Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunneling delay time in strong field ionization of atomic Ar

Zhao Meng Quan Wei Xiao Zhi-Lei Xu Song-Po Wang Zhi-Qiang Wang Ming-Hui Cheng Si-Jin Wu Wen-Zhuo Wang Yan-Lan Lai Xuan-Yang Liu Xiao-Jun

Citation:

Tunneling delay time in strong field ionization of atomic Ar

Zhao Meng, Quan Wei, Xiao Zhi-Lei, Xu Song-Po, Wang Zhi-Qiang, Wang Ming-Hui, Cheng Si-Jin, Wu Wen-Zhuo, Wang Yan-Lan, Lai Xuan-Yang, Liu Xiao-Jun
PDF
HTML
Get Citation
  • “Attoclock” provides a promising experimental scheme to explore the timing of tunnel ionization of atoms and molecules in intense laser fields. In this work, we perform a systematical investigation of tunneling delay time in strong field ionization of atomic Ar, based on the “attoclock” experimental scheme. Experimentally, the laser intensity dependence of the photoelectron momentum distributions of Ar subject to strong elliptically polarized laser fields at 800 nm has been measured. Theoretically, a dedicated semiclassical model, in which the Coulomb potential effect, the nonadiabatic effect, the Stark effect, the multielectron screening and polarization effect have been well considered, is employed to simulate the ionization dynamics of Ar. By comparing the experimental and simulated results, an upper limit of 10 attoseconds for the tunneling delay time of Ar has been derived for the laser intensity ranges explored in this work. In addition, the influence of various physical effects on the extracted tunneling delay time, in the context of semiclassical model, has been analyzed. It is demonstrated that, under otherwise identical conditions, consideration of multielectron screening effect will give rise to the least change of the extracted tunneling delay time. In contrast, consideration of nonadiabatic effect will lead to the most significant change of the extracted tunneling delay time.
      Corresponding author: Quan Wei, charlywing@wipm.ac.cn ; Liu Xiao-Jun, xjliu@wipm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307702), the National Natural Science Foundation of China (Grant Nos. 11834015, 11974383, 12104465), and the Science and Technology Department of Hubei Province, China (Grant No. 2020CFA029).
    [1]

    MacColl L A 1932 Phys. Rev. 40 621Google Scholar

    [2]

    Schultze M, Fieß M, Karpowicz N, et al. 2010 Science 328 1658Google Scholar

    [3]

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O, Dudovich N 2012 Nature 485 343Google Scholar

    [4]

    Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [5]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dörner R, Muller H G, Büttiker M, Keller U 2008 Science 322 1525Google Scholar

    [6]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4 565Google Scholar

    [7]

    Pfeiffer A N, Cirelli C, Smolarski M, Wang X, Eberly J H, Dörner R, Keller U 2011 New J. Phys. 13 093008Google Scholar

    [8]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-samha M, Madsen L B, Keller U 2012 Nat. Phys. 8 76Google Scholar

    [9]

    Sainadh U S, Xu H, Wang X, Atia-Tul-Noor A, Wallace W C, Douguet N, Bray A, Ivanov I, Bartschat K, Kheifets A, Sang R T, Litvinyuk I V 2019 Nature 568 75Google Scholar

    [10]

    Han M, Ge P, Wang J, Guo Z, Fang Y, Ma X, Yu X, Deng Y, Wörner H J, Gong Q, Liu Y 2021 Nat. Photonics 15 765Google Scholar

    [11]

    Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M, Smirnova O 2015 Nat. Phys. 11 503Google Scholar

    [12]

    Quan W, Serov V V, Wei M, Zhao M, Zhou Y, Wang Y, Lai X, Kheifets A S, Liu X 2019 Phys. Rev. Lett. 123 223204Google Scholar

    [13]

    Landsman A S, Weger M, Maurer J, Boge R, Ludwig A, Heuser S, Cirelli C, Gallmann L, Keller U 2014 Optica 1 343Google Scholar

    [14]

