Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of high-order harmonics and single ultrashort attosecond pulse generated by optimized combination of laser field

Han Lin Miao Shu-Li Li Peng-Cheng

Citation:

Theoretical study of high-order harmonics and single ultrashort attosecond pulse generated by optimized combination of laser field

Han Lin, Miao Shu-Li, Li Peng-Cheng
PDF
HTML
Get Citation
  • High-order harmonic generation, which is a hot topic of strong ultrafast fields, is one of the most important ways for obtaining the ultraviolet attosecond sources, and has a very wide application prospect. This work focuses on the challenges of the generation of either short or high attosecond pulses. We present the research progress of the high-order harmonics and attosecond pulse generation, and propose an effective and feasible method, and show some results. Specifically, combining the time-dependent Schrödinger equation and new unconstrained optimization algorithm, the objective function with the aim of the widest supercontinuum plateau of He atom is designed and the optimized two-color and three-color laser fields are obtained. The supercontinuum spectra extend up to 100 harmonic orders for the case of the optimized two-color laser field. As a result, a single ultrashort attosecond pulse of 25 as is produced. For the three-color case, the supercontinuum spectra reach up to 170 harmonic orders, and the width of single shortest attosecond pulse obtained by superposing pulses from low order (110 order) to high order (280 order) is obtained to be 17 as . Taking the optimized two-color laser field for example, the macroscopic medium propagation is discussed by solving the Maxwell equation. The results show that the selectivity of quantum trajectories from far-field space distribution can obtain the single ultra-short attosecond pulse.
      Corresponding author: Li Peng-Cheng, pchli@stu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850209, 12074239, 12047501), the Natural Science Foundation of Guangdong Province, China (Grant No. 2020A1515010927), the Science and Technology Project of Guangdong Province, China (Grant No. 2020ST084), the Special Innovation Program of Universities of Guangdong Province (Grant Nos. 2019KTSCX038, 2020KCXTD012), and the Shantou University, China (Grant No. NTF18030)
    [1]

    Telnov D A, Chu S I 2009 Phys. Rev. A 79 041401Google Scholar

    [2]

    Garcia Ruiz R F, Vernon A R, Binnersley C L, Sahoo B K, Bissell M, Billowes J, Cocolios T E, Gins W, de Groote R P, Flanagan K T, Koszorus A, Lynch K M, Neyens G, Ricketts C M, Wendt K D A, Wilkins S G, Yang X F 2018 Phys. Rev. X 8 041005

    [3]

    Wang R, Zhang Q, Li D, Xu S, Cao P, Zhou Y, Cao W, Lu P 2019 Opt. Express 27 6471Google Scholar

    [4]

    Ge P, Fang Y, Guo Z, Ma X, Yu X, Han M, Wu C, Gong Q, Liu Y 2021 Phys. Rev. Lett. 126 223001Google Scholar

    [5]

    De Silva A H N C, Atri-Schuller D, Dubey S, Acharya B P, Romans K L, Foster K, Russ O, Compton K, Rischbieter C, Douguet N, Bartschat K, Fischer D 2021 Phys. Rev. Lett. 126 023201Google Scholar

    [6]

    Liu M M, Shao Y, Han M, Ge P, Deng Y, Wu C, Gong Q, Liu Y 2018 Phys. Rev. Lett. 120 043201Google Scholar

    [7]

    Li W K, Lei Y, Li X, Yang T, Du M, Jiang Y, Li J L, Luo S Z, Liu A H, He L H, Ma P, Zhang D D, Ding D J 2021 Chin. Phys. Lett. 38 053202Google Scholar

    [8]

    Kelvich S A, Becker W, Goreslavski S P 2017 Phys. Rev. A 96 023427Google Scholar

    [9]

    Brennecke S, Lein M 2018 Phys. Rev. A 98 063414Google Scholar

    [10]

    Brennecke S, Lein M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 094005Google Scholar

    [11]

    Shi M, Lai X, Yu S, Wang Y, Quan W, Liu X 2022 Phys. Rev. A 105 013118Google Scholar

    [12]

    Yang Q, Leng J, Wang Y H, Sun Y N, Du H B, Zhang D D, Song L L, He L H, Liu F C 2022 Chin. Phys. Lett. 39 023301Google Scholar

    [13]

    Verhoef A J, Mitrofanov A V, Serebryannikov E E, Kartashov D V, Zheltikov A M, Baltuška A 2010 Phys. Rev. Lett. 104 163904Google Scholar

