Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prospect for attosecond laser spectra of highly charged ions

Zhang Da-Cheng Ge Han-Xing Ba Yu-Lu Wen Wei-Qiang Zhang Yi Chen Dong-Yang Wang Han-Bing Ma Xin-Wen

Citation:

Prospect for attosecond laser spectra of highly charged ions

Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen
PDF
HTML
Get Citation
  • The spectra of highly charged ions (HCIs) are of great significance for astronomical observation, astrophysical model establishment, and test of quantum electrodynamics (QED) theory. However, the transitions of HCI are mostly in the extreme ultraviolet or even X-ray range, the excitation spectra of HCI measured by laser spectroscopy in laboratory are very limited due to lack of the suitable light source. Up to now, only few experiments on the spectra of HCIs performed on synchrotron radiation, free electron laser or heavy-ions storage ring have been reported, which are summarized in this work. With the development of attosecond technology, several attosecond light source facilities have been built, such as extreme light infrastructure attosecond light pulse source (ELI-ALPS) and synergetic extreme condition user facility (SECUF), which have high photon energy and ultra-short pulse duration in the extreme ultraviolet and even soft X-ray range, providing new opportunities for laboratory research on HCI spectra and ultra short energy level lifetimes. Electron beam ion trap (EBIT), electron cyclotron resonance (ECR), and heavy-ion storage ring are usually used to generate ion target. But it is difficult to combine the attosecond laser source with large scale facility of HCI, for none of laboratories has both these two facilities now. Thus, two possible experimental schemes for attosecond spectrum of HCIs are proposed in this work. One scheme is that an EBIT can be designed as a terminal of attosecond laser facility, such as ELI-ALPS and SECUF, which can output different laser beams with high photon energy, ultra-short pulse duration or high flux. Another scheme is that a table-top HHG system pumped by an all-solid-state femtosecond laser or fiber femtosecond laser with high power can be combined with heavy-ion storage ring, such as ESR, CSRe, HIAF, and FAIR. Owing to high energy of ions in storage ring, the measurable energy levels of HCIs can even be extended to keV by the Doppler shift. Three different measurement methods: fluorescence detection, ion detection and attosecond absorption spectroscopy, can be used to obtain the HCI spectrum. Finally, a preliminary experimental setup for attosecond laser spectrum of HCI is proposed. The proposal on combining extreme ultraviolet attosecond light source with HCI target is discussed, and the feasibility of attosecond time-resolved precision spectrum for HCI is analyzed according to the typical parameters of attosecond light source and the known excitation cross-section and detection efficiency, which can provide a new platform for implementing ion level structure calculation, QED theory high-precision test and astronomical spectroscopic observation. It can be used to measure the ultra-short lifetime, low excitation cross-section ionic energy level, and even some transitions with large energy interval. We hope that this work can provide a reference for the experimental measuring of HCI spectrum and ion energy level lifetime in future.
      Corresponding author: Zhang Da-Cheng, dch.zhang@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U2032136, U2241288).
    [1]

    Beyer H F, Shevelko V P 2002 Introduction to the Physics of Highly Charged Ions (Boca Raton: CRC Press) pp1–2

    [2]

    Epp S W, López-Urrutia J R C, Simon M C, Baumann T, Brenner G, Ginzel R, Guerassimova N, Mäckel V, Mokler P H, Schmitt B L, Tawara H, Ullrich J 2010 J. Phys. B At. Mol. Opt. Phys. 43 194008Google Scholar

    [3]

    Mackel V, Klawitter R, Brenner G, Crespo Lopez-Urrutia J R, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar

    [4]

    Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235 2Google Scholar

    [5]

    Träbert E 2014 Appl. Phys. B 114 167Google Scholar

    [6]

    Al Shorman M M, Gharaibeh M F, Bizau J M, Cubaynes D, Guilbaud S, Hassan N E, Miron C, Nicolas C, Robert E, Sakho I, Blancard C, McLaughlin B M 2013 J. Phys. B At. Mol. Opt. Phys. 46 195701Google Scholar

    [7]

    Champeaux J P, Bizau J M, Cubaynes D, Blancard C, Nahar S, Hitz D, Bruneau J, Wuilleumier F J 2003 Astrophys. J. Suppl. Ser. 148 583Google Scholar

    [8]

    Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y, Zhao G 2014 Astrophys. J. 783 124Google Scholar

    [9]

    Indelicato P 2019 J. Phys. B At. Mol. Opt. Phys. 52 232001Google Scholar

    [10]

    Nörtershäuser W 2011 Hyperfine Interact. 199 131Google Scholar

    [11]

    Yang L S, Church D A 1993 Phys. Rev. Lett. 70 3860Google Scholar

    [12]

    TrÌbert E 2002 Phys. Scr. T100 88Google Scholar

    [13]

    Träbert E 2005 Phys. Scr. T120 56Google Scholar

    [14]

    Karn R K, Mishra C N, Ahmad N, Safvan C P, Nandi T 2015 J. Atomic, Molecular, Condensate & Nano Phys. 2 127Google Scholar

    [15]

    Saito M, Chikaoka A, Majima T, Imai M, Tsuchida H, Haruyama Y 2018 Nucl. Instrum. Meth. B 414 68Google Scholar

    [16]

    Rothhardt J, Bilal M, Beerwerth R, Volotka A V, Hilbert V, Stöhlker T, Fritzsche S, Limpert J 2019 X-Ray Spectrom. 49 165Google Scholar

    [17]

    Franzke B, Geissel H, Münzenberg G 2008 Mass Spectrom. Rev. 27 428Google Scholar

    [18]

    Martinson I 1989 Rep. Prog. Phys. 52 157Google Scholar

    [19]

