in Nb0.8+δCoSb samples, it only exists at elevated temperatures and gradually weakens as the temperature decreases, suggesting that it may be a metastable structure between Nb0.8CoSb and Nb0.84CoSb.This study reveals the diversity of superstructures induced by compositional variations and the complexity of structural phase transitions in half-Heusler alloys, enriching the understanding of these materials and providing important guidance for the design and functional control of phase-change materials.
      通信作者: 葛炳辉, bhge@ahu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874394, 92163203)资助的课题.
      Corresponding author: Ge Bing-Hui, bhge@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874394, 92163203).
    [1]

    Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar

    [2]

    Yun H, Zhang D L, Birol T, Wang J P, Mkhoyan K A 2023 Nano Lett. 23 7576Google Scholar

    [3]

    Tracy C L, Park S, Rittman D R, Zinkle S J, Bei H, Lang M, Ewing R C, Mao W L 2017 Nat. Commun. 8 15634Google Scholar

    [4]

    Liu T, Dou X Y, Xu Y H, Chen Y J, Han Y S 2020 Research 2020 4370817

    [5]

    Sato T, Yoshikawa K, Zhao W, Kobayashi T, Rajendra H B, Yonemura M, Yabuuchi N 2021 Energy Mater. Adv. 2021 9857563

    [6]

    He R J, Lei S, Liu M C, Qin M S, Zhong W, Cheng S J, Xie J 2022 Energy Mater. Adv. 2022 0003

    [7]

    Zhu W, Ren L, Li Y H, Lu C, Lin X, Zhang Q Y, Yang X, Hu Z G, Cheng T, Zhao Y Y, Zou J X 2023 Energy Mater. Adv. 4 0069Google Scholar

    [8]

    Kozlovskiy A L, Kenzhina I E, Zdorovets M V 2020 Ceram. Int. 46 10262Google Scholar

    [9]

    Yu C L, Li G, Kumar S, Yang K, Jin R C 2014 Adv. Mater. 26 892Google Scholar

    [10]

    Wu L Z, Hu H C, Xu Y, Jiang S, Chen M, Zhong Q X, Yang D, Liu Q P, Zhao Y, Sun B Q, Zhang Q, Yin Y D 2017 Nano Lett. 17 5799Google Scholar

    [11]

    Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T 2013 Nat. Commun. 4 2009Google Scholar

    [12]

    Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M, Inomata K 2006 Appl. Phys. Lett. 89 112514Google Scholar

    [13]

    Goll G, Marz M, Hamann A, Tomanic T, Grube K, Yoshino T, Takabatake T 2008 Physica B 403 1065Google Scholar

    [14]

    Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 Phys. Rev. Lett. 100 165703Google Scholar

    [15]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424Google Scholar

    [16]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358Google Scholar

    [17]

    Hu F X, Shen B G, Sun J R, Wu G H 2001 Phys. Rev. B 64 132412Google Scholar

    [18]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460Google Scholar

    [19]

    Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505Google Scholar

    [20]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510Google Scholar

    [21]

    Xia K Y, Nan P F, Tan S H, Wang Y M, Ge B H, Zhang W Q, Anand S, Zhao X B, Snyder G J, Zhu T J 2019 Energy Environ. Sci. 12 1568Google Scholar

    [22]

    Nan P F, Wu K P, Liu Y M, Xia K Y, Zhu T J, Lin F, He J, Ge B H 2020 Nanoscale 12 21624Google Scholar

    [23]

    Liu Y, Fu C, Xia K Y, Yu J, Zhao X, Pan H F, Felser C, Zhu T J 2018 Adv. Mater. 30 1800881Google Scholar

    [24]

    Xia K Y, Liu Y, Anand S, Snyder G J, Xin J, Yu J, Zhao X, Zhu T 2018 Adv. Funct. Mater. 28 1705845Google Scholar

    [25]

    Pu Y H, He B W, Niu Y M, Liu X, Zhang B S 2023 Research 6 0043Google Scholar

    [26]

