Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photoelectron holography in tunneling ionization of atoms by counter-rotating two-color elliptically polarized laser field

Huang Xue-Fei Su Jie Liao Jian-Ying Li Ying-Bin Huang Cheng

Citation:

Photoelectron holography in tunneling ionization of atoms by counter-rotating two-color elliptically polarized laser field

Huang Xue-Fei, Su Jie, Liao Jian-Ying, Li Ying-Bin, Huang Cheng
PDF
HTML
Get Citation
  • In this paper, photoelectron interference in tunneling ionization of atoms by counter-rotating two-color elliptically polarized (TCEP) laser fields are investigated by numerically solving the two-dimensional time-dependent Schrödinger equation (TDSE) and strong field approximation (SFA). When the ellipticities of the two pulses are both 0.3, for a relative phase of 0.25π, the intracycle interference, fork-like holographic interference and arc-like holographic interference in the photoelectron momentum distribution overlap with each other. For a relative phase of 0, the arc-like holographic interference disappears and the intracycle interference and fork-like holographic interference are fully separated into the –px direction and the +px direction. Furthermore, the independent fork-like holographic interference can be enhanced or suppressed by changing the ellipticities of the two pulses. This provides an efficient tool for controlling and separating the interference structures in the photoelectron momentum distribution, which facilitates extracting the information about the target structure and the photoelectron ultrafast dynamics in strong fields.
      Corresponding author: Li Ying-Bin, liyingbin2008@163.com ; Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504302, 12074329, 12004323) and the Key Scientific Research Projects of Higher Education of Henan Province, China (Grant No. 20A140025).
    [1]

    Corkum P 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [2]

    Agostini P, Fabre F, Mainfray G, Petite G 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [3]

    Arbó D G, Persson E, Burgdörfer J 2006 Phys. Rev. A 74 063407Google Scholar

    [4]

    Tan J, Xu S, Han X, Zhou Y, Li M, Cao W, Zhang Q, Lu P 2021 Adv. Photonics 3 035001Google Scholar

    [5]

    Li M, Zhang P, Luo S Q, Zhou Y M, Zhang Q B, Lan P F, Lu P X 2015 Phys. Rev. A 92 063404Google Scholar

    [6]

    Yang W, Zhang H, Lin C, Xu J, Sheng Z, Song X, Hu S, Chen J 2016 Phys. Rev. A 94 043419Google Scholar

    [7]

    Wang Y, Yu S, Lai X, Kang H, Xu S, Sun R, Quan W, Liu X 2018 Phys. Rev. A 98 043422Google Scholar

    [8]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Yu, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 6164Google Scholar

    [9]

    Xia Q, Tao J, Cai J, Fu L, Liu J 2018 Phys. Rev. Lett. 121 143201Google Scholar

    [10]

    Du H, Li J, Wang H, Yue S, Wu H, Hu B 2017 Phys. Lett. A 381 1563Google Scholar

    [11]

    Chen F, Yao R, Luo J, Wang C 2018 Chin. Phys. B 27 103202Google Scholar

    [12]

    Marchenko T, Huismans Y, Schafer K J, Vrakking M J J 2011 Phys. Rev. A 84 053427Google Scholar

    [13]

    Bian X B, Huismans Y, Smirnova O, Yuan K J, Vrakking M J J, Bandrauk A D 2011 Phys. Rev. A 84 043420Google Scholar

    [14]

    Bian X B, Bandrauk A D, 2012 Phys. Rev. Lett. 108 263003Google Scholar

    [15]

    Song X, Lin C, Sheng Z, Liu P, Chen Z, Yang W, Hu S, Lin C D, Chen J 2016 Sci. Rep. 6 28392Google Scholar

    [16]

    林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫 2016 物理学报 65 223207Google Scholar

    Lin C, Zhang H J, Sheng Z H, Yu X H, Liu P, Xu J W, Song X H, Hu S L, Chen J, Yang W F 2016 Acta Phys. Sin. 65 223207Google Scholar

    [17]