    Beyer H F, Gassner T, Trassinelli M, Heß R, Spillmann U, Banaś D, Blumenhagen K H, Bosch F, Brandau C, Chen W, Dimopoulou C, Förster E, Grisenti R E, Gumberidze A, Hagmann S, Hillenbrand P M, Indelicato P, Jagodzinski P, Kämpfer T, Kozhuharov C, Lestinsky M, Liesen D, Litvinov Y A, Loetzsch R, Manil B, Märtin R, Nolden F, Petridis N, Sanjari M S, Schulze K S, Schwemlein M, Simionovici A, Steck M, Stöhlker T, Szabo C I, Trotsenko S, Uschmann I, Weber G, Wehrhan O, Winckler N, Winters D F A, Winters N, Ziegler E 2015 J. Phys. B At. Mol. Opt. Phys. 48 144010Google Scholar

    [20]

    Patterson B M, Sell J F, Ehrenreich T, Gearba M A, Brooke G M, Scoville J, Knize R J 2015 Phys. Rev. A 91 012506Google Scholar

    [21]

    Schippersa S, Kilcoyne A L D, Phaneufc R A, Mullerd A 2016 Contemp Phys 57 215Google Scholar

    [22]

    Hangst J S, Berg-Sorensen K, Jessen P S, Kristensen M, Molmer K, Nielsen J S, Poulsen O, Schiffer J P, Shi P 1992 Nucl. Instrum. Meth. B 68 17Google Scholar

    [23]

    Klaft I I, Borneis S, Engel T, Fricke B, Grieser R, Huber G, Kuhl T, Marx D, Neumann R, Schroder S, Seelig P, Volker L 1994 Phys. Rev. Lett. 73 2425Google Scholar

    [24]

    Ullmann J, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Trageser C, Vollbrecht J, Weinheimer C, Nörtershäuser W 2017 Nat. Commun. 8 15484Google Scholar

    [25]

    Andjelkovic Z, Bharadia S, Sommer B, Vogel M, Nörtershäuser W 2010 Hyperfine Interact. 196 81Google Scholar

    [26]

    Bundesanstalt P T https://phys.org/news/2015-03-frozen-highly-ions-highest-precision.html [2023-6-7

    [27]

    Lyon I C, Peart B, West J B, Dolder K 1986 J. Phys. B At. Mol. Opt. Phys. 19 4137Google Scholar

    [28]

    Covington A M, Aguilar A, Covington I R, Gharaibeh M F, Hinojosa G, Shirley C A, Phaneuf R A, Álvarez I, Cisneros C, Dominguez-Lopez I, Sant’Anna M M, Schlachter A S, McLaughlin B M, Dalgarno A 2002 Phys. Rev. A 66 062710Google Scholar

    [29]

    Bizau J M, Champeaux J P, Cubaynes D, Wuilleumier F J, Folkmann F, Jacobsen T S, Penent F, Blancard C, Kjeldsen H 2005 Astron. Astrophys. 439 387Google Scholar

    [30]

    Simon M C, Schwarz M, Epp S W, Beilmann C, Schmitt B L, Harman Z, Baumann T M, Mokler P H, Bernitt S, Ginzel R, Higgins S G, Keitel C H, Klawitter R, Kubiček K, Mäckel V, Ullrich J, López-Urrutia J R C 2010 J. Phys. B At. Mol. Opt. Phys. 43 065003Google Scholar

    [31]

    Rudolph J K, Bernitt S, Epp S W, Steinbrugge R, Beilmann C, Brown G V, Eberle S, Graf A, Harman Z, Hell N, Leutenegger M, Muller A, Schlage K, Wille H C, Yavas H, Ullrich J, Crespo Lopez-Urrutia J R 2013 Phys. Rev. Lett. 111 103002Google Scholar

    [32]

    Schippers S, Ricz S, Buhr T, Borovik A, Hellhund J, Holste K, Huber K, Schäfer H J, Schury D, Klumpp S, Mertens K, Martins M, Flesch R, Ulrich G, Rühl E, Jahnke T, Lower J, Metz D, Schmidt L P H, Schöffler M, Williams J B, Glaser L, Scholz F, Seltmann J, Viefhaus J, Dorn A, Wolf A, Ullrich J, Müller A 2014 J. Phys. B At. Mol. Opt. Phys. 47 115602Google Scholar

    [33]

    Müller A, Bernhardt D, Borovik A, Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Seltmann J, Viefhaus J, Schippers S 2017 Astrophys. J. 836 166Google Scholar

    [34]

    Müller A, Schippers S, Hellhund J, Kilcoyne A L D, Phaneuf R A, McLaughlin B M 2017 J. Phys. B At. Mol. Opt. Phys. 50 085007Google Scholar

    [35]

    Schippers S, Martins M, Beerwerth R, Bari S, Holste K, Schubert K, Viefhaus J, Savin D W, Fritzsche S, Muller A 2017 Astrophys. J. 849 5Google Scholar

    [36]

    Epp S W, Lopez-Urrutia J R, Brenner G, Mackel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhofer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001Google Scholar

    [37]

    Stutzki F, Gaida C, Gebhardt M, Jansen F, Wienke A, Zeitner U, Fuchs F, Jauregui C, Wandt D, Kracht D, Limpert J, Tünnermann A 2014 Opt. Lett. 39 4671Google Scholar

    [38]

    Rothhardt J, Hädrich S, Demmler S, Krebs M, Winters D F A, Kühl T, Stöhlker T, Limpert J, Tünnermann A 2015 Phys. Scr. T166 014030Google Scholar

    [39]

    Kühl T, Rothhardt J https://www.hi-jena.de/en/research_areas/photon_particle_spectroscopy/laser_generated_radiation/x_ray_laser_spectrocopy/ [2023-6-7

    [40]

    Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017 Science 355 264Google Scholar

    [41]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923Google Scholar

    [42]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506Google Scholar

    [43]

    Teng H, He X K, Zhao K, Wei Z Y 2018 Chin. Phys. B 27 074203Google Scholar

    [44]

    Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, Rothhardt J, Limpert J 2021 PhotoniX 2 4Google Scholar

    [45]