    [14]

    Chen Y, Zhou Y, Tan J, Li M, Cao W, Lu P 2021 Phys. Rev. A 104 043107Google Scholar

    [15]

    Ni H, Brennecke S, Gao X, He P L, Donsa S, Březinová I, He F, Wu J, Lein M, Tong X M, Burgdörfer J 2020 Phys. Rev. Lett. 125 073202Google Scholar

    [16]

    Tan J, Zhou Y, He M, Ke Q, Liang J, Li Y, Li M, Lu P 2019 Phys. Rev. A 99 033402Google Scholar

    [17]

    Luo S, Li M, Xie W, Liu K, Feng Y, Du B, Zhou Y, Lu P 2019 Phys. Rev. A 99 053422Google Scholar

    [18]

    Zhao Y, Zhou Y, Liang J, Zeng Z, Ke Q, Liu Y, Li M, Lu P 2019 Opt. Express 27 21689Google Scholar

    [19]

    Douguet N, Bartschat K 2018 Phys. Rev. A 97 013402Google Scholar

    [20]

    Yoshikawa N, Tamaya T 2017 Science 356 736Google Scholar

    [21]

    Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [22]

    Uchida K, Mattoni G, Yonezawa S, Nakamura F, Maeno Y, Tanaka K 2020 Phys. Rev. Lett. 128 127401Google Scholar

    [23]

    Yu C, Jiang S, Lu R 2019 Adv. Phys. X 4 1562982

    [24]

    Zhang J, Hua L Q, Chen Zh, Zhu M F, Gong Ch, Liu X J 2020 Chin. Phys. Lett. 37 124203Google Scholar

    [25]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [26]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [27]

    Ferray M, L’Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 3

    [28]

    L’Huillier A, Balcou Ph 1993 Phys. Rev. Lett. 70 766Google Scholar

    [29]

    Macklin J J, Kmetec J D, Gordon Ⅲ C L 1993 Phys. Rev. Lett. 70 774Google Scholar

    [30]

    L’Huillier A, Schafer K J, Kulander K C 1991 J. Phys. B: At. Mol. Opt. Phys. 24 3315Google Scholar

    [31]

    Corkum P B 1993 Phys. Rev. Lett. 71 13

    [32]

    Kulander K C, Schafer K J, Krause J L 1991 Phys. Rev. Lett. 66 2601Google Scholar

    [33]

    Lewenstein M, Balcou Ph, Ivanov M Yu, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [34]

    L’Huillier A, Lewenstein M, Saliěres P, Balcou Ph, Ivanov M Yu, Larsson J, Wahlström C G 1993 Phys. Rev. A 4 8

    [35]

    Kulander K C 1988 Phys. Rev. A 38 778Google Scholar

    [36]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. A 45 4998Google Scholar

    [37]

    Runge E, Gross E K U 1984 Phys. Rev. Lett. 52 997Google Scholar

    [38]

    魏志义, 钟诗阳, 贺新奎, 赵昆, 滕浩, 王帅, 梁玥瑛, 王佶, 喻苏玉, 陈云琳, 朱江峰 2021 中国激光 48 0501001Google Scholar

    Wei Z Y, Zhong S Y, He X K, Zhao K, Teng H, Wang S, Liang Y Y, Wang J, Yu S Y, Chen Y L, Zhu J F 2021 Chin. J. Lasers 48 0501001Google Scholar

    [39]

    Spielmann C, Burnett N H, Sartania S, Koppitsch R, Schnurer M, Kan C, Lenzner M, Wobrauschek P, Krausz F 1997 Science 278 661Google Scholar

    [40]

    Chang Z, Rundquist A, Wang H, Murnane M M, Kapteyn H C 1997 Phys. Rev. Lett. 79 2967Google Scholar

    [41]

    Tong X M, Chu S I 2001 Phys. Rev. A 64 013417Google Scholar

    [42]

    Shan B, Chang Z H 2001 Phys. Rev. A 65 011804(RGoogle Scholar

    [43]

    Baltuska A, Fuji T, Kobayashi T 2002 Phys. Rev. Lett. 88 133901Google Scholar

    [44]

    Gibson E A, Paul A, Wagner N, Tobey R, Backus S, Christov I P, Murnane M M, Kapteyn H C 2004 Phys. Rev. Lett. 92 033001Google Scholar

    [45]

    Schiessl K, Ishikawa K L, Persson E, Burgdorfer J 2007 Phys. Rev. Lett. 99 253903Google Scholar