    Qin P, Sun X, Liu Y, Chen Z 2021 Phys. Rev. A 104 053111Google Scholar

    [18]

    Yu S, Lai X, Wang Y, Xu S, Hua L, Quan W, Liu X 2020 Phys. Rev. A 101 023414Google Scholar

    [19]

    Zhou Y, Tolstikhin O I, Morishita T 2016 Phys. Rev. Lett. 116 173001Google Scholar

    [20]

    Hickstein D D, Ranitovic P, Witte S, Tong X M, Huismans Y, Arpin P, Zhou X, Keister K E, Hogle C W, Zhang B, Ding C, Johnsson P, Toshima N, Vrakking M J J, Murnane M M, Kapteyn H C 2012 Phys. Rev. Lett. 109 073004Google Scholar

    [21]

    Zhou Y, Tan J, Li M, Lu P 2021 Sci. China Phys. Mech. Astron. 64 273011Google Scholar

    [22]

    Meckel M, Staudte A, Patchkovskii S, Villeneuve D M, Corkum P B, Drner R, Spanner M 2014 Nat. Phys. 10 594Google Scholar

    [23]

    Liu M M, Li M, Wu C, Gong Q, Staudte A, Liu Y 2016 Phys. Rev. Lett. 116 163004Google Scholar

    [24]

    Li M, Xie H, Cao W, Luo S, Tan J, Feng Y, Du B, Zhang W, Li Y, Zhang Q, Lan P, Zhou Y, Lu P X 2019 Phys. Rev. Lett. 122 183202Google Scholar

    [25]

    Tan J, Zhou Y, He M, Chen Y, Ke Q, Liang J, Zhu X, Li M, Lu P X 2018 Phys. Rev. Lett. 121 253203Google Scholar

    [26]

    Tan J, Zhou Y, He M, Ke Q, Liang J T, Li Y, Li M, Lu P X 2019 Phys. Rev. A 99 033402Google Scholar

    [27]

    Haertelt M, Bian X B, Spanner M, Staudte A, Corkum P B 2016 Phys. Rev. Lett. 116 133001Google Scholar

    [28]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun 9 2805Google Scholar

    [29]

    He M, Li Y, Zhou Y, Li M, Cao W, Lu P 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [30]

    Walt S G, Bhargava Ram N, Atala M, Shvetsov Shilovski N I, von Conta A, Baykusheva D, Lein M, Worner H J 2017 Nat. Commun. 8 15651Google Scholar

    [31]

    Hasovic E, Becker W, Milosević D B 2016 Opt. Express 24 6413Google Scholar

    [32]

    Huang C, Pang H, Huang X, Zhong M, Wu Z 2020 Opt. Express 28 10505Google Scholar

    [33]

    Li B, Yang X, Ren X, Zhang J 2019 Opt. Express 27 32700Google Scholar

    [34]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [35]

    曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚 2021 物理学报 70 243201Google Scholar

    Zeng X, Su J, Huang X F, Pang H L, Huang C 2021 Acta Phys. Sin. 70 243201Google Scholar

    [36]

    Li M, Jiang W C, Xie H, Luo S, Zhou Y M, Lu P X 2018 Phys. Rev. A 97 023415Google Scholar

    [37]

    Ke Q H, Zhou Y M, Tan J, He M R, Liang J T, Zhao Y, Li M, Lu P X 2019 Opt. Express 27 32193Google Scholar

    [38]

    Feit M D, Fleck J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

    [39]

    Tong X M, Hino K, Toshima N 2006 Phys. Rev. A 74 031405Google Scholar

    [40]

    Liao Q, Winney A H, Lee S K, Lin Y, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [41]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148Google Scholar

    [42]

    Lewenstein M, Balcou P, Ivanov M Yu, Anne L'Huillier, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [43]

    Milošević D B, Becker W 2002 Phys. Rev. A 66 063417Google Scholar

  • 图 1  (a), (b)反向旋转TCEP复合电场(虚线)及其负矢势(实线); (c), (d)反向旋转TCEP场中Ar电离电子的末态动量分布; 其中(a), (c)相对相位为φ = 0.25π; (b), (d)相对相位φ = 0; 两椭偏场的椭偏率均为0.3

    Figure 1.  (a), (b) Combined laser electric field E(t) (dashed curve) and the corresponding negative vector potential-A(t) (solid curve) for counter-rotating TCEP fields; (c), (d) photoelectron momentum distributions of Ar ionized by counter-rotating TCEP fields. (a), (c) The relative phase is φ = 0.25π; (b), (d) The relative phase is φ = 0. Both ellipticities of the two pulses are 0.3.