    Kühn S, Dumergue M, Kahaly S, Mondal S, Füle M, Csizmadia T, Farkas B, Major B, Várallyay Z, Cormier E, Kalashnikov M, Calegari F, Devetta M, Frassetto F, Månsson E, Poletto L, Stagira S, Vozzi C, Nisoli M, Rudawski P, Maclot S, Campi F, Wikmark H, Arnold C L, Heyl C M, Johnsson P, L’ Huillier A, Lopez-Martens R, Haessler S, Bocoum M, Boehle F, Vernier A, Iaquaniello G, Skantzakis E, Papadakis N, Kalpouzos C, Tzallas P, Lépine F, Charalambidis D, Varjú K, Osvay K, Sansone G 2017 J. Phys. B At. Mol. Opt. Phys. 50 132002Google Scholar

    [46]

    Meissl W, Simon M C, Crespo López-Urrutia J R, Tawara H, Ullrich J, Winter H P, Aumayr F 2006 Rev. Sci. Instrum. 77 093303Google Scholar

    [47]

    Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [48]

    Bouza Z, Scheers J, Ryabtsev A, Schupp R, Behnke L, Shah C, Sheil J, Bayraktar M, López-Urrutia J R C, Ubachs W, Hoekstra R, Versolato O O 2020 J. Phys. B At. Mol. Opt. Phys. 53 195001Google Scholar

    [49]

    Grilo F, Shah C, Kühn S, Steinbrügge R, Fujii K, Marques J, Feng Gu M, Paulo Santos J, Crespo López-Urrutia J R, Amaro P 2021 Astrophys. J. 913 140Google Scholar

    [50]

    Karlušić M, Kozubek R, Lebius H, Ban-d’Etat B, Wilhelm R A, Buljan M, Siketić Z, Scholz F, Meisch T, Jakšić M, Bernstorff S, Schleberger M, Šantić B 2015 J. Phys. D Appl. Phys. 48 325304Google Scholar

    [51]

    Schmidt M, Hass M, Zschornack G, Rappaport M L, Heber O, Prygarin A, Shachar Y, Vaintraub S 2015 AIP Conf. Proc. 1640 149Google Scholar

    [52]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Di L, Hutton R, Zou Y 2013 IPAC 2013: Proceedings of the 4th International Particle Accelerator Conference Shanghai, China, May 12–17, 2013 p434

    [53]

    王纳秀, 陈永林, 阎和平, 蒋迪奎, 朱希恺, 郭盘林, 王福堂, 丁立人, 施锦, 李炜, 路迪, 邹亚明 2006 核技术 29 169Google Scholar

    Wang N X, Chen Y L, Yan H P, Jiang D K, Zhu X K, Guo P L, Wang F T, Ding L R, Shi J, Li W, Lu D, Zou Y M 2006 Nucl. Sci. Tech. 29 169Google Scholar

    [54]

    Lu Q, Yan C L, Xu G Q, Fu N, Yang Y, Zou Y, Volotka A V, Xiao J, Nakamura N, Hutton R 2020 Phys. Rev. A 102 042817Google Scholar

    [55]

    Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y, Gao K L 2021 Phys. Rev. A 103 022804Google Scholar

    [56]

    刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文 2022 物理学报 71 033201Google Scholar

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu G Q, Xiao J, Huang Z K, Wang H B, Chen D Y, Shao L, Yuan Y, Wang S X, Ma W L, Ma X W 2022 Acta Phys. Sin. 71 033201Google Scholar

    [57]

    Liang S Y, Lu Q F, Wang X C, Yang Y, Yao K, Shen Y, Wei B, Xiao J, Chen S L, Zhou P P, Sun W, Zhang Y H, Huang Y, Guan H, Tong X, Li C B, Zou Y M, Shi T Y, Gao K L 2019 Rev. Sci Instrum. 90 093301Google Scholar

    [58]

    赵红卫, 刘占稳, 张汶, 张雪珍, 袁平, 郭晓虹, 张子民, 王义芳 2000 原子能科学技术 34 282Google Scholar

    Zhao H W, Liu Z W, Zhang W, Zhang X Z, Yuan P, Guo X H, Zhang Z M, Wang Y F 2000 At. Energy Sci. Technol. 34 282Google Scholar

    [59]

    夏佳文, 詹文龙, 魏宝文, 原有进, 赵红卫, 杨建成, 石健, 盛丽娜, 杨维青, 冒立军 2016 科学通报 61 11Google Scholar

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Zhao H W, Yang J C, Shi J, Sheng L N, Yang W Q, Mao L J 2016 Chin. Sci. Bull. 61 11Google Scholar

    [60]

    张子民, 赵红卫, 张雪珍, 郭晓虹, 李锡霞, 李锦玉, 冯玉成, 王辉, 马保华, 高级元, 曹云, 孙良亭, 马雷 2003 高等物理与核物理 10 914

    Zhang Z M, Zhao H W, Zhang X Z, Guo X H, Li X X, Li J Y, Feng Y C, Wang H, Ma B H, Gao J Y, Cao Y, Sun L T, Ma L 2003 Chin. Phys. C 10 914

    [61]

    Leitner M A, Lyneis C M, Taylor C E, Abbott S R 2001 Phys. Scr. T92 171Google Scholar

    [62]

    Zhao H W, Sun L T, Zhang X Z, Zhang Z M, Guo X H, He W, Yuan P, Song M T, Li J Y, Feng Y C, Cao Y, Li X X, Zhan W L, Wei B W, Xie D Z 2006 Rev. Sci. Instrum. 77 03A333Google Scholar

    [63]

    Zhao H W, Sun L T, Guo J W, Lu W, Xie D Z, Hitz D, Zhang X Z, Yang Y 2017 Phys. Rev. Accel. Beams 20 094801Google Scholar

    [64]

    Steck M, Yuri A L 2020 Prog. Part. Nucl. Phys. 115 103811Google Scholar

    [65]