    Landsman A S, Keller U 2015 Phys. Rep. 547 1Google Scholar

    [15]

    Camus N, Yakaboylu E, Fechner L, Klaiber M, Laux M, Mi Y, Hatsagortsyan K Z, Pfeifer T, Keitel C H, Moshammer R 2017 Phys. Rev. Lett. 119 023201Google Scholar

    [16]

    Quan W, Yuan M, Yu S, Xu S, Chen Y, Wang Y, Sun R, Xiao Z, Gong C, Hua L, Lai X, Liu X, Chen J 2016 Opt. Express 24 23248Google Scholar

    [17]

    Zhi-Lei Xiao, Wei Quan, Song-Po Xu, Shao-Gang Yu, Xuan-Yang Lai, Jing Chen, Liu X-J 2020 Chin. Phys. Lett. 37 043201Google Scholar

    [18]

    Xiao Z, Quan W, Xu S, Yu S, Wang Y, Zhao M, Wei M, Zhou Y, Lai X, Chen J, Liu X 2020 Chin. Opt. Lett. 18 010201Google Scholar

    [19]

    Xiao Z, Quan W, Yu S, Lai X, Liu X, Wei Z, Chen J 2022 Opt. Express 30 14873Google Scholar

    [20]

    Quan W, Hao X, Chen Y, Yu S, Xu S, Wang Y, Sun R, Lai X, Wu C, Gong Q, He X, Liu X, Chen J 2016 Sci. Rep. 6 27108Google Scholar

    [21]

    Chen J, Liu J, Chen S G 2000 Phys. Rev. A 61 033402Google Scholar

    [22]

    Hao X, Wang G, Jia X, Li W, Liu J, Chen J 2009 Phys. Rev. A 80 023408Google Scholar

    [23]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001Google Scholar

    [24]

    Wang Y, Xu S, Chen Y, et al. 2017 Phys. Rev. A 95 063415Google Scholar

    [25]

    Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP 664 138

    [26]

    Delone N B, Krainov V P 1991 J. Opt. Soc. Am. B 8 1207Google Scholar

    [27]

    Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 233003Google Scholar

    [28]

    Chen J, Liu J, Zheng W M 2002 Phys. Rev. A 66 043410Google Scholar

    [29]

    Fu L B, Liu J, Chen J, Chen S G 2001 Phys. Rev. A 63 043416Google Scholar

    [30]

    Chen J, Liu J, Fu L B, Zheng W M 2000 Phys. Rev. A 63 011404Google Scholar

    [31]

    Brabec T, Ivanov M Y, Corkum P B 1996 Phys. Rev. A 54 R2551Google Scholar

    [32]

    Hu B, Liu J, Chen S G 1997 Phys. Lett. A 236 533Google Scholar

    [33]

    Han M, Li M, Liu M-M, Liu Y 2017 Phys. Rev. A 95 023406Google Scholar

    [34]

    Li M, Liu M M, Geng J W, Han M, Sun X, Shao Y, Deng Y, Wu C, Peng L Y, Gong Q, Liu Y 2017 Phys. Rev. A 95 053425Google Scholar

    [35]

    Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35Google Scholar

    [36]

    Salières P, Carré B, Le Déroff L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milošević D B, Sanpera A, Lewenstein M 2001 Science 292 902Google Scholar

    [37]

    Cloux F, Fabre B, Pons B 2015 Phys. Rev. A 91 023415Google Scholar

    [38]

    Muller H G 1999 Phys. Rev. A 60 1341Google Scholar

    [39]

    Dimitrovski D, Martiny C P J, Madsen L B 2010 Phys. Rev. A 82 053404Google Scholar

    [40]

    Dimitrovski D, Abu-samha M, Madsen L B, Filsinger F, Meijer G, Küpper J, Holmegaard L, Kalhøj L, Nielsen J H, Stapelfeldt H 2011 Phys. Rev. A 83 023405Google Scholar

    [41]