    图 2  (a) 不同时刻电离电子经典轨迹中电子离母离子距离的时间演化; (b) 反向旋转TCEP场的x分量(蓝虚线)和y分量(红虚线); (c) SFA计算所得直接电子波包A和直接电子波包B形成的干涉图样; (d) SFA计算所得前向散射电子波包A和直接电子波包A形成的干涉图样; (e) SFA计算所得前向散射电子波包A和直接电子波包B形成的干涉图样. 两椭偏场的椭偏率均为0.3. 相对相位φ = 0.25π

    Figure 2.  (a) Time evolutions of the distances between the electron and the parent ion for different ionization times; (b) the x and y components of counter-rotating TCEP fields; (c) the simulated interference pattern between the direct electrons ionized during A and the direct electrons ionized during B with SFA; (d) the simulated interference pattern between the rescattering electrons and the direct electrons ionized during A with SFA; (e) the simulated interference pattern between the rescattering electrons ionized during A and the direct electrons ionized during B with SFA. Both ellipticities of the two pulses are 0.3. The relative phase is 0.25π.

    图 3  (a) 不同时刻电离电子经典轨迹中电子离母离子距离的时间演化; (b) 反向旋转TCEP场的x分量(蓝虚线)和y分量(红虚线); (c) SFA计算所得直接电子波包E和直接电子波包F形成的干涉图样; (d) SFA计算所得前向散射电子波包C和直接电子波包C形成的干涉图样; (e) SFA计算所得前向散射电子波包C和直接电子波包D形成的干涉图样. 两椭偏场的椭偏率均为0.3. 相对相位φ = 0

    Figure 3.  (a) Time evolutions of the distances between the electron and the parent ion for different ionization times; (b) the x and y components of counter-rotating TCEP fields; (c) the simulated interference pattern between the direct electrons ionized during C and the direct electrons ionized during D with SFA; (d) the simulated interference pattern between the rescattering electrons and the direct electrons ionized during C with SFA; (e) the simulated interference pattern between the rescattering electrons during C and the direct electrons ionized during D with SFA. Both ellipticities of the two pulses are 0.3. The relative phase is 0.

    图 4  反向旋转TCEP场驱动Ar原子隧穿电离电子末态动量分布, 其中两椭偏场的相对相位φ = 0; 两脉冲椭偏率分别为(a) $\varepsilon_1 $ = 0.3, $\varepsilon_2 $ = 0.5; (b) $\varepsilon_1 $ = 0.3, $\varepsilon_2 $ = 0.7; (c) $\varepsilon_1 $ = 0.5, $\varepsilon_2 $ = 0.3; (d) $\varepsilon_1 $ = 0.7, $\varepsilon_2 $ = 0.3

    Figure 4.  Photoelectron momentum distributions of Ar ionized by counter-rotating TCEP fields. The relative phase is 0. The ellipticities of the two pulses: (a) $\varepsilon_1 $ = 0.3, $\varepsilon_2 $ = 0.5; (b) $\varepsilon_1 $ = 0.3, $\varepsilon_2 $ = 0.7; (c) $\varepsilon_1 $ = 0.5, $\varepsilon_2 $ = 0.3; (d) $\varepsilon_1 $ = 0.7, $\varepsilon_2 $ = 0.3.