    Tu X L, Chen X C, Zhang J T, Shuai P, Yue K, Xu X, Fu C Y, Zeng Q, Zhou X, Xing Y M, Wu J X, Mao R S, Mao L J, Fang K H, Sun Z Y, Wang M, Yang J C, Litvinov Y A, Blaum K, Zhang Y H, Yuan Y J, Ma X W, Zhou X H, Xu H S 2018 Phys. Rev. C 97 014321Google Scholar

    [66]

    Wen W Q, Ma X, Bussmann M, Yuan Y J, Zhang D C, Winters D F A, Zhu X L, Li J, Liu H P, Zhao D M, Wang Z S, Mao R S, Zhao T C, Wu J X, Ma X M, Yan T L, Li G H, Yang X D, Liu Y, Yang J C, Xia J W, Xu H S 2014 Nucl. Instrum. Meth. A 736 75Google Scholar

    [67]

    Wang H B, Wen W Q, Huang Z K, Zhang D C, Hai B, Bussmann M, Winters D, Zhao D M, Zhu X L, Li J, Li X N, Mao L J, Mao R S, Zhao T C, Yin D Y, Wu J X, Yang J C, Yuan Y J, Ma X 2018 Nucl. Instrum. Meth. A 908 244Google Scholar

    [68]

    Wen W, Wang H, Huang Z, Zhang D, Chen D, Winters D, Klammes S, Kiefer D, Walther T, Litvinov S, Siebold M, Loeser M, Khan N, Zhao D, Zhu X, Li X, Li J, Zhao T, Mao R, Wu J, Yin D, Mao L, Yang J, Yuan Y, Bussmann M, Ma X 2019 Hyperfine Interact. 240 45Google Scholar

    [69]

    Wang H, Wen W, Huang Z, Zhang D, Chen D, Zhao D, Zhu X, Winters D, Bussmann M, Ma X 2020 X-Ray Spectrom. 49 138Google Scholar

    [70]

    Schröder S, Klein R, Boos N, Gerhard M, Grieser R, Huber G, Karafillidis A, Krieg M, Schmidt N, Kühl T, Neumann R, Balykin V, Grieser M, Habs D, Jaeschke E, Krämer D, Kristensen M, Music M, Petrich W, Schwalm D, Sigray P, Steck M, Wanner B, Wolf A 1990 Phys. Rev. Lett. 64 2901Google Scholar

    [71]

    Reinhardt S, Saathoff G, Buhr H, Carlson L A, Wolf A, Schwalm D, Karpuk S, Novotny C, Huber G, Zimmermann M, Holzwarth R, Udem T, Hänsch T W, Gwinner G 2007 Nat. Phys. 3 861Google Scholar

    [72]

    Saathoff G, Karpuk S, Eisenbarth U, Huber G, Krohn S, Horta R M, Reinhardt S, Schwalm D, Wolf A, Gwinner G 2003 Phys. Rev. Lett. 91 190403Google Scholar

    [73]

    Schramm U, Bussmann M, Habs D, Steck M, Kühl T, Beckerts K, Beller P, Franzke B, Nolden F, Saathoff G, Reinhardt S, Karpuk S 2006 Hyperfine Interact. 162 181Google Scholar

    [74]

    Seelig P, Borneis S, Dax A, Engel T, Faber S, Gerlach M, Holbrow C, Huber G, Kühl T, Marx D, Meier K, Merz P, Quint W, Schmitt F, Tomaselli M, Völker L, Winter H, Würtz M, Beckert K, Franzke B, Nolden F, Reich H, Steck M, Winkler T 1998 Phys. Rev. Lett. 81 4824Google Scholar

    [75]

    Stöhlker T, Litvinov Y A, Bräuning-Demian A, Lestinsky M, Herfurth F, Maier R, Prasuhn D, Schuch R, Steck M, for the S C 2014 Hyperfine Interact. 227 45Google Scholar

    [76]

    Henning W F 2008 Nucl. Phys. A 805 502CGoogle Scholar

    [77]

    Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Meth. B 317 263Google Scholar

    [78]

    杨建成, 曾钢, 肖国青, 彭良强, 夏佳文, 赵红卫, 徐瑚珊, 周小红, 原有进, 马力祯, 高大庆, 许哲, 孙良亭, 冒立军, 何源, 张军辉, 胡正国, 马新文, 苏有武, 张玮, 毛瑞士, 蒙峻, 姚庆高, 盛丽娜, 申国栋, 王思成 2020 科学通报 65 8Google Scholar

    Yang J C, Zeng G, Xiao G Q, Peng L Q, Xia J W, Zhao H W, Xu H S, Zhou X H, Yuan Y J, Ma L Z, Gao D Q, Xu Z, Sun L T, Mao L J, He Y, Zhang J H, Hu Z G, Ma X W, Su Y W, Zhang W, Mao R S, Sheng L N, Shen G D, Wang S C 2020 Chin. Sci. Bull. 65 8Google Scholar

    [79]

    赵红卫, 徐瑚珊, 肖国青, 夏佳文, 杨建成, 周小红, 许怒, 何源, 马新文, 杨磊, 陈旭荣, 唐晓东, 赵永涛, 孙志宇, 王志光, 胡正国, 张军辉, 马力祯, 原有进, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 77Google Scholar

    Zhao H W, Xu H S, Xiao G Q, Xia J W, Yang J C, Zhou X H, Xu N, He Y, Ma X W, Yang L, Chen X R, Tang X D, Zhao Y T, Sun Z Y, Wang Z G, Hu Z G, Zhang J H, Ma L Z, Yuan Y J, Zhan W L 2020 Sci. China Phys. Mech. Astron. 50 77Google Scholar

    [80]

    Steinbrügge R, Bernitt S, Epp S W, Rudolph J K, Beilmann C, Bekker H, Eberle S, Müller A, Versolato O O, Wille H C, Yavaş H, Ullrich J, Crespo López-Urrutia J R 2015 Phys. Rev. A 91 032502Google Scholar

    [81]