    Xu S, Liu M, Hu S, Shu Z, Quan W, Xiao Z, Zhou Y, Wei M, Zhao M, Sun R, Wang Y, Hua L, Gong C, Lai X, Chen J, Liu X 2020 Phys. Rev. A 102 043104Google Scholar

    [42]

    Corkum P B, Burnett N H, Brunel F 1989 Phys. Rev. Lett. 62 1259Google Scholar

    [43]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [44]

    Hofmann C, Landsman A S, Keller U 2019 J. Mod. Opt. 66 1052Google Scholar

  • 图 1  (a) 实验测量的Ar原子光电子动量分布, 激光波长800 nm, 光强1.5×1014 W/cm2, 椭偏率0.7, 插图标识出激光场偏振面的长轴和短轴方向; (b) 黑色方框表示从(a)中提取的Ar原子光电子角度分布; (c) 半经典理论计算的光电子动量分布, 激光参数与(a)相同; (d) 黑色圆圈表示从(c)中提取的Ar原子光电子角度分布. (b)(d)中的红色曲线代表采用最小二乘法对实验测量和数值模拟数据的拟合结果

    Figure 1.  (a) The measured photoelectron momentum distributions of Ar subject to the laser electric field with a wavelength of 800 nm, an intensity of 1.5×1014 W/cm2, and an ellipticity of 0.7, the inset shows the directions of the major and minor axes of the polarization ellipse of the laser field; (b) the black boxes indicate the photoelectron angular distribution extracted from the data in (a); (c) the photoelectron momentum distributions calculated by the semiclassical model with the laser parameters identical to those of (a); (d) the black circles represent the photoelectron angular distribution extracted from the data in (c). The red curves in (c) and (d) show the results of the least square fittings of experimental data and numerical calculations, respectively.

    图 2  (a)实验测量与半经典理论计算得到的α随激光光强的依赖曲线; 黑色实心方块(Exp.)为实验测量结果. 海军蓝空心三角形(CP)为仅包含库仑场效应的计算结果、蓝色空心四边形(Screen.+CP)为包含库仑场效应和多电子屏蔽效应的计算结果、橄榄绿空心五边形(Nonad.+CP)为包含库仑场效应和非绝热效应的计算结果、洋红色空心五角星(Polar.+CP)为包含库仑场效应和多电子极化效应的计算结果、深黄色空心六边形(Stark+CP)为包含库仑场效应和Stark效应的计算结果, 红色空心圆形(All)为以上所有效应同时考虑的情况. (b) 由(a)中α得到的电子隧穿时刻随光强的依赖曲线. 黑色实心方块(Exp.)为实验结果, 黑色空心圆(Without FA)为单一光强计算结果, 黑色空心四边形(FA)为考虑聚焦平均效应的结果. 采用阿秒钟方案得到的隧穿延时随激光光强的变化由洋红色实心圆(Tunneling delay time)表示(右侧纵轴)

    Figure 2.  (a) The measured and calculated intensity dependence of α. The filled black boxes (Exp.) show the experimental results. The open navy triangles (CP), open blue diamonds (Screen.+CP), open olive pentagons (Nonad.+CP), open magenta pentacles (Polar.+CP), open dark yellow hexagons (Stark+CP), and open red circles (All) indicate the semiclassical calculations where only the influence of Coulomb potential, the influence of both Coulomb potential and the multi-electron screening effect, the influence of both Coulomb potential and the non-adiabatic effect, the influence of both Coulomb potential and multi-electron polarization effect, the influence of both Coulomb potential and the Stark effect, and all the physical effects have been considred, respectively. (b) The laser intensity dependence of tunneling instant obtained from the measured and calculated α in (a). The filled black boxes (Exp.) represent the experimental data. The open black circles (Without FA) indicate the calculation without focusing average. The open black diamonds (FA) represent the calculation where the focusing average has been considered. The filled magenta circles (Tunneling delay time) indicate the intensity dependence of the tunneling delay time which is obtained based on the attoclock scheme.