    [46]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901Google Scholar

    [47]

    Colosimo P, Doumy G, Blaga C I, Wheeler J, Hauri C, Catoire F, Tate J, Chirla R, March A M, Paulus G G, Muller H G, Agostini P, DiMauro L F 2008 Nat. Phys. 4 386Google Scholar

    [48]

    Fu Y, Xiong H, Xu H, Yao J, Yu Y, Zeng B, Chu W, Liu X, Chen J, Cheng Y, Xu Z 2009 Phys. Rev. A 79 013802Google Scholar

    [49]

    Popmintchev T, Chen M Ch, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. U.S.A. 106 10516Google Scholar

    [50]

    Shiner A D, Herrero C T, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguėre M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902Google Scholar

    [51]

    Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186

    [52]

    Pan Y, Guo F M, Jin C, Yang Y J, Ding D J 2019 Phys. Rev. A 99 033411Google Scholar

    [53]

    Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [54]

    Tate J, Auguste T, Muller H G, Saliéres P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901Google Scholar

    [55]

    Mauritsson J, Johnsson P, Gustafsson E, L’ Huillier A, Schafer K J, Gaarde M B 2006 Phys. Rev. Lett. 97 013001Google Scholar

    [56]

    Oishi Y, Kaku M, Suda A, Kannari F, Midorikawa K 2006 Opt. Express 14 7230Google Scholar

    [57]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007 Phys. Rev. Lett. 98 203901Google Scholar

    [58]

    Li P C, Zhou X X, Wang G L, Zhao Z X 2009 Phys. Rev. A 80 053825Google Scholar

    [59]

    Takahashi E J, Lan P F, Mücke O D, Nabekawa Y, Midorikawa K 2010 Phys. Rev. Lett. 104 233901Google Scholar

    [60]

    Lan P F, Takahashi E J, Midorikawa K 2010 Phys. Rev. A 82 053413Google Scholar

    [61]

    Wu J, Zhang G T, Xia C L, Liu X S 2010 Phys. Rev. A 82 013411Google Scholar

    [62]

    Brugnera L, Frank F, Hoffmann D J, Torres R, Siegel T, Underwood J G, Springate E, Froud C, Turcu E I C, Tisch J W G, Marangos J P 2010 Opt. Lett. 35 23

    [63]

    Li P C, Liu I L, Chu S I 2011 Opt. Express 19 23857Google Scholar

    [64]

    Wang Z, Li Y, Wang S Y, Hong W Y, Zhang Q B, Lu P X 2013 Phys. Rev. A 87 033822Google Scholar

    [65]

    Li P C, Laughlin C, Chu S I 2014 Phys. Rev. A 89 023431Google Scholar

    [66]

    Chou Y, Li P C, Ho T S, Chu S I 2015 Phys. Rev. A 91 063408Google Scholar

    [67]

    Shao R Z, Zhai C Y, Zhang Y F, He L X, Zhu X S, Lan P F, Lu P X 2021 J. Phys. B: At. Mol. Opt. Phys. 54 064001Google Scholar

    [68]

    Chou Y, Li P C, Ho T S, Chu S I 2015 Phys. Rev. A 92 023423Google Scholar

    [69]

    Jin C, Wang G L, Wei H, Le A T, Lin C D 2014 Nat. Commun. 5 4003Google Scholar

    [70]

    Liu I L, Li P C, Chu S I 2011 Phys. Rev. A 84 033414Google Scholar

    [71]

    Li P C, Chu S I 2012 Phys. Rev. A 86 013411Google Scholar

    [72]

    叶小亮, 周效信, 赵松峰, 李鹏程 2009 物理学报 58 1579Google Scholar

    Ye X L, Zhou X X, Zhao S F, Li P C 2009 Acta Phys. Sin. 58 1579Google Scholar

    [73]

    Shelton R K, Ma L S, Kapteyn H C, Murnane M M, Hall J L, Ye J 2001 Science 293 5533

    [74]

    Hassan M Th, Grguras I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar

    [75]

    Wirth A, Hassan M TH, Grguras I, Gagnon J, Moulef A, Luu T T, Pabst S, Santra R, Alahmed Z A, Aeezzr A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 6053

    [76]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [77]

    Feng L Q, Chu T S 2011 Phys. Rev. A 375 3641

    [78]

    Jin C, Hong K H, Lin C D 2017 Phys. Rev. A 96 013422Google Scholar

    [79]