  • [1]

    Corkum P 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [2]

    Agostini P, Fabre F, Mainfray G, Petite G 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [3]

    Arbó D G, Persson E, Burgdörfer J 2006 Phys. Rev. A 74 063407Google Scholar

    [4]

    Tan J, Xu S, Han X, Zhou Y, Li M, Cao W, Zhang Q, Lu P 2021 Adv. Photonics 3 035001Google Scholar

    [5]

    Li M, Zhang P, Luo S Q, Zhou Y M, Zhang Q B, Lan P F, Lu P X 2015 Phys. Rev. A 92 063404Google Scholar

    [6]

    Yang W, Zhang H, Lin C, Xu J, Sheng Z, Song X, Hu S, Chen J 2016 Phys. Rev. A 94 043419Google Scholar

    [7]

    Wang Y, Yu S, Lai X, Kang H, Xu S, Sun R, Quan W, Liu X 2018 Phys. Rev. A 98 043422Google Scholar

    [8]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Yu, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 6164Google Scholar

    [9]

    Xia Q, Tao J, Cai J, Fu L, Liu J 2018 Phys. Rev. Lett. 121 143201Google Scholar

    [10]

    Du H, Li J, Wang H, Yue S, Wu H, Hu B 2017 Phys. Lett. A 381 1563Google Scholar

    [11]

    Chen F, Yao R, Luo J, Wang C 2018 Chin. Phys. B 27 103202Google Scholar

    [12]

    Marchenko T, Huismans Y, Schafer K J, Vrakking M J J 2011 Phys. Rev. A 84 053427Google Scholar

    [13]

    Bian X B, Huismans Y, Smirnova O, Yuan K J, Vrakking M J J, Bandrauk A D 2011 Phys. Rev. A 84 043420Google Scholar

    [14]

    Bian X B, Bandrauk A D, 2012 Phys. Rev. Lett. 108 263003Google Scholar

    [15]

    Song X, Lin C, Sheng Z, Liu P, Chen Z, Yang W, Hu S, Lin C D, Chen J 2016 Sci. Rep. 6 28392Google Scholar

    [16]

    林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫 2016 物理学报 65 223207Google Scholar

    Lin C, Zhang H J, Sheng Z H, Yu X H, Liu P, Xu J W, Song X H, Hu S L, Chen J, Yang W F 2016 Acta Phys. Sin. 65 223207Google Scholar

    [17]

    Qin P, Sun X, Liu Y, Chen Z 2021 Phys. Rev. A 104 053111Google Scholar

    [18]

    Yu S, Lai X, Wang Y, Xu S, Hua L, Quan W, Liu X 2020 Phys. Rev. A 101 023414Google Scholar

    [19]

    Zhou Y, Tolstikhin O I, Morishita T 2016 Phys. Rev. Lett. 116 173001Google Scholar

    [20]

    Hickstein D D, Ranitovic P, Witte S, Tong X M, Huismans Y, Arpin P, Zhou X, Keister K E, Hogle C W, Zhang B, Ding C, Johnsson P, Toshima N, Vrakking M J J, Murnane M M, Kapteyn H C 2012 Phys. Rev. Lett. 109 073004Google Scholar

    [21]

    Zhou Y, Tan J, Li M, Lu P 2021 Sci. China Phys. Mech. Astron. 64 273011Google Scholar

    [22]

    Meckel M, Staudte A, Patchkovskii S, Villeneuve D M, Corkum P B, Drner R, Spanner M 2014 Nat. Phys. 10 594Google Scholar

    [23]

    Liu M M, Li M, Wu C, Gong Q, Staudte A, Liu Y 2016 Phys. Rev. Lett. 116 163004Google Scholar

    [24]

    Li M, Xie H, Cao W, Luo S, Tan J, Feng Y, Du B, Zhang W, Li Y, Zhang Q, Lan P, Zhou Y, Lu P X 2019 Phys. Rev. Lett. 122 183202Google Scholar

    [25]

    Tan J, Zhou Y, He M, Chen Y, Ke Q, Liang J, Zhu X, Li M, Lu P X 2018 Phys. Rev. Lett. 121 253203Google Scholar

    [26]