    图 3  半经典理论计算的在激光峰值电场发生隧穿的电子轨道 (a), (d)隧穿刚发生时和激光脉冲快结束时电子轨道的空间演化; (b), (e)隧穿刚发生时和激光脉冲快结束时, 沿x方向电子动量(px)随时间的演化; (c), (f)隧穿刚发生时和激光脉冲快结束时, 沿z方向电子动量(pz)随时间的演化, 其中红色细实线和红色粗点线表示仅考虑库仑场效应的轨道, 蓝色细划线和蓝色粗点划线表示同时考虑库仑场和非绝热效应的轨道, 红色细实线和蓝色细划线表示激光光强为1.5 × 1014 W/cm2的计算结果, 红色粗点线和蓝色粗点划线表示激光光强为2.3 × 1014 W/cm2的计算结果

    Figure 3.  The typical trajectories calculated by the semiclassical model for the photoelectrons tunneling from the peak of laser field: (a), (d) The spatial evolution of electron trajectories around the tunneling instant and the end of the laser pulse; (b), (e) the temporal evolution of photoelectron momenta along the x direction (px) around the tunneling instant and the end of the laser pulse; (c), (f) the temporal evolution of photoelectron momenta along z direction (pz) around the tunneling instant and the end of the laser pulse. The thin red solid and thick red dotted lines represent the trajectories calculated by the semiclassical model where only the influence of Coulomb potential is considered. The thin blue dashed and thick blue dot-dashed lines represent the trajectories calculated by the semiclassical model where the influence of both Coulomb potential and the nonadiabatic effect are considered. The thin red solid and thin blue dashed lines indicate the trajectories which are calculated at 1.5 × 1014 W/cm2. The thick red dotted and thick blue dot-dashed lines indicate the trajectories which are calculated at 2.3 × 1014 W/cm2.

    图 4  (a), (c)半经典理论计算得到的激光峰值电场对应电子轨道在隧穿时刻(initial)电子的位置和动量; (b), (d)半经典理论计算得到的激光峰值电场对应电子轨道在脉冲结束时(final)电子的位置和动量; (d)中连接原点和对应符号的实线标示出电子的最终出射方向, 海军蓝三角形(CP)为仅包含库仑场效应的计算结果、蓝色四边形(Screen.+CP)为包含库仑场效应和多电子屏蔽效应的计算结果、橄榄绿五边形(Nonad.+CP)为包含库仑场效应和非绝热效应的计算结果、洋红色五角星(Polar.+CP)为包含库仑场效应和多电子极化效应的计算结果、深黄色六边形(Stark+CP)为包含库仑场效应和Stark效应的计算结果, 实心(Low)和空心(High)分别表示激光光强为1.5 × 1014W/cm2和2.3 × 1014 W/cm2的相应计算结果

    Figure 4.  (a), (c) The calculated positions and the momenta of the photoelectrons tunneling from the peak of laser field at the tunneling instant (initial); (b), (d) the calculated positions and the momenta of the photoelectrons tunneling from the peak of laser field at the end of the laser pulse (final); in (d), the solid lines connecting the origin and the symbols indicate the corresponding emission angles of the photoelectrons at the end of the laser pulse. The navy triangles (CP), blue diamonds (Screen.+CP), olive pentagons (Nonad.+CP), magenta pentacles (Polar.+CP), and dark yellow hexagons (Stark+CP) indicate the semiclassical calculations where only the influence of Coulomb potential, the influence of both Coulomb potential and the multi-electron screening effect, the influence of both Coulomb potential and the non-adiabatic effect, the influence of both Coulomb potential and multi-electron polarization effect, and the influence of both Coulomb potential and the Stark effect have been considred, respectively. The filled (Low) and open (High) Symbols indicate the results calculated at 1.5 × 1014 W/cm2 and 2.3 × 1014 W/cm2, respectively.