    Gaarde M B, Tate J L, Schafer K J 2008 J. Phys. B 41 132001Google Scholar

    [80]

    Geissler M, Tempea G, Scrinzi A, Schnürer M, Krausz F, Brabec T 1999 Phys. Rev. Lett. 83 2930Google Scholar

    [81]

    Tosa V, Kim H T, Kim I J, Nam C H 2005 Phys. Rev. A 71 063807Google Scholar

    [82]

    Jin C, Le A T, Trallero-Herrero C A, Lin C D 2011 Phys. Rev. A 84 043411Google Scholar

    [83]

    Tong X M, Chu S I 1997 Chem. Phys. 217 119Google Scholar

    [84]

    Chu X, Chu S I 2001 Phys. Rev. A 64 013406Google Scholar

    [85]

    Priori E, Cerullo G, Nisoli M, Stagira S, De Silvestri S, Villoresi P, Poletto L, Ceccherini P, Altucci C, Bruzzese R, de Lisio C 2000 Phys. Rev. A 61 063801Google Scholar

    [86]

    Tong X M, Chu S I 2000 Phys. Rev. A 61 031401Google Scholar

    [87]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Aliǎuskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, García C H, Plaja L, Becker A, Becker A J, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [88]

    Carrera J J, Tong X M, Chu S I 2006 Phys. Rev. A 74 023404Google Scholar

    [89]

    Saliéres P, Antoine P, de Bohan A, Lewenstein M 1998 Phys. Rev. Lett. 81 5544Google Scholar

  • 图 1  (a) 优化前和优化后的双色组合激光场; (b)优化前和优化后的双色组合激光场驱动He原子产生的高次谐波谱

    Figure 1.  (a) Initial laser field and the optimized two-color laser field; (b) corresponding HHG power spectra

    图 2  (a) 优化前高次谐波时频分析图; (b)优化后高次谐波时频分析图

    Figure 2.  Wavelet time-frequency of the HHG spectra for the cases of (a) initial and (b) optimized two-color laser fields

    图 3  (a) 优化后给定阶次高次谐波强度随时间变化关系; (b)对比优化前后单个阿秒脉冲的产生

    Figure 3.  (a) Dipole time profiles of harmonics from the 70th to the 170th harmonic order; (b) attosecond pulse generation for the cases of the initial and optimized two-color laser fields

    图 4  (a) 优化前和优化后的三色组合激光场; (b)优化前和优化后的三色组合激光场驱动He原子产生的高次谐波谱

    Figure 4.  (a) Initial laser field and the optimized three-color laser field; (b) corresponding HHG power spectra

    图 5  (a) 优化前高次谐波时频分析图; (b)优化后高次谐波时频分析图

    Figure 5.  Wavelet time-frequency of the HHG spectra for the cases of (a) initial and (b) optimized three-color laser fields

    图 6  (a) 优化后给定阶次高次谐波强度随时间变化关系; (b)优化前后单个阿秒脉冲的产生

    Figure 6.  (a) Dipole time profiles of harmonics from the 110th to the 200th harmonic order; (b) attosecond pulse generation for the cases of the initial and optimized three-color laser fields

    图 7  优化的宏观双色组合激光场空间传播效应 (a)演化前激光场; (b)演化后激光场; (c)轴上演化前和演化后激光场对比; (d)驱动单原子激光场与宏观演化后轴上激光场对比

    Figure 7.  Macroscopic propagation effects of the optimized two-color laser fields: (a) Entrance; (b) exit; (c) comparison of entrance and exit on axis; (d) comparison of the fields for single-atom case and mac-field on axis

    图 8  (a) 远场高次谐波空间分布; (b)单原子与远场高次谐波对比; (c)远场阿秒脉冲空间分布

    Figure 8.  (a) Spatial distribution of far-field HHG; (b) comparison of single atom and far-field HHG; (c) spatial distribution of far-field attosecond pulse.

