- 
				With the numerical solution of the time-dependent Schrodinger equation, we theoretically investigate the high-order harmonic emissions generated by the atoms irradiated by the ultrashort lasers with different wavelengths but the same pondermotive energy. As the driving-laser wavelength increases, the intensity of the high-harmonic emission decreases. Comparing with the harmonic spectra of atoms driven by a 1000-nm-wavelength laser pulse, a new peak structure appears in the spectra of atoms driven by a 5000-nm-wavelength laser wavelength. It is shown by the time-frequency analysis of the harmonic emission, the time-dependent evolution of the electron density, and the time-dependent population analysis of the eigenstate, that the physical mechanism behind the new peak appearing in the harmonic spectra is the interference between the harmonic emission generated by the electrons ionized out of the excited atoms returning to the parent ions and the harmonic emissions resulting from the ground state ionization.- 
										Keywords:
										
- higher harmonic generation /
- mid-infrared laser /
- attosecond pulse
 [1] Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389  Google Scholar Google Scholar[2] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545  Google Scholar Google Scholar[3] Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601  Google Scholar Google Scholar[4] Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805  Google Scholar Google Scholar[5] Qiao Y, Huo Y Q, Jiang S C, Yang Y J, Chen J G 2022 Opt. Express 30 9971  Google Scholar Google Scholar[6] Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X, Cheng Y 2021 Chin. Phys. Lett. 38 123301  Google Scholar Google Scholar[7] Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202  Google Scholar Google Scholar[8] Li X F, l’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751  Google Scholar Google Scholar[9] Altucci C, Velotta R, Heesel E, Springate E, Marangos J P, Vozzi C 2006 Phys. Rev. A 73 043411  Google Scholar Google Scholar[10] Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S, Itatani J 2014 Nat. Commun. 5 3331  Google Scholar Google Scholar[11] Silva F, Teichmann S M, Cousin S L, Hemmer M, Biegert J 2015 Nat. Commun. 6 6611  Google Scholar Google Scholar[12] Marangos J P 2016 J. Phys. B 49 132001  Google Scholar Google Scholar[13] Dennis F G, Michael T, Elisabeth R S, Zhang X S, Benjamin R G, Christina L P, Robert K J, Charles B, Daniel E A, Henry C K, Margaret M, Murnane, Giulia F M 2017 Nat. Photonics 11 259  Google Scholar Google Scholar[14] Tadesse G K, Eschen W, Klas R, Hilbert V, Schelle D, Nathanael A 2018 Sci. Rep. 8 8677 [15] Avner F, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543  Google Scholar Google Scholar[16] Kfier O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99  Google Scholar Google Scholar[17] Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760  Google Scholar Google Scholar[18] Donnelly T D, Ditmire T, Neuman K, Perry M, Falcone R. W 1996 Phys. Rev. Lett. 76 2472  Google Scholar Google Scholar[19] Popmintchev T, Chen M Y, Popmintchevpaul D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287  Google Scholar Google Scholar[20] Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth J V, Kienberger R, Ernstorfer R, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 70  Google Scholar Google Scholar[21] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201  Google Scholar Google Scholar[22] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Mullerm H G, Büttiker M, Keller R U 2008 