    陈冬阳, 汪寒冰, 黄忠魁, 赵冬梅, 刘鑫, 周晓鹏, 刘建龙, 李长春, 杨金晶, 张大成, 汶伟强, 马新文 2022 原子核物理评论 39 224Google Scholar

    Chen D Y, Wang H B, Huang Z K, Zhao D M, Liu X, Zhou X P, Liu J L, Li C C, Yang J J, Zhang D C, Wen W Q, Ma X W 2022 Nucl. Phys. Rev. 39 224Google Scholar

    [82]

    Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018 Phys. Rev. A 97 031407Google Scholar

    [83]

    Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U, Chang Z 2010 Phys. Rev. Lett. 105 143002Google Scholar

    [84]

    Wang X W, Chini M, Cheng Y, Wu Y, Chang Z H 2013 Appl. Opt. 52 323Google Scholar

  • 图 1  FLASH和XFEL光子能量范围与可研究的2S1/22P1/2跃迁离子种类[36]

    Figure 1.  Photon energy range covered by FLASH and XFEL and transition energy 2S1/22P1/2 for some systems[36].

    图 2  (a) 德国储存环ESR上开展XUV波段激光光谱的实验装置示意图; (b) 类锂离子2S1/22P1/2跃迁能级间隔与Z的关系图[38]

    Figure 2.  (a) Schematic of an XUV laser spectroscopy experiment at the storage ring ESR in Germany; (b) 2S1/22P1/2 transition energies for Li-like ions plotted as a function of the nuclear charge Z[38].

    图 3  类铍C离子1s22snp 1P1 (n = 2—5)能级寿命的荧光测量方法示意图[16]

    Figure 3.  Schematic diagram of lifetime measurement for the 1s22snp 1P1 (n = 2—5) states in Be-like carbon ion by fluorescence method[16].

    图 4  在FLASH-EBIT上开展HCI光谱测量的实验装置示意图[80]

    Figure 4.  Schematic diagram of the experimental setup for HCI spectral measurement on FLASH-EBIT[80].

    图 5  类Ne的Fe16+离子泵浦-探测实验示意图[5]

    Figure 5.  Schematics of a pump-probe experiment on Ne-like iron ions (Fe16+)[5].

    图 6  ASTRID和ECR离子源结合装置示意图[29]

    Figure 6.  Schematic diagram of the ASTRID and ECR ion source combining device[29].

    图 7  阿秒瞬态吸收实验装置示意图[84]

    Figure 7.  Schematic diagram of experimental setup for attosecond transient absorption[84].

    图 8  基于EBIT的HCI离子阿秒光谱测量装置示意图

    Figure 8.  Schematic diagram of the experimental setup for attosecond spectroscopy of HCI on EBIT.

    图 9  储存环上开展HCI离子XUV-泵浦XUV-探测的示意图[16]

    Figure 9.  Schematic diagram of a XUV-pump XUV-probe experiment on HCI at storage rings[16].

    图 10  HCI离子阿秒光谱测量装置示意图

    Figure 10.  Schematic diagram of the setup for attosecond spectroscopy of HCI.

    表 1  ALS (SECUF)与HHG, seeded FEL和SASE FEL 等XUV光源的主要参数比较

    Table 1.  Comparison of ALS (SECUF) and other XUV light sources based on HHG, seeded FEL, and SASE FEL.

    光源 产生方式 脉宽 光子通量/(光子·s–1) 调谐范围/eV 重复频率
    ELI-ALPS HHG < 100 as 1.25×1012 10—120 1—100 kHz
    ALS (SECUF) Beamline 1 HHG < 100 as ~109—1010 30—100 1—3 kHz
    ALS (SECUF) Beamline 2 HHG < 200 fs 1011 20—80 1 MHz
    ALS (SECUF) Beamline 3 HHG < 200 as 1010 50—100 10 kHz
    ALS (SECUF) Beamline 4 HHG < 200 as 1011 60—96 100 kHz
    Artemis (RAL) HHG 10—50 fs (APT) 1.8×10@30 eV 10—100 1 kHz
    LCLS (SLAC) SASE FEL 10—1000 fs 1014 500—800 120 Hz
    Dreamline (SSRF) SASE FEL 3.5×1011@800 eV 20—2000 2 Hz
    FLASH (DESY) SASE FEL 50–200 fs 1012—1014 24—310 10 Hz
    FERMI (Elettra ST) seeded FEL 150 fs 3.7×1013 15.5—62.0 10 Hz
    DCLS (Dalian) seeded FEL 30/130/1000 fs > 2.5×1013 8.3—25
    DownLoad: CSV
  • [1]

    Beyer H F, Shevelko V P 2002 Introduction to the Physics of Highly Charged Ions (Boca Raton: CRC Press) pp1–2

    [2]

    Epp S W, López-Urrutia J R C, Simon M C, Baumann T, Brenner G, Ginzel R, Guerassimova N, Mäckel V, Mokler P H, Schmitt B L, Tawara H, Ullrich J 2010 J. Phys. B At. Mol. Opt. Phys. 43 194008Google Scholar

    [3]

    Mackel V, Klawitter R, Brenner G, Crespo Lopez-Urrutia J R, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar

    [4]

    Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235 2Google Scholar

    [5]

    Träbert E 2014 Appl. Phys. B 114 167Google Scholar

    [6]

    Al Shorman M M, Gharaibeh M F, Bizau J M, Cubaynes D, Guilbaud S, Hassan N E, Miron C, Nicolas C, Robert E, Sakho I, Blancard C, McLaughlin B M 2013 J. Phys. B At. Mol. Opt. Phys. 46 195701Google Scholar

    [7]

    Champeaux J P, Bizau J M, Cubaynes D, Blancard C, Nahar S, Hitz D, Bruneau J, Wuilleumier F J 2003 Astrophys. J. Suppl. Ser. 148 583Google Scholar

    [8]

    Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y, Zhao G 2014 Astrophys. J. 783 124Google Scholar