    图 9  (a) 轴上高次谐波时频分析; (b)轴外0.37 mm处高次谐波时频分析; (c)轴上与轴外0.37 mm处获得的单个最短阿秒脉冲

    Figure 9.  (a) Wavelet time-frequency of the HHG spectra on axis; (b) wavelet time-frequency of the HHG spectra at 0.37 mm off axis; (c) on-axis and off-axis attosecond pulse generation

    图 10  轴上不同气体靶位置产生的单个阿秒脉冲对比

    Figure 10.  Comparison of single attosecond pulse for the different target position

    表 1  He原子模型势参数(原子单位制)[65]

    Table 1.  Model potential parameters for He (in a.u.)[65]

    $ l $ $ \alpha $ $r_{\rm{c}}$ S $ A_1 $ $ A_2 $ $ B_1 $ $ B_2 $
    $ 0 $ $ 0.28125 $ $ 2.0 $ $ -7.9093912 $ $ -10.899664 $ 0 $ 1.7 $ $ 3.8 $
    $ 1 $ $ 0.28125 $ $ 2.0 $ $ 1.50094970 $ $ 0.11297684 $ 0 $ 1.3 $ $ 3.8 $
    $ 2 $ $ 0.28125 $ $ 2.0 $ $ 0.88294766 $ $ -0.032043029 $ 0 $ 1.3 $ $ 3.8 $
    $ 3 $ $ 0.28125 $ $ 2.0 $ $ 0.41193110 $ $ -0.129391180 $ 0 $ 1.3 $ $ 3.8 $
    $ \geqslant 3 $ $ 0.28125 $ $ 2.0 $ $0$ $0$ 0 $ 1.3 $ $ 0 $
    DownLoad: CSV
  • [1]

    Telnov D A, Chu S I 2009 Phys. Rev. A 79 041401Google Scholar

    [2]

    Garcia Ruiz R F, Vernon A R, Binnersley C L, Sahoo B K, Bissell M, Billowes J, Cocolios T E, Gins W, de Groote R P, Flanagan K T, Koszorus A, Lynch K M, Neyens G, Ricketts C M, Wendt K D A, Wilkins S G, Yang X F 2018 Phys. Rev. X 8 041005

    [3]

    Wang R, Zhang Q, Li D, Xu S, Cao P, Zhou Y, Cao W, Lu P 2019 Opt. Express 27 6471Google Scholar

    [4]

    Ge P, Fang Y, Guo Z, Ma X, Yu X, Han M, Wu C, Gong Q, Liu Y 2021 Phys. Rev. Lett. 126 223001Google Scholar

    [5]

    De Silva A H N C, Atri-Schuller D, Dubey S, Acharya B P, Romans K L, Foster K, Russ O, Compton K, Rischbieter C, Douguet N, Bartschat K, Fischer D 2021 Phys. Rev. Lett. 126 023201Google Scholar

    [6]

    Liu M M, Shao Y, Han M, Ge P, Deng Y, Wu C, Gong Q, Liu Y 2018 Phys. Rev. Lett. 120 043201Google Scholar

    [7]

    Li W K, Lei Y, Li X, Yang T, Du M, Jiang Y, Li J L, Luo S Z, Liu A H, He L H, Ma P, Zhang D D, Ding D J 2021 Chin. Phys. Lett. 38 053202Google Scholar

    [8]

    Kelvich S A, Becker W, Goreslavski S P 2017 Phys. Rev. A 96 023427Google Scholar

    [9]

    Brennecke S, Lein M 2018 Phys. Rev. A 98 063414Google Scholar

    [10]

    Brennecke S, Lein M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 094005Google Scholar

    [11]

    Shi M, Lai X, Yu S, Wang Y, Quan W, Liu X 2022 Phys. Rev. A 105 013118Google Scholar

    [12]

    Yang Q, Leng J, Wang Y H, Sun Y N, Du H B, Zhang D D, Song L L, He L H, Liu F C 2022 Chin. Phys. Lett. 39 023301Google Scholar

    [13]

    Verhoef A J, Mitrofanov A V, Serebryannikov E E, Kartashov D V, Zheltikov A M, Baltuška A 2010 Phys. Rev. Lett. 104 163904Google Scholar

    [14]

    Chen Y, Zhou Y, Tan J, Li M, Cao W, Lu P 2021 Phys. Rev. A 104 043107Google Scholar

    [15]

    Ni H, Brennecke S, Gao X, He P L, Donsa S, Březinová I, He F, Wu J, Lein M, Tong X M, Burgdörfer J 2020 Phys. Rev. Lett. 125 073202Google Scholar

    [16]

    Tan J, Zhou Y, He M, Ke Q, Liang J, Li Y, Li M, Lu P 2019 Phys. Rev. A 99 033402Google Scholar

    [17]

    Luo S, Li M, Xie W, Liu K, Feng Y, Du B, Zhou Y, Lu P 2019 Phys. Rev. A 99 053422Google Scholar

    [18]

    Zhao Y, Zhou Y, Liang J, Zeng Z, Ke Q, Liu Y, Li M, Lu P 2019 Opt. Express 27 21689Google Scholar