  • [1]

    MacColl L A 1932 Phys. Rev. 40 621Google Scholar

    [2]

    Schultze M, Fieß M, Karpowicz N, et al. 2010 Science 328 1658Google Scholar

    [3]

    Shafir D, Soifer H, Bruner B D, Dagan M, Mairesse Y, Patchkovskii S, Ivanov M Y, Smirnova O, Dudovich N 2012 Nature 485 343Google Scholar

    [4]

    Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [5]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dörner R, Muller H G, Büttiker M, Keller U 2008 Science 322 1525Google Scholar

    [6]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4 565Google Scholar

    [7]

    Pfeiffer A N, Cirelli C, Smolarski M, Wang X, Eberly J H, Dörner R, Keller U 2011 New J. Phys. 13 093008Google Scholar

    [8]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-samha M, Madsen L B, Keller U 2012 Nat. Phys. 8 76Google Scholar

    [9]

    Sainadh U S, Xu H, Wang X, Atia-Tul-Noor A, Wallace W C, Douguet N, Bray A, Ivanov I, Bartschat K, Kheifets A, Sang R T, Litvinyuk I V 2019 Nature 568 75Google Scholar

    [10]

    Han M, Ge P, Wang J, Guo Z, Fang Y, Ma X, Yu X, Deng Y, Wörner H J, Gong Q, Liu Y 2021 Nat. Photonics 15 765Google Scholar

    [11]

    Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M, Smirnova O 2015 Nat. Phys. 11 503Google Scholar

    [12]

    Quan W, Serov V V, Wei M, Zhao M, Zhou Y, Wang Y, Lai X, Kheifets A S, Liu X 2019 Phys. Rev. Lett. 123 223204Google Scholar

    [13]

    Landsman A S, Weger M, Maurer J, Boge R, Ludwig A, Heuser S, Cirelli C, Gallmann L, Keller U 2014 Optica 1 343Google Scholar

    [14]

    Landsman A S, Keller U 2015 Phys. Rep. 547 1Google Scholar

    [15]

    Camus N, Yakaboylu E, Fechner L, Klaiber M, Laux M, Mi Y, Hatsagortsyan K Z, Pfeifer T, Keitel C H, Moshammer R 2017 Phys. Rev. Lett. 119 023201Google Scholar

    [16]

    Quan W, Yuan M, Yu S, Xu S, Chen Y, Wang Y, Sun R, Xiao Z, Gong C, Hua L, Lai X, Liu X, Chen J 2016 Opt. Express 24 23248Google Scholar

    [17]

    Zhi-Lei Xiao, Wei Quan, Song-Po Xu, Shao-Gang Yu, Xuan-Yang Lai, Jing Chen, Liu X-J 2020 Chin. Phys. Lett. 37 043201Google Scholar

    [18]

    Xiao Z, Quan W, Xu S, Yu S, Wang Y, Zhao M, Wei M, Zhou Y, Lai X, Chen J, Liu X 2020 Chin. Opt. Lett. 18 010201Google Scholar

    [19]

    Xiao Z, Quan W, Yu S, Lai X, Liu X, Wei Z, Chen J 2022 Opt. Express 30 14873Google Scholar

    [20]

    Quan W, Hao X, Chen Y, Yu S, Xu S, Wang Y, Sun R, Lai X, Wu C, Gong Q, He X, Liu X, Chen J 2016 Sci. Rep. 6 27108Google Scholar

    [21]

    Chen J, Liu J, Chen S G 2000 Phys. Rev. A 61 033402Google Scholar

    [22]

    Hao X, Wang G, Jia X, Li W, Liu J, Chen J 2009 Phys. Rev. A 80 023408Google Scholar

    [23]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001Google Scholar

    [24]

    Wang Y, Xu S, Chen Y, et al. 2017 Phys. Rev. A 95 063415Google Scholar

    [25]

    Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP 664 138

    [26]

    Delone N B, Krainov V P 1991 J. Opt. Soc. Am. B 8 1207Google Scholar

    [27]

    Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 233003Google Scholar

    [28]

    Chen J, Liu J, Zheng W M 2002 Phys. Rev. A 66 043410Google Scholar

    [29]