    [9]

    Indelicato P 2019 J. Phys. B At. Mol. Opt. Phys. 52 232001Google Scholar

    [10]

    Nörtershäuser W 2011 Hyperfine Interact. 199 131Google Scholar

    [11]

    Yang L S, Church D A 1993 Phys. Rev. Lett. 70 3860Google Scholar

    [12]

    TrÌbert E 2002 Phys. Scr. T100 88Google Scholar

    [13]

    Träbert E 2005 Phys. Scr. T120 56Google Scholar

    [14]

    Karn R K, Mishra C N, Ahmad N, Safvan C P, Nandi T 2015 J. Atomic, Molecular, Condensate & Nano Phys. 2 127Google Scholar

    [15]

    Saito M, Chikaoka A, Majima T, Imai M, Tsuchida H, Haruyama Y 2018 Nucl. Instrum. Meth. B 414 68Google Scholar

    [16]

    Rothhardt J, Bilal M, Beerwerth R, Volotka A V, Hilbert V, Stöhlker T, Fritzsche S, Limpert J 2019 X-Ray Spectrom. 49 165Google Scholar

    [17]

    Franzke B, Geissel H, Münzenberg G 2008 Mass Spectrom. Rev. 27 428Google Scholar

    [18]

    Martinson I 1989 Rep. Prog. Phys. 52 157Google Scholar

    [19]

    Beyer H F, Gassner T, Trassinelli M, Heß R, Spillmann U, Banaś D, Blumenhagen K H, Bosch F, Brandau C, Chen W, Dimopoulou C, Förster E, Grisenti R E, Gumberidze A, Hagmann S, Hillenbrand P M, Indelicato P, Jagodzinski P, Kämpfer T, Kozhuharov C, Lestinsky M, Liesen D, Litvinov Y A, Loetzsch R, Manil B, Märtin R, Nolden F, Petridis N, Sanjari M S, Schulze K S, Schwemlein M, Simionovici A, Steck M, Stöhlker T, Szabo C I, Trotsenko S, Uschmann I, Weber G, Wehrhan O, Winckler N, Winters D F A, Winters N, Ziegler E 2015 J. Phys. B At. Mol. Opt. Phys. 48 144010Google Scholar

    [20]

    Patterson B M, Sell J F, Ehrenreich T, Gearba M A, Brooke G M, Scoville J, Knize R J 2015 Phys. Rev. A 91 012506Google Scholar

    [21]

    Schippersa S, Kilcoyne A L D, Phaneufc R A, Mullerd A 2016 Contemp Phys 57 215Google Scholar

    [22]

    Hangst J S, Berg-Sorensen K, Jessen P S, Kristensen M, Molmer K, Nielsen J S, Poulsen O, Schiffer J P, Shi P 1992 Nucl. Instrum. Meth. B 68 17Google Scholar

    [23]

    Klaft I I, Borneis S, Engel T, Fricke B, Grieser R, Huber G, Kuhl T, Marx D, Neumann R, Schroder S, Seelig P, Volker L 1994 Phys. Rev. Lett. 73 2425Google Scholar

    [24]

    Ullmann J, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Trageser C, Vollbrecht J, Weinheimer C, Nörtershäuser W 2017 Nat. Commun. 8 15484Google Scholar

    [25]

    Andjelkovic Z, Bharadia S, Sommer B, Vogel M, Nörtershäuser W 2010 Hyperfine Interact. 196 81Google Scholar

    [26]

    Bundesanstalt P T https://phys.org/news/2015-03-frozen-highly-ions-highest-precision.html [2023-6-7

    [27]

    Lyon I C, Peart B, West J B, Dolder K 1986 J. Phys. B At. Mol. Opt. Phys. 19 4137Google Scholar

    [28]

    Covington A M, Aguilar A, Covington I R, Gharaibeh M F, Hinojosa G, Shirley C A, Phaneuf R A, Álvarez I, Cisneros C, Dominguez-Lopez I, Sant’Anna M M, Schlachter A S, McLaughlin B M, Dalgarno A 2002 Phys. Rev. A 66 062710Google Scholar

    [29]

    Bizau J M, Champeaux J P, Cubaynes D, Wuilleumier F J, Folkmann F, Jacobsen T S, Penent F, Blancard C, Kjeldsen H 2005 Astron. Astrophys. 439 387Google Scholar

    [30]

    Simon M C, Schwarz M, Epp S W, Beilmann C, Schmitt B L, Harman Z, Baumann T M, Mokler P H, Bernitt S, Ginzel R, Higgins S G, Keitel C H, Klawitter R, Kubiček K, Mäckel V, Ullrich J, López-Urrutia J R C 2010 J. Phys. B At. Mol. Opt. Phys. 43 065003Google Scholar

    [31]

    Rudolph J K, Bernitt S, Epp S W, Steinbrugge R, Beilmann C, Brown G V, Eberle S, Graf A, Harman Z, Hell N, Leutenegger M, Muller A, Schlage K, Wille H C, Yavas H, Ullrich J, Crespo Lopez-Urrutia J R 2013 Phys. Rev. Lett. 111 103002Google Scholar

    [32]

    Schippers S, Ricz S, Buhr T, Borovik A, Hellhund J, Holste K, Huber K, Schäfer H J, Schury D, Klumpp S, Mertens K, Martins M, Flesch R, Ulrich G, Rühl E, Jahnke T, Lower J, Metz D, Schmidt L P H, Schöffler M, Williams J B, Glaser L, Scholz F, Seltmann J, Viefhaus J, Dorn A, Wolf A, Ullrich J, Müller A 2014 J. Phys. B At. Mol. Opt. Phys. 47 115602Google Scholar

    [33]

    Müller A, Bernhardt D, Borovik A, Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Seltmann J, Viefhaus J, Schippers S 2017 Astrophys. J. 836 166Google Scholar

    [34]