    [19]

    Douguet N, Bartschat K 2018 Phys. Rev. A 97 013402Google Scholar

    [20]

    Yoshikawa N, Tamaya T 2017 Science 356 736Google Scholar

    [21]

    Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [22]

    Uchida K, Mattoni G, Yonezawa S, Nakamura F, Maeno Y, Tanaka K 2020 Phys. Rev. Lett. 128 127401Google Scholar

    [23]

    Yu C, Jiang S, Lu R 2019 Adv. Phys. X 4 1562982

    [24]

    Zhang J, Hua L Q, Chen Zh, Zhu M F, Gong Ch, Liu X J 2020 Chin. Phys. Lett. 37 124203Google Scholar

    [25]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [26]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [27]

    Ferray M, L’Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 3

    [28]

    L’Huillier A, Balcou Ph 1993 Phys. Rev. Lett. 70 766Google Scholar

    [29]

    Macklin J J, Kmetec J D, Gordon Ⅲ C L 1993 Phys. Rev. Lett. 70 774Google Scholar

    [30]

    L’Huillier A, Schafer K J, Kulander K C 1991 J. Phys. B: At. Mol. Opt. Phys. 24 3315Google Scholar

    [31]

    Corkum P B 1993 Phys. Rev. Lett. 71 13

    [32]

    Kulander K C, Schafer K J, Krause J L 1991 Phys. Rev. Lett. 66 2601Google Scholar

    [33]

    Lewenstein M, Balcou Ph, Ivanov M Yu, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [34]

    L’Huillier A, Lewenstein M, Saliěres P, Balcou Ph, Ivanov M Yu, Larsson J, Wahlström C G 1993 Phys. Rev. A 4 8

    [35]

    Kulander K C 1988 Phys. Rev. A 38 778Google Scholar

    [36]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. A 45 4998Google Scholar

    [37]

    Runge E, Gross E K U 1984 Phys. Rev. Lett. 52 997Google Scholar

    [38]

    魏志义, 钟诗阳, 贺新奎, 赵昆, 滕浩, 王帅, 梁玥瑛, 王佶, 喻苏玉, 陈云琳, 朱江峰 2021 中国激光 48 0501001Google Scholar

    Wei Z Y, Zhong S Y, He X K, Zhao K, Teng H, Wang S, Liang Y Y, Wang J, Yu S Y, Chen Y L, Zhu J F 2021 Chin. J. Lasers 48 0501001Google Scholar

    [39]

    Spielmann C, Burnett N H, Sartania S, Koppitsch R, Schnurer M, Kan C, Lenzner M, Wobrauschek P, Krausz F 1997 Science 278 661Google Scholar

    [40]

    Chang Z, Rundquist A, Wang H, Murnane M M, Kapteyn H C 1997 Phys. Rev. Lett. 79 2967Google Scholar

    [41]

    Tong X M, Chu S I 2001 Phys. Rev. A 64 013417Google Scholar

    [42]

    Shan B, Chang Z H 2001 Phys. Rev. A 65 011804(RGoogle Scholar

    [43]

    Baltuska A, Fuji T, Kobayashi T 2002 Phys. Rev. Lett. 88 133901Google Scholar

    [44]

    Gibson E A, Paul A, Wagner N, Tobey R, Backus S, Christov I P, Murnane M M, Kapteyn H C 2004 Phys. Rev. Lett. 92 033001Google Scholar

    [45]

    Schiessl K, Ishikawa K L, Persson E, Burgdorfer J 2007 Phys. Rev. Lett. 99 253903Google Scholar

    [46]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901Google Scholar

    [47]

    Colosimo P, Doumy G, Blaga C I, Wheeler J, Hauri C, Catoire F, Tate J, Chirla R, March A M, Paulus G G, Muller H G, Agostini P, DiMauro L F 2008 Nat. Phys. 4 386Google Scholar

    [48]

    Fu Y, Xiong H, Xu H, Yao J, Yu Y, Zeng B, Chu W, Liu X, Chen J, Cheng Y, Xu Z 2009 Phys. Rev. A 79 013802Google Scholar

    [49]

    Popmintchev T, Chen M Ch, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. U.S.A. 106 10516Google Scholar

    [50]

    Shiner A D, Herrero C T, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguėre M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902Google Scholar

    [51]

    Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186

    [52]

    Pan Y, Guo F M, Jin C, Yang Y J, Ding D J 2019 Phys. Rev. A 99 033411Google Scholar