    Zhang H T, Wang W, Sun J, Zhong L, He L B, Sun L T 2022 Research 2022 9834636

    [27]

    南鹏飞, 杨丽霞, 王玉梅, 夏凯阳, 朱铁军, 葛炳辉 2019 电子显微学报 38 477Google Scholar

    Nan P F, Yang L X, Wang Y M, Xia K Y, Zhu T J, Ge B H 2019 J. Chin. Electron Microsc. Soc. 38 477Google Scholar

    [28]

    Pennycook S J, Boatner L A 1988 Nature 336 565Google Scholar

    [29]

    Pennycook S J 1989 Ultramicroscopy 30 58Google Scholar

  • 图 1  (a) 离位制备的Nb0.8CoSb合金的宏观形貌; (b) 离位制备的Nb0.8CoSb合金的XRD图谱; (c) 直流磁控溅射技术镀膜流程图

    Fig. 1.  (a) Macroscopic morphology of the ex-situ prepared Nb0.8CoSb alloy; (b) XRD of the ex-situ prepared Nb0.8CoSb alloy; (c) schematic diagram of the magnetron sputtering deposition process using direct current magnetron sputtering.

    图 2  (a), (b) 原位加热实验Nb0.8CoSb样品大角度环形暗场(HAADF)像以及相应的[110]带轴的选区电子衍射花样; (c) 图 (a) 中黄色选框处能量色散谱图; (d) Nb膜与Nb0.8CoSb的界面区域的高分辨TEM像

    Fig. 2.  (a) High-angle annular dark-field (HAADF) image of the Nb0.8CoSb sample before in-situ heating experiments; (b) corresponding selected-area electron diffraction patterns along the [110] zone axis; (c) energy dispersive spectroscopy (EDS) map at the yellow-boxed region in Fig. (a); (d) HRTEM image of the interface region between the Nb film and Nb0.8CoSb.

    图 3  (a)—(c) 原位加热实验样品HAADF像及橙色框区域的[110]带轴选区电子衍射花样及其示意图; (d) 图 (a) 中橙色框区域的高分辨TEM像

    Fig. 3.  (a)–(c) HAADF image of the sample during in-situ heating experiment, the corresponding selected-area electron diffraction patterns along the [110] zone axis, and the schematic diagram of superlattice diffraction spots; (d) HRTEM image of the orange-boxed region in Fig. (a).

    图 4  (a) Nb0.8+δCoSb [110]取向的滤波像; (b), (c) 分别仅包含主衍射点信息和超结构衍射信息的滤波像; (d)—(f) 图(a)—(c)的放大像

    Fig. 4.  (a) Filtered image of Nb0.8+δCoSb [110] orientation; (b), (c) filtered images containing only main diffraction spot information and superlattice diffraction information, respectively; (d)–(f) magnified views of images in (a)–(c).

    图 5  (a) Nb0.84CoSb [110]取向的选区电子衍射花样; (b) Nb0.84CoSb [110]取向的滤波像; (c), (d) 分别仅包含主衍射点信息和超结构衍射信息的滤波像; (e) Nb0.84CoSb超结构衍射点示意图; (f)—(h) 图 (b)—(d) 的放大像

    Fig. 5.  (a) Selected area electron diffraction pattern of Nb0.84CoSb [110] orientation; (b) filtered image of Nb0.84CoSb [110] orientation; (c), (d) filtered images containing only main diffraction spot information and superlattice diffraction information, respectively; (e) schematic diagram of superlattice diffraction spots in Nb0.84CoSb; (f)–(h) magnified views of images in Figs. (b)–(d).