Science 322 1525  Google Scholar Google Scholar[23] Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348  Google Scholar Google Scholar[24] Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, Wörner H J 2015 Science 350 790  Google Scholar Google Scholar[25] Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66  Google Scholar Google Scholar[26] Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B 49 142001  Google Scholar Google Scholar[27] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 4 509 [28] Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Nature 427 817821  Google Scholar Google Scholar[29] Andriukaitis G, Balčiūnas T, Ališauskas S, Pugžlys A, Baltuška A, Popmintchev T, Chen M C, Murnane M M, Kapteyn H C 2011 Opt. Lett. 36 2755  Google Scholar Google Scholar[30] Krebs M, Hädrich S, Demmler S, Rothhardt J, Zair A, Chipperfield L, Limpert J, Tünnermann A 2013 Nat. Photonics 7 555  Google Scholar Google Scholar[31] Liang H k, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro L F, Kärtner F X, Hong K H 2017 Nat. Commun. 8 141  Google Scholar Google Scholar[32] Labaye F, Gaponenko M, Modsching N, Brochard P, Paradis C, Schilt S, Wittwer V J, Südmeyer T 2019 IEEE J. Sel. Top. Quantum Electron. 25 880619  Google Scholar Google Scholar[33] Pires H, Baudisch M, Sanchez D, Hemmer M, Biegert J 2015 Prog. Quantum. Electron. 43 1  Google Scholar Google Scholar[34] Musheghyan M, Geetha P P, Faccialà D, Pusala A, Crippa G, Campolo A, Ciriolo A G, Devetta M, Assion A, Manzoni C, Vozzi C, Stagira S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 185402  Google Scholar Google Scholar[35] Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M, Zhang J 2019 Phys. Rev. Appl. 12 054024  Google Scholar Google Scholar[36] Tomilov S, Hoffmann M, Wang Y, Saraceno C J 2021 J. Phys.: Photonics 3 022002  Google Scholar Google Scholar[37] Grafenstein L von, Bock M, Ueberschaer D, Escoto E, Koç A, Zawilski K, Schunemann P, Griebner U, Elsaesser T 2020 Opt. Lett. 45 5998  Google Scholar Google Scholar[38] Tian K, He L, Yang X, Liang H 2021 Photonics 8 290  Google Scholar Google Scholar[39] Feng T, Heilmann A, Bock M, Ehrentraut L, Witting T, Yu H H, Stiel H, Eisebitt S, Schnürer M 2020 Opt. Express 28 8724  Google Scholar Google Scholar[40] Leshchenko V E, Talbert B K, Lai Y H, Li S, Tang Y, Hageman S J, Smith G, Agostini P, DiMauro L F, Blaga C I 2020 Optica 7 981  Google Scholar Google Scholar[41] Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Philos. Trans. R. Soc. London, Ser. A 377 20180384  Google Scholar Google Scholar[42] Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking M J J, Elsaesser T, Nibbering E T J, Rouzée A 2019 J. Phys. Chem. Lett. 10 52  Google Scholar Google Scholar[43] Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optics 7 168 [44] Duchon C E 1979 J. Appl. Meteorol. Clim. 18 1016  Google Scholar Google Scholar[45] Qiao Y, Wu D, Chen J G, Wang J, Guo F M, Yang Y J 2019 Phys. Rev. A 100 06342 [46] Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M, Yang Y J 2015 Phys. Rev. A 92 033848  Google Scholar Google Scholar[47] Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203  Google Scholar Google Scholar[48] Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 6 1537 [49] Guo F M, Yang Y J, Jin M X, Ding D J, Zhu Q R 2009 Chin. Phys. Lett. 26 053201  Google Scholar Google Scholar[50] Serebryannikov E E, Zheltikov A M 2016 Phys. Rev. Lett. 116 123901  Google Scholar Google Scholar[51] Chen J, Zeng B, Liu X, Cheng Y, Xu Z 2009 New J. Phys. 11 113021  Google Scholar Google Scholar
- 
				