    Fu L B, Liu J, Chen J, Chen S G 2001 Phys. Rev. A 63 043416Google Scholar

    [30]

    Chen J, Liu J, Fu L B, Zheng W M 2000 Phys. Rev. A 63 011404Google Scholar

    [31]

    Brabec T, Ivanov M Y, Corkum P B 1996 Phys. Rev. A 54 R2551Google Scholar

    [32]

    Hu B, Liu J, Chen S G 1997 Phys. Lett. A 236 533Google Scholar

    [33]

    Han M, Li M, Liu M-M, Liu Y 2017 Phys. Rev. A 95 023406Google Scholar

    [34]

    Li M, Liu M M, Geng J W, Han M, Sun X, Shao Y, Deng Y, Wu C, Peng L Y, Gong Q, Liu Y 2017 Phys. Rev. A 95 053425Google Scholar

    [35]

    Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35Google Scholar

    [36]

    Salières P, Carré B, Le Déroff L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milošević D B, Sanpera A, Lewenstein M 2001 Science 292 902Google Scholar

    [37]

    Cloux F, Fabre B, Pons B 2015 Phys. Rev. A 91 023415Google Scholar

    [38]

    Muller H G 1999 Phys. Rev. A 60 1341Google Scholar

    [39]

    Dimitrovski D, Martiny C P J, Madsen L B 2010 Phys. Rev. A 82 053404Google Scholar

    [40]

    Dimitrovski D, Abu-samha M, Madsen L B, Filsinger F, Meijer G, Küpper J, Holmegaard L, Kalhøj L, Nielsen J H, Stapelfeldt H 2011 Phys. Rev. A 83 023405Google Scholar

    [41]

    Xu S, Liu M, Hu S, Shu Z, Quan W, Xiao Z, Zhou Y, Wei M, Zhao M, Sun R, Wang Y, Hua L, Gong C, Lai X, Chen J, Liu X 2020 Phys. Rev. A 102 043104Google Scholar

    [42]

    Corkum P B, Burnett N H, Brunel F 1989 Phys. Rev. Lett. 62 1259Google Scholar

    [43]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [44]