    Tan J, Zhou Y, He M, Ke Q, Liang J T, Li Y, Li M, Lu P X 2019 Phys. Rev. A 99 033402Google Scholar

    [27]

    Haertelt M, Bian X B, Spanner M, Staudte A, Corkum P B 2016 Phys. Rev. Lett. 116 133001Google Scholar

    [28]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun 9 2805Google Scholar

    [29]

    He M, Li Y, Zhou Y, Li M, Cao W, Lu P 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [30]

    Walt S G, Bhargava Ram N, Atala M, Shvetsov Shilovski N I, von Conta A, Baykusheva D, Lein M, Worner H J 2017 Nat. Commun. 8 15651Google Scholar

    [31]

    Hasovic E, Becker W, Milosević D B 2016 Opt. Express 24 6413Google Scholar

    [32]

    Huang C, Pang H, Huang X, Zhong M, Wu Z 2020 Opt. Express 28 10505Google Scholar

    [33]

    Li B, Yang X, Ren X, Zhang J 2019 Opt. Express 27 32700Google Scholar

    [34]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [35]

    曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚 2021 物理学报 70 243201Google Scholar

    Zeng X, Su J, Huang X F, Pang H L, Huang C 2021 Acta Phys. Sin. 70 243201Google Scholar

    [36]

    Li M, Jiang W C, Xie H, Luo S, Zhou Y M, Lu P X 2018 Phys. Rev. A 97 023415Google Scholar

    [37]

    Ke Q H, Zhou Y M, Tan J, He M R, Liang J T, Zhao Y, Li M, Lu P X 2019 Opt. Express 27 32193Google Scholar

    [38]

    Feit M D, Fleck J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

    [39]

    Tong X M, Hino K, Toshima N 2006 Phys. Rev. A 74 031405Google Scholar

    [40]

    Liao Q, Winney A H, Lee S K, Lin Y, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [41]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148Google Scholar

    [42]

    Lewenstein M, Balcou P, Ivanov M Yu, Anne L'Huillier, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [43]