    
    
- 
				
[1] Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389  Google Scholar Google Scholar[2] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545  Google Scholar Google Scholar[3] Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601  Google Scholar Google Scholar[4] Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805  Google Scholar Google Scholar[5] Qiao Y, Huo Y Q, Jiang S C, Yang Y J, Chen J G 2022 Opt. Express 30 9971  Google Scholar Google Scholar[6] Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X, Cheng Y 2021 Chin. Phys. Lett. 38 123301  Google Scholar Google Scholar[7] Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202  Google Scholar Google Scholar[8] Li X F, l’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751  Google Scholar Google Scholar[9] Altucci C, Velotta R, Heesel E, Springate E, Marangos J P, Vozzi C 2006 Phys. Rev. A 73 043411  Google Scholar Google Scholar[10] Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S, Itatani J 2014 Nat. Commun. 5 3331  Google Scholar Google Scholar[11] Silva F, Teichmann S M, Cousin S L, Hemmer M, Biegert J 2015 Nat. Commun. 6 6611  Google Scholar Google Scholar[12] Marangos J P 2016 J. Phys. B 49 132001  Google Scholar Google Scholar[13] Dennis F G, Michael T, Elisabeth R S, Zhang X S, Benjamin R G, Christina L P, Robert K J, Charles B, Daniel E A, Henry C K, Margaret M, Murnane, Giulia F M 2017 Nat. Photonics 11 259  Google Scholar Google Scholar[14] Tadesse G K, Eschen W, Klas R, Hilbert V, Schelle D, Nathanael A 2018 Sci. Rep. 8 8677 [15] Avner F, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543  Google Scholar Google Scholar[16] Kfier O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99  Google Scholar Google Scholar[17] Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760  Google Scholar Google Scholar[18] Donnelly T D, Ditmire T, Neuman K, Perry M, Falcone R. W 1996 Phys. Rev. Lett. 76 2472  Google Scholar Google Scholar[19] Popmintchev T, Chen M Y, Popmintchevpaul D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287  Google Scholar Google Scholar[20] Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth J V, Kienberger R, Ernstorfer R, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 70  Google Scholar Google Scholar[21] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201  Google Scholar Google Scholar[22] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Mullerm H G, Büttiker M, Keller R U 2008 Science 322 1525  Google Scholar Google Scholar[23] Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348  Google Scholar Google Scholar[24] Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, Wörner H J 2015 Science 350 790  Google Scholar Google Scholar[25] Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66  Google Scholar Google Scholar[26] Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B 49 142001  Google Scholar Google Scholar[27] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 4 509 [28] Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Nature 427 817821  Google Scholar Google Scholar[29] Andriukaitis G, Balčiūnas T, Ališauskas S, Pugžlys A, Baltuška A, Popmintchev T, Chen M C, Murnane M M, Kapteyn H C 2011 Opt. Lett. 36 2755  Google Scholar Google Scholar[30] Krebs M, Hädrich S, Demmler S, Rothhardt J, Zair A, Chipperfield L, Limpert J, Tünnermann A 2013 Nat. Photonics 7 555  Google Scholar Google Scholar[31] Liang H k, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro L F, Kärtner F X, Hong K H 2017 Nat. Commun. 8 141  Google Scholar Google Scholar[32] Labaye F, Gaponenko M, Modsching N, Brochard P, Paradis C, Schilt S, Wittwer V J, Südmeyer T 2019 IEEE J. Sel. Top. Quantum Electron. 25 880619  Google Scholar Google Scholar[33] Pires H, Baudisch M, Sanchez D, Hemmer M, Biegert J 2015 Prog. Quantum. Electron. 43 1  Google Scholar Google Scholar[34] Musheghyan M, Geetha P P, Faccialà D, Pusala A, Crippa G, Campolo A, Ciriolo A G, Devetta M, Assion A, Manzoni C, Vozzi C, Stagira S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 185402  Google Scholar Google Scholar[35] Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M, Zhang J 2019 Phys. Rev. Appl. 12 054024  Google Scholar Google Scholar[36] Tomilov S, Hoffmann M, Wang Y, Saraceno C J 2021 J. Phys.: Photonics 3 022002  Google Scholar Google Scholar[37] Grafenstein L von, Bock M, Ueberschaer D, Escoto E, Koç A, Zawilski K, Schunemann P, Griebner U, Elsaesser T 2020 Opt. Lett. 45 5998  Google Scholar Google Scholar[38] Tian K, He L, Yang X, Liang H 2021 Photonics 8 290  Google Scholar Google Scholar[39] Feng T, Heilmann A, Bock M, Ehrentraut L, Witting T, Yu H H, Stiel H, Eisebitt S, Schnürer M 2020 Opt. Express 28 8724  Google Scholar Google Scholar[40] Leshchenko V E, Talbert B K, Lai Y H, Li S, Tang Y, Hageman S J, Smith G, Agostini P, DiMauro L F, Blaga C I 2020 Optica 7 981  Google Scholar Google Scholar[41] Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Philos. Trans. R. Soc. London, Ser. A 377 20180384  Google Scholar Google Scholar[42] Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking M J J, Elsaesser T, Nibbering E T J, Rouzée A 2019 J. Phys. Chem. Lett. 10 52  Google Scholar Google Scholar[43] Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optics 7 168 [44] Duchon C E 1979 J. Appl. Meteorol. Clim. 18 1016  Google Scholar Google Scholar[45] Qiao Y, Wu D, Chen J G, Wang J, Guo F M, Yang Y J 2019 Phys. Rev. A 100 06342 [46] Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M, Yang Y J 2015 Phys. Rev. A 92 033848  Google Scholar Google Scholar[47] Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203  Google Scholar Google Scholar[48] Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 6 1537 [49] Guo F M, Yang Y J, Jin M X, Ding D J, Zhu Q R 2009 Chin. Phys. Lett. 26 053201  Google Scholar Google Scholar[50] Serebryannikov E E, Zheltikov A M 2016 Phys. Rev. Lett. 116 123901  Google Scholar Google Scholar[51] Chen J, Zeng B, Liu X, Cheng Y, Xu Z 2009 New J. Phys. 11 113021  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 6565
- PDF Downloads: 158
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							 
							 
							