    Hofmann C, Landsman A S, Keller U 2019 J. Mod. Opt. 66 1052Google Scholar

  • [1] Yang Xu, Feng Hong-Mei, Liu Jia-Nan, Zhang Xiang-Qun, He Wei, Cheng Zhao-Hua. Ultrafast spin dynamics: From femtosecond magnetism to attosecond magnetism. Acta Physica Sinica, 2024, 73(15): 157501. doi: 10.7498/aps.73.20240646
    [2] Tao Chen-Yu, Lei Jian-Ting, Yu Xuan, Luo Yan, Ma Xin-Wen, Zhang Shao-Feng. Development of attosecond pulses and their application to ultrafast dynamics of atoms and molecules. Acta Physica Sinica, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [3] Zhou Zi-Tong, Yan Shao-Hua, Zhao Wei-Sheng, Leng Qun-Wen. Research progress of tunneling magnetoresistance sensor. Acta Physica Sinica, 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [4] Xu Hong-Ping, He Zhen-Zhen, Yu Zi-Fa, Gao Ji-Ming. Interaction-modulated tunneling dynamics of a mixture of Bose-Fermi superfluid. Acta Physica Sinica, 2022, 71(9): 090301. doi: 10.7498/aps.71.20212168
    [5] Huang Xue-Fei, Su Jie, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Photoelectron holography in tunneling ionization of atoms by counter-rotating two-color elliptically polarized laser field. Acta Physica Sinica, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [6] Huang Pei1\2\3, Fang Shao-Bo, Huang Hang-Dong, Zhao Kun, Teng Hao, Hou Xun, Wei Zhi-Yi2\3Attosecond relative delay measurement using transient-grating frequency-resolved optical grating. Acta Physica Sinica, 2018, 67(21): 214202. doi: 10.7498/aps.67.20181570
    [7] Wang Yan-Hai. Ionization time of He atom in the strong field tunnelling ionization mode. Acta Physica Sinica, 2016, 65(15): 153201. doi: 10.7498/aps.65.153201
    [8] Ma Ying, Wang Cang-Long, Wang Wen-Yuan, Yang Yang, Ma Yun-Yun, Meng Hong-Juan, Duan Wen-Shan. The tunneling phenomena of the Fermi superfluid gases in unitarity by manipulating the Fermi-Fermi scattering length. Acta Physica Sinica, 2012, 61(18): 180303. doi: 10.7498/aps.61.180303
    [9] Wang Wen-Yuan, Meng Hong-Juan, Yang Yang, Qi Peng-Tang, Ma Yun-Yun, Ma Ying, Duan Wen-Shan. Nonlinear Landau-Zener transition of Fermi superfluid gases. Acta Physica Sinica, 2012, 61(8): 087302. doi: 10.7498/aps.61.087302
    [10] Meng Hong-Juan, Yang Yang, Wang Wen-Yuan, Qi Peng-Tang, Ma Yun-Yun, Ma Ying, Wang Shan-Jin, Duan Wen-Shan. Nonlinear Rosen-Zener transition of Fermi superfluid gases. Acta Physica Sinica, 2012, 61(6): 060303. doi: 10.7498/aps.61.060303
    [11] Zhou Yuan-Ming, Yu Guo-Lin, Gao Kuang-Hong, Lin Tie, Guo Shao-Ling, Chu Jun-Hao, Dai Ning. Magneto-tunneling effect in weakly coupled GaAs/AlGaAs/InGaAs double quantum well tunneling structure. Acta Physica Sinica, 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [12] Lin Kai, Yang Shu-Zheng. Fermions tunneling of the Vaidya-Bonner black hole. Acta Physica Sinica, 2009, 58(2): 744-748. doi: 10.7498/aps.58.744
    [13] Li Qian-Guang, Lan Peng-Fei, Hong Wei-Yi, Zhang Qing-Bin, Lu Pei-Xiang. Propagation characteristics of the broadband supercontinuum with an attosecond ionization gate. Acta Physica Sinica, 2009, 58(8): 5679-5684. doi: 10.7498/aps.58.5679
    [14] Jiang Qing-Quan, Wu Shuang-Qing. New form of the Kerr solution and its tunneling radiation. Acta Physica Sinica, 2006, 55(9): 4428-4432. doi: 10.7498/aps.55.4428
    [15] Zhang Jing-Yi, Zhao Zheng. Massive particles’ Hawking radiation via tunneling. Acta Physica Sinica, 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [16] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [17] Chen Wei-Bing, Xu Jing-Ping, Zou Xiao, Li Yan-Ping, Xu Sheng-Guo, Hu Zhi-Fu. Analytic tunneling-current model of small-scale MOSFETs. Acta Physica Sinica, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [18] Sun Yu-Hang, Li Fu-Li. Resonant tunneling and photon emission of an ultracold two-level atom passing through multi single-mode cavity fields. Acta Physica Sinica, 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [19] PAN SHAO-HUA, FENG SI-MIN, CUI DA-FU, YANG GUO-ZHEN. TUNNEL BROADENING EFFECT ON INTERSUBBAND OPTICAL SATURATION IN SUPERLATTICES. Acta Physica Sinica, 1993, 42(7): 1074-1079. doi: 10.7498/aps.42.1074-2
    [20] Pan Shao-hua Feng Si-min Cui Da-fu Yan Guo-zhen. TUNNEL BROADENING EFFECT ON INTERSUBBAN OOPTICAL SATURATION INS UPERLATTICES. Acta Physica Sinica, 1991, 40(7): 1074-1079. doi: 10.7498/aps.40.1074
Metrics
  • Abstract views:  5059
  • PDF Downloads:  252
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2022
  • Accepted Date:  27 July 2022
  • Available Online:  05 December 2022
  • Published Online:  05 December 2022

/

返回文章
返回