    Müller A, Schippers S, Hellhund J, Kilcoyne A L D, Phaneuf R A, McLaughlin B M 2017 J. Phys. B At. Mol. Opt. Phys. 50 085007Google Scholar

    [35]

    Schippers S, Martins M, Beerwerth R, Bari S, Holste K, Schubert K, Viefhaus J, Savin D W, Fritzsche S, Muller A 2017 Astrophys. J. 849 5Google Scholar

    [36]

    Epp S W, Lopez-Urrutia J R, Brenner G, Mackel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhofer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001Google Scholar

    [37]

    Stutzki F, Gaida C, Gebhardt M, Jansen F, Wienke A, Zeitner U, Fuchs F, Jauregui C, Wandt D, Kracht D, Limpert J, Tünnermann A 2014 Opt. Lett. 39 4671Google Scholar

    [38]

    Rothhardt J, Hädrich S, Demmler S, Krebs M, Winters D F A, Kühl T, Stöhlker T, Limpert J, Tünnermann A 2015 Phys. Scr. T166 014030Google Scholar

    [39]

    Kühl T, Rothhardt J https://www.hi-jena.de/en/research_areas/photon_particle_spectroscopy/laser_generated_radiation/x_ray_laser_spectrocopy/ [2023-6-7

    [40]

    Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017 Science 355 264Google Scholar

    [41]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923Google Scholar

    [42]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506Google Scholar

    [43]

    Teng H, He X K, Zhao K, Wei Z Y 2018 Chin. Phys. B 27 074203Google Scholar

    [44]

    Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, Rothhardt J, Limpert J 2021 PhotoniX 2 4Google Scholar

    [45]

    Kühn S, Dumergue M, Kahaly S, Mondal S, Füle M, Csizmadia T, Farkas B, Major B, Várallyay Z, Cormier E, Kalashnikov M, Calegari F, Devetta M, Frassetto F, Månsson E, Poletto L, Stagira S, Vozzi C, Nisoli M, Rudawski P, Maclot S, Campi F, Wikmark H, Arnold C L, Heyl C M, Johnsson P, L’ Huillier A, Lopez-Martens R, Haessler S, Bocoum M, Boehle F, Vernier A, Iaquaniello G, Skantzakis E, Papadakis N, Kalpouzos C, Tzallas P, Lépine F, Charalambidis D, Varjú K, Osvay K, Sansone G 2017 J. Phys. B At. Mol. Opt. Phys. 50 132002Google Scholar

    [46]

    Meissl W, Simon M C, Crespo López-Urrutia J R, Tawara H, Ullrich J, Winter H P, Aumayr F 2006 Rev. Sci. Instrum. 77 093303Google Scholar

    [47]

    Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [48]

    Bouza Z, Scheers J, Ryabtsev A, Schupp R, Behnke L, Shah C, Sheil J, Bayraktar M, López-Urrutia J R C, Ubachs W, Hoekstra R, Versolato O O 2020 J. Phys. B At. Mol. Opt. Phys. 53 195001Google Scholar

    [49]

    Grilo F, Shah C, Kühn S, Steinbrügge R, Fujii K, Marques J, Feng Gu M, Paulo Santos J, Crespo López-Urrutia J R, Amaro P 2021 Astrophys. J. 913 140Google Scholar

    [50]

    Karlušić M, Kozubek R, Lebius H, Ban-d’Etat B, Wilhelm R A, Buljan M, Siketić Z, Scholz F, Meisch T, Jakšić M, Bernstorff S, Schleberger M, Šantić B 2015 J. Phys. D Appl. Phys. 48 325304Google Scholar

    [51]

    Schmidt M, Hass M, Zschornack G, Rappaport M L, Heber O, Prygarin A, Shachar Y, Vaintraub S 2015 AIP Conf. Proc. 1640 149Google Scholar

    [52]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Di L, Hutton R, Zou Y 2013 IPAC 2013: Proceedings of the 4th International Particle Accelerator Conference Shanghai, China, May 12–17, 2013 p434

    [53]

    王纳秀, 陈永林, 阎和平, 蒋迪奎, 朱希恺, 郭盘林, 王福堂, 丁立人, 施锦, 李炜, 路迪, 邹亚明 2006 核技术 29 169Google Scholar

    Wang N X, Chen Y L, Yan H P, Jiang D K, Zhu X K, Guo P L, Wang F T, Ding L R, Shi J, Li W, Lu D, Zou Y M 2006 Nucl. Sci. Tech. 29 169Google Scholar

    [54]

    Lu Q, Yan C L, Xu G Q, Fu N, Yang Y, Zou Y, Volotka A V, Xiao J, Nakamura N, Hutton R 2020 Phys. Rev. A 102 042817Google Scholar

    [55]

    Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y, Gao K L 2021 Phys. Rev. A 103 022804Google Scholar

    [56]

    刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文 2022 物理学报 71 033201Google Scholar

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu G Q, Xiao J, Huang Z K, Wang H B, Chen D Y, Shao L, Yuan Y, Wang S X, Ma W L, Ma X W 2022 Acta Phys. Sin. 71 033201Google Scholar

    [57]

    Liang S Y, Lu Q F, Wang X C, Yang Y, Yao K, Shen Y, Wei B, Xiao J, Chen S L, Zhou P P, Sun W, Zhang Y H, Huang Y, Guan H, Tong X, Li C B, Zou Y M, Shi T Y, Gao K L 2019 Rev. Sci Instrum. 90 093301Google Scholar

    [58]

    赵红卫, 刘占稳, 张汶, 张雪珍, 袁平, 郭晓虹, 张子民, 王义芳 2000 原子能科学技术 34 282Google Scholar

    Zhao H W, Liu Z W, Zhang W, Zhang X Z, Yuan P, Guo X H, Zhang Z M, Wang Y F 2000 At. Energy Sci. Technol. 34 282Google Scholar

    [59]