  • [1]

    Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124Google Scholar

    [2]

    Yun H, Zhang D L, Birol T, Wang J P, Mkhoyan K A 2023 Nano Lett. 23 7576Google Scholar

    [3]

    Tracy C L, Park S, Rittman D R, Zinkle S J, Bei H, Lang M, Ewing R C, Mao W L 2017 Nat. Commun. 8 15634Google Scholar

    [4]

    Liu T, Dou X Y, Xu Y H, Chen Y J, Han Y S 2020 Research 2020 4370817

    [5]

    Sato T, Yoshikawa K, Zhao W, Kobayashi T, Rajendra H B, Yonemura M, Yabuuchi N 2021 Energy Mater. Adv. 2021 9857563

    [6]

    He R J, Lei S, Liu M C, Qin M S, Zhong W, Cheng S J, Xie J 2022 Energy Mater. Adv. 2022 0003

    [7]

    Zhu W, Ren L, Li Y H, Lu C, Lin X, Zhang Q Y, Yang X, Hu Z G, Cheng T, Zhao Y Y, Zou J X 2023 Energy Mater. Adv. 4 0069Google Scholar

    [8]

    Kozlovskiy A L, Kenzhina I E, Zdorovets M V 2020 Ceram. Int. 46 10262Google Scholar

    [9]

    Yu C L, Li G, Kumar S, Yang K, Jin R C 2014 Adv. Mater. 26 892Google Scholar

    [10]

    Wu L Z, Hu H C, Xu Y, Jiang S, Chen M, Zhong Q X, Yang D, Liu Q P, Zhao Y, Sun B Q, Zhang Q, Yin Y D 2017 Nano Lett. 17 5799Google Scholar

    [11]

    Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T 2013 Nat. Commun. 4 2009Google Scholar

    [12]

    Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M, Inomata K 2006 Appl. Phys. Lett. 89 112514Google Scholar

    [13]

    Goll G, Marz M, Hamann A, Tomanic T, Grube K, Yoshino T, Takabatake T 2008 Physica B 403 1065Google Scholar

    [14]

    Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 Phys. Rev. Lett. 100 165703Google Scholar

    [15]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424Google Scholar

    [16]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358Google Scholar

    [17]

    Hu F X, Shen B G, Sun J R, Wu G H 2001 Phys. Rev. B 64 132412Google Scholar

    [18]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460Google Scholar

    [19]

    Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505Google Scholar

    [20]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510Google Scholar

    [21]

    Xia K Y, Nan P F, Tan S H, Wang Y M, Ge B H, Zhang W Q, Anand S, Zhao X B, Snyder G J, Zhu T J 2019 Energy Environ. Sci. 12 1568Google Scholar

    [22]

    Nan P F, Wu K P, Liu Y M, Xia K Y, Zhu T J, Lin F, He J, Ge B H 2020 Nanoscale 12 21624Google Scholar

    [23]

    Liu Y, Fu C, Xia K Y, Yu J, Zhao X, Pan H F, Felser C, Zhu T J 2018 Adv. Mater. 30 1800881Google Scholar

    [24]

    Xia K Y, Liu Y, Anand S, Snyder G J, Xin J, Yu J, Zhao X, Zhu T 2018 Adv. Funct. Mater. 28 1705845Google Scholar

    [25]

    Pu Y H, He B W, Niu Y M, Liu X, Zhang B S 2023 Research 6 0043Google Scholar

    [26]

    Zhang H T, Wang W, Sun J, Zhong L, He L B, Sun L T 2022 Research 2022 9834636

    [27]

    南鹏飞, 杨丽霞, 王玉梅, 夏凯阳, 朱铁军, 葛炳辉 2019 电子显微学报 38 477Google Scholar

    Nan P F, Yang L X, Wang Y M, Xia K Y, Zhu T J, Ge B H 2019 J. Chin. Electron Microsc. Soc. 38 477Google Scholar

    [28]

    Pennycook S J, Boatner L A 1988 Nature 336 565Google Scholar

    [29]