    [53]

    Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [54]

    Tate J, Auguste T, Muller H G, Saliéres P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901Google Scholar

    [55]

    Mauritsson J, Johnsson P, Gustafsson E, L’ Huillier A, Schafer K J, Gaarde M B 2006 Phys. Rev. Lett. 97 013001Google Scholar

    [56]

    Oishi Y, Kaku M, Suda A, Kannari F, Midorikawa K 2006 Opt. Express 14 7230Google Scholar

    [57]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007 Phys. Rev. Lett. 98 203901Google Scholar

    [58]

    Li P C, Zhou X X, Wang G L, Zhao Z X 2009 Phys. Rev. A 80 053825Google Scholar

    [59]

    Takahashi E J, Lan P F, Mücke O D, Nabekawa Y, Midorikawa K 2010 Phys. Rev. Lett. 104 233901Google Scholar

    [60]

    Lan P F, Takahashi E J, Midorikawa K 2010 Phys. Rev. A 82 053413Google Scholar

    [61]

    Wu J, Zhang G T, Xia C L, Liu X S 2010 Phys. Rev. A 82 013411Google Scholar

    [62]

    Brugnera L, Frank F, Hoffmann D J, Torres R, Siegel T, Underwood J G, Springate E, Froud C, Turcu E I C, Tisch J W G, Marangos J P 2010 Opt. Lett. 35 23

    [63]

    Li P C, Liu I L, Chu S I 2011 Opt. Express 19 23857Google Scholar

    [64]

    Wang Z, Li Y, Wang S Y, Hong W Y, Zhang Q B, Lu P X 2013 Phys. Rev. A 87 033822Google Scholar

    [65]

    Li P C, Laughlin C, Chu S I 2014 Phys. Rev. A 89 023431Google Scholar

    [66]

    Chou Y, Li P C, Ho T S, Chu S I 2015 Phys. Rev. A 91 063408Google Scholar

    [67]

    Shao R Z, Zhai C Y, Zhang Y F, He L X, Zhu X S, Lan P F, Lu P X 2021 J. Phys. B: At. Mol. Opt. Phys. 54 064001Google Scholar

    [68]

    Chou Y, Li P C, Ho T S, Chu S I 2015 Phys. Rev. A 92 023423Google Scholar

    [69]

    Jin C, Wang G L, Wei H, Le A T, Lin C D 2014 Nat. Commun. 5 4003Google Scholar

    [70]

    Liu I L, Li P C, Chu S I 2011 Phys. Rev. A 84 033414Google Scholar

    [71]

    Li P C, Chu S I 2012 Phys. Rev. A 86 013411Google Scholar

    [72]

    叶小亮, 周效信, 赵松峰, 李鹏程 2009 物理学报 58 1579Google Scholar

    Ye X L, Zhou X X, Zhao S F, Li P C 2009 Acta Phys. Sin. 58 1579Google Scholar

    [73]

    Shelton R K, Ma L S, Kapteyn H C, Murnane M M, Hall J L, Ye J 2001 Science 293 5533

    [74]

    Hassan M Th, Grguras I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar

    [75]

    Wirth A, Hassan M TH, Grguras I, Gagnon J, Moulef A, Luu T T, Pabst S, Santra R, Alahmed Z A, Aeezzr A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 6053

    [76]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [77]

    Feng L Q, Chu T S 2011 Phys. Rev. A 375 3641

    [78]

    Jin C, Hong K H, Lin C D 2017 Phys. Rev. A 96 013422Google Scholar

    [79]

    Gaarde M B, Tate J L, Schafer K J 2008 J. Phys. B 41 132001Google Scholar

    [80]

    Geissler M, Tempea G, Scrinzi A, Schnürer M, Krausz F, Brabec T 1999 Phys. Rev. Lett. 83 2930Google Scholar

    [81]

    Tosa V, Kim H T, Kim I J, Nam C H 2005 Phys. Rev. A 71 063807Google Scholar

    [82]

    Jin C, Le A T, Trallero-Herrero C A, Lin C D 2011 Phys. Rev. A 84 043411Google Scholar

    [83]

    Tong X M, Chu S I 1997 Chem. Phys. 217 119Google Scholar

    [84]

    Chu X, Chu S I 2001 Phys. Rev. A 64 013406Google Scholar

    [85]

    Priori E, Cerullo G, Nisoli M, Stagira S, De Silvestri S, Villoresi P, Poletto L, Ceccherini P, Altucci C, Bruzzese R, de Lisio C 2000 Phys. Rev. A 61 063801Google Scholar