    Milošević D B, Becker W 2002 Phys. Rev. A 66 063417Google Scholar

  • [1] Li Guan-Rong, Zheng Yi-Ting, Xu Qiong-Yi, Pei Xiao-Shan, Geng Yue, Yan Dong, Yang Hong. Perfect non-reciprocal reflection amplification in closed loop coherent gain atomic system. Acta Physica Sinica, 2024, 73(12): 126401. doi: 10.7498/aps.73.20240347
    [2] Xu Yao-Kun, Sun Shi-Hai, Zeng Yao-Yuan, Yang Jun-Gang, Sheng Wei-Dong, Liu Wei-Tao. General theory of quantum holography based on two-photon Interference. Acta Physica Sinica, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [3] Che Jia-Yin, Chen Chao, Li Wei-Yan, Li Wei, Chen Yan-Jun. Advances in response time of strong-field ionization of atoms. Acta Physica Sinica, 2023, 72(19): 193301. doi: 10.7498/aps.72.20230983
    [4] Zhao Meng, Quan Wei, Xiao Zhi-Lei, Xu Song-Po, Wang Zhi-Qiang, Wang Ming-Hui, Cheng Si-Jin, Wu Wen-Zhuo, Wang Yan-Lan, Lai Xuan-Yang, Liu Xiao-Jun. Tunneling delay time in strong field ionization of atomic Ar. Acta Physica Sinica, 2022, 71(23): 233203. doi: 10.7498/aps.71.20221295
    [5] Su Jie, Liu Zi-Chao, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Intensity-dependent electron correlation in nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [6] Shen Xing-Chen, Liu Yang, Chen Qi, Lü Hang, Xu Hai-Feng. Rydberg state excitation of atoms and molecules in ultrafast intense laser field. Acta Physica Sinica, 2022, 71(23): 233202. doi: 10.7498/aps.71.20221258
    [7] Tao Jian-Fei, Xia Qin-Zhi, Liao Lin-Gu, Liu Jie, Liu Xiao-Jing. Theory and application of photoelectron trajectory interference holography for atomic ionization in intense laser field. Acta Physica Sinica, 2022, 71(23): 233206. doi: 10.7498/aps.71.20221296
    [8] Zeng Xue, Su Jie, Huang Xue-Fei, Pang Hui-Ling, Huang Cheng. Frequency-ratio-dependent ultrafast dynamics in nonsequential double ionization by co-rotating two-color circularly polarized laser fields. Acta Physica Sinica, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [9] Wu Guang-Zhi, Wang Qiang, Zhou Cang-Tao, Fu Li-Bin. Positron wave interference and Klein tunnel during the production of pairs in the double-well potential. Acta Physica Sinica, 2017, 66(7): 070301. doi: 10.7498/aps.66.070301
    [10] Lin Cheng, Zhang Hua-Tang, Sheng Zhi-Hao, Yu Xian-Huan, Liu Peng, Xu Jing-Wen, Song Xiao-Hong, Hu Shi-Lin, Chen Jing, Yang Wei-Feng. Strong field photoelectron holography studied by a generalized quantum-trajectory Monte Carlo method. Acta Physica Sinica, 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [11] Guo Li, Han Shen-Sheng, Chen Jing. Study of above-threshold ionization by Wigner-distribution-like function method. Acta Physica Sinica, 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [12] Zhao Lei, Zhang Qi, Dong Jing-Wei, Lü Hang, Xu Hai-Feng. Rydberg state excitations and double ionizations of different atoms in strong femtosecond laser field. Acta Physica Sinica, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [13] Liu Can-Dong, Jia Zheng-Mao, Zheng Ying-Hui, Ge Xiao-Chun, Zeng Zhi-Nan, Li Ru-Xin. Research progress of the control and measurement of the atomic and molecular ultrafast electron dynamics using two-color field. Acta Physica Sinica, 2016, 65(22): 223206. doi: 10.7498/aps.65.223206
    [14] Wang Yan-Hai. Ionization time of He atom in the strong field tunnelling ionization mode. Acta Physica Sinica, 2016, 65(15): 153201. doi: 10.7498/aps.65.153201
    [15] Lü Zhi-Zhong, Zhang Tian-Qi, Zhong Gong-Xiang. Coherently controlled fourth harmonic generation in gases induced by a two-color field. Acta Physica Sinica, 2015, 64(17): 174204. doi: 10.7498/aps.64.174204
    [16] Li Chun-Lei, Xu Yan, Zhang Yan-Xiang, Ye Bao-Sheng. Photon-assisted electron spin tunnelling in double-well potential. Acta Physica Sinica, 2013, 62(10): 107301. doi: 10.7498/aps.62.107301
    [17] Zhou Qing-Chun, Di Zun-Yan. Phonon effect on the quantum phase of a radiation field interacting with a tunneling-coupled quantum-dot molecule. Acta Physica Sinica, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [18] Huang Fang, Li Hai-Bin. Adiabatic tunneling of Bose-Einstein condensatein double-well potential. Acta Physica Sinica, 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [19] Zhou Yuan-Ming, Yu Guo-Lin, Gao Kuang-Hong, Lin Tie, Guo Shao-Ling, Chu Jun-Hao, Dai Ning. Magneto-tunneling effect in weakly coupled GaAs/AlGaAs/InGaAs double quantum well tunneling structure. Acta Physica Sinica, 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [20] WANG XUN-CHUN, QIU XI-JUN, ZHENG LI-PING. INFLUENCE OF RELATIVE PHASE ON THE ENHANCED IONIZATION BEHAVIOUR OF LINEAR MULTIATOMIC MOLECULAR IONS IN TWO-COLOR LASER FIELDS. Acta Physica Sinica, 2001, 50(11): 2155-2158. doi: 10.7498/aps.50.2155
Metrics
  • Abstract views:  4242
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2021
  • Accepted Date:  14 January 2022
  • Available Online:  02 February 2022
  • Published Online:  05 May 2022

/

返回文章
返回