    Pennycook S J 1989 Ultramicroscopy 30 58Google Scholar

  • [1] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [2] 华昀峰, 张冬, 章林溪. 半刚性高分子链螺旋结构诱导纳米棒的有序结构. 物理学报, 2015, 64(8): 088201. doi: 10.7498/aps.64.088201
    [3] 刘华松, 季一勤, 姜玉刚, 王利栓, 冷健, 孙鹏, 庄克文. SiO2薄膜内部短程有序微结构研究. 物理学报, 2013, 62(18): 187801. doi: 10.7498/aps.62.187801
    [4] 谌岩, 李雅莉, 刘建华, 张瑞军. 4 GPa压力处理对T8钢在加热过程中固态相变动力学的影响. 物理学报, 2012, 61(19): 196203. doi: 10.7498/aps.61.196203
    [5] 侯 永, 袁建民. 第一性原理对金的高压相变和零温物态方程的计算. 物理学报, 2007, 56(6): 3458-3463. doi: 10.7498/aps.56.3458
    [6] 潘江陵, 倪 军. 面心立方(001)方向AB合金薄膜表面层的有序无序相变. 物理学报, 2006, 55(1): 413-418. doi: 10.7498/aps.55.413
    [7] 王 进, 赵志刚, 刘 楣, 邢定钰. 磁通格子的有序-无序相变和反向熔化. 物理学报, 2003, 52(12): 3162-3167. doi: 10.7498/aps.52.3162
    [8] 高玉琳, 吕毅军, 郑健生, 蔡志岗, 桑海宇, 曾学然. 三元有序合金GaxIn1-xP(x=0.52)的时间分辨谱. 物理学报, 2002, 51(1): 174-177. doi: 10.7498/aps.51.174
    [9] 覃东欢, 彭勇, 王成伟, 力虎林. Co-Ni合金纳米线有序阵列的制备与磁性研究. 物理学报, 2001, 50(1): 144-148. doi: 10.7498/aps.50.144
    [10] 石宏霆, 倪军, 顾秉林. 二维合金系统的有序动力学研究. 物理学报, 2001, 50(10): 1970-1978. doi: 10.7498/aps.50.1970
    [11] 宋庆功, 戴占海, 丛选忠, 魏 环, 张庆军. 六方密堆二元合金的有序结构. 物理学报, 2000, 49(11): 2201-2209. doi: 10.7498/aps.49.2201
    [12] 严 媚, 马世红, 刘丽英, 王文澄, 陈张海, 刘普霖. 半花菁有序超薄膜热释电效应的产生机理. 物理学报, 1998, 47(11): 1917-1922. doi: 10.7498/aps.47.1917
    [13] 李国华, 刘振先, 韩和相, 汪兆平, 董建荣, 陆大成, 孙殿照, 王占国. 自发有序Ga0.5In0.5P合金的静压光致发光研究. 物理学报, 1996, 45(9): 1592-1600. doi: 10.7498/aps.45.1592
    [14] 黄志峰, 倪军, 顾秉林. 三元Ⅲ─V半导体合金的基态有序结构. 物理学报, 1994, 43(12): 2003-2008. doi: 10.7498/aps.43.2003
    [15] 吕斯骅, 刘国良, 姚军, 刘凤琴, 吴思诚. CO在表面有序合金Cu{001}c(2×2)-Pd上的吸附. 物理学报, 1992, 41(3): 459-464. doi: 10.7498/aps.41.459
    [16] 李婷, 秦自楷. 有序-无序型铁电和反铁电相变的格林函数理论. 物理学报, 1988, 37(9): 1406-1414. doi: 10.7498/aps.37.1406
    [17] 杨正举. AB合金有序化过程的动力学(Ⅰ). 物理学报, 1965, 21(2): 369-382. doi: 10.7498/aps.21.369
    [18] 易孙圣, 刘益焕. 合金AgAuZn2的有序化. 物理学报, 1965, 21(4): 839-848. doi: 10.7498/aps.21.839
    [19] 施士元. 代位合金中的空穴扩散和有序化. 物理学报, 1957, 13(4): 245-251. doi: 10.7498/aps.13.245
    [20] 程开甲;李正中. 内耗的热力学研究_代位合金在有序或无序态的内耗理论. 物理学报, 1956, 12(4): 281-297. doi: 10.7498/aps.12.281
计量
  • 文章访问数:  1766
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2024-04-07
  • 上网日期:  2024-04-23
  • 刊出日期:  2024-06-05

/

返回文章
返回