    [86]

    Tong X M, Chu S I 2000 Phys. Rev. A 61 031401Google Scholar

    [87]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Aliǎuskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, García C H, Plaja L, Becker A, Becker A J, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [88]

    Carrera J J, Tong X M, Chu S I 2006 Phys. Rev. A 74 023404Google Scholar

    [89]

    Saliéres P, Antoine P, de Bohan A, Lewenstein M 1998 Phys. Rev. Lett. 81 5544Google Scholar

  • [1] Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen. Prospect for attosecond laser spectra of highly charged ions. Acta Physica Sinica, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [2] Chen Gao. Isolated attosecond pulse generation from helium atom irradiated by a three-color laser pulse. Acta Physica Sinica, 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [3] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] Guo Chun-Xiang, Jiao Zhi-Hong, Zhou Xiao-Xin, Li Peng-Cheng. Mechanism of laser intensity-dependent below-threshold harmonic generation. Acta Physica Sinica, 2020, 69(7): 074203. doi: 10.7498/aps.69.20191883
    [5] Lü Xiao-Yuan, Zhu Ruo-Bi, Song Hao, Su Ning, Chen Gao. Isolated attosecond pulse generation from a double optical gating scheme based on orthogonal polarization field. Acta Physica Sinica, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [6] Tang Rong, Wang Guo-Li, Li Xiao-Yong, Zhou Xiao-Xin. Compression of extreme ultraviolet pulse for atom with resonant structure exposed to an infrared laser field. Acta Physica Sinica, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [7] Zeng Ting-Ting, Li Peng-Cheng, Zhou Xiao-Xin. Single isolated attosecond pulse generated by helium atom exposed to the two laser pulses with the same color and midinfrared intense laser pulse in the plasmon. Acta Physica Sinica, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [8] Huang Feng, Li Peng-Cheng, Zhou Xiao-Xin. Isolated attosecond pulse generated by a model helium atom exposed to the combined field. Acta Physica Sinica, 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
    [9] Lu Ying-Ying, Zeng Zhi-Nan, Zheng Ying-Hui, Zou Pu, Liu Can-Dong, Gong Cheng, Li Ru-Xin, Xu Zhi-Zhan. Macroscopic effects of high-order harmonic and isolated attosecond pulse generation driven by two-color laser field. Acta Physica Sinica, 2011, 60(10): 103202. doi: 10.7498/aps.60.103202
    [10] Chen Yang, Chen Ji-Gen, Yang Yu-Jun. Isolated intense 39 attosecond pulse generatedby adding a harmonic pulse. Acta Physica Sinica, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [11] Pan Hui-Ling, Li Peng-Cheng, Zhou Xiao-Xin. Single attosecond pulse generated by atom exposed to two laser pulses with the same color and half cycle pulses. Acta Physica Sinica, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [12] Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Single attosecond pulse generated by model helium atom exposed to the combined field of an intense few-cycle chirped laser pulse and a half cycle pulse. Acta Physica Sinica, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [13] Cheng Chun-Zhi, Zhou Xiao-Xin, Li Peng-Cheng. The wavelength dependence of high-order harmonic generationand attosecond pulses from atom in infrared laser field. Acta Physica Sinica, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [14] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [15] Ye Xiao-Liang, Zhou Xiao-Xin, Zhao Song-Feng, Li Peng-Cheng. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [16] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Proposal for single attosecond pulse production with a 43 fs super intense laser pulse. Acta Physica Sinica, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [17] Zhao Song-Feng, Zhou Xiao-Xin, Jin Cheng. Investigation of high order harmonic generation and ionization of model hydrogen atoms and real hydrogen atom in intense laser field. Acta Physica Sinica, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [18] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Redshift of harmonics by laser interaction with solid target. Acta Physica Sinica, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [19] Li Peng-Cheng, Zhou Xiao-Xin, Dong Chen-Zhong, Zhao Song-Feng. Investigation of the high harmonic generation and ionization of atoms with long-range and short-range potentials in intense laser fields. Acta Physica Sinica, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [20] Zeng Zhi-Nan, Li Ru-Xin, Xie Xin-Hua, Xu Zhi-Zhan. High-order harmonic attosecond pulses driven by a two-pulse laser. Acta Physica Sinica, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
Metrics
  • Abstract views:  4829
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2022
  • Accepted Date:  24 August 2022
  • Available Online:  18 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回