    夏佳文, 詹文龙, 魏宝文, 原有进, 赵红卫, 杨建成, 石健, 盛丽娜, 杨维青, 冒立军 2016 科学通报 61 11Google Scholar

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Zhao H W, Yang J C, Shi J, Sheng L N, Yang W Q, Mao L J 2016 Chin. Sci. Bull. 61 11Google Scholar

    [60]

    张子民, 赵红卫, 张雪珍, 郭晓虹, 李锡霞, 李锦玉, 冯玉成, 王辉, 马保华, 高级元, 曹云, 孙良亭, 马雷 2003 高等物理与核物理 10 914

    Zhang Z M, Zhao H W, Zhang X Z, Guo X H, Li X X, Li J Y, Feng Y C, Wang H, Ma B H, Gao J Y, Cao Y, Sun L T, Ma L 2003 Chin. Phys. C 10 914

    [61]

    Leitner M A, Lyneis C M, Taylor C E, Abbott S R 2001 Phys. Scr. T92 171Google Scholar

    [62]

    Zhao H W, Sun L T, Zhang X Z, Zhang Z M, Guo X H, He W, Yuan P, Song M T, Li J Y, Feng Y C, Cao Y, Li X X, Zhan W L, Wei B W, Xie D Z 2006 Rev. Sci. Instrum. 77 03A333Google Scholar

    [63]

    Zhao H W, Sun L T, Guo J W, Lu W, Xie D Z, Hitz D, Zhang X Z, Yang Y 2017 Phys. Rev. Accel. Beams 20 094801Google Scholar

    [64]

    Steck M, Yuri A L 2020 Prog. Part. Nucl. Phys. 115 103811Google Scholar

    [65]

    Tu X L, Chen X C, Zhang J T, Shuai P, Yue K, Xu X, Fu C Y, Zeng Q, Zhou X, Xing Y M, Wu J X, Mao R S, Mao L J, Fang K H, Sun Z Y, Wang M, Yang J C, Litvinov Y A, Blaum K, Zhang Y H, Yuan Y J, Ma X W, Zhou X H, Xu H S 2018 Phys. Rev. C 97 014321Google Scholar

    [66]

    Wen W Q, Ma X, Bussmann M, Yuan Y J, Zhang D C, Winters D F A, Zhu X L, Li J, Liu H P, Zhao D M, Wang Z S, Mao R S, Zhao T C, Wu J X, Ma X M, Yan T L, Li G H, Yang X D, Liu Y, Yang J C, Xia J W, Xu H S 2014 Nucl. Instrum. Meth. A 736 75Google Scholar

    [67]

    Wang H B, Wen W Q, Huang Z K, Zhang D C, Hai B, Bussmann M, Winters D, Zhao D M, Zhu X L, Li J, Li X N, Mao L J, Mao R S, Zhao T C, Yin D Y, Wu J X, Yang J C, Yuan Y J, Ma X 2018 Nucl. Instrum. Meth. A 908 244Google Scholar

    [68]

    Wen W, Wang H, Huang Z, Zhang D, Chen D, Winters D, Klammes S, Kiefer D, Walther T, Litvinov S, Siebold M, Loeser M, Khan N, Zhao D, Zhu X, Li X, Li J, Zhao T, Mao R, Wu J, Yin D, Mao L, Yang J, Yuan Y, Bussmann M, Ma X 2019 Hyperfine Interact. 240 45Google Scholar

    [69]

    Wang H, Wen W, Huang Z, Zhang D, Chen D, Zhao D, Zhu X, Winters D, Bussmann M, Ma X 2020 X-Ray Spectrom. 49 138Google Scholar

    [70]

    Schröder S, Klein R, Boos N, Gerhard M, Grieser R, Huber G, Karafillidis A, Krieg M, Schmidt N, Kühl T, Neumann R, Balykin V, Grieser M, Habs D, Jaeschke E, Krämer D, Kristensen M, Music M, Petrich W, Schwalm D, Sigray P, Steck M, Wanner B, Wolf A 1990 Phys. Rev. Lett. 64 2901Google Scholar

    [71]

    Reinhardt S, Saathoff G, Buhr H, Carlson L A, Wolf A, Schwalm D, Karpuk S, Novotny C, Huber G, Zimmermann M, Holzwarth R, Udem T, Hänsch T W, Gwinner G 2007 Nat. Phys. 3 861Google Scholar

    [72]

    Saathoff G, Karpuk S, Eisenbarth U, Huber G, Krohn S, Horta R M, Reinhardt S, Schwalm D, Wolf A, Gwinner G 2003 Phys. Rev. Lett. 91 190403Google Scholar

    [73]

    Schramm U, Bussmann M, Habs D, Steck M, Kühl T, Beckerts K, Beller P, Franzke B, Nolden F, Saathoff G, Reinhardt S, Karpuk S 2006 Hyperfine Interact. 162 181Google Scholar

    [74]

    Seelig P, Borneis S, Dax A, Engel T, Faber S, Gerlach M, Holbrow C, Huber G, Kühl T, Marx D, Meier K, Merz P, Quint W, Schmitt F, Tomaselli M, Völker L, Winter H, Würtz M, Beckert K, Franzke B, Nolden F, Reich H, Steck M, Winkler T 1998 Phys. Rev. Lett. 81 4824Google Scholar

    [75]

    Stöhlker T, Litvinov Y A, Bräuning-Demian A, Lestinsky M, Herfurth F, Maier R, Prasuhn D, Schuch R, Steck M, for the S C 2014 Hyperfine Interact. 227 45Google Scholar

    [76]

    Henning W F 2008 Nucl. Phys. A 805 502CGoogle Scholar

    [77]

    Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Meth. B 317 263Google Scholar

    [78]

    杨建成, 曾钢, 肖国青, 彭良强, 夏佳文, 赵红卫, 徐瑚珊, 周小红, 原有进, 马力祯, 高大庆, 许哲, 孙良亭, 冒立军, 何源, 张军辉, 胡正国, 马新文, 苏有武, 张玮, 毛瑞士, 蒙峻, 姚庆高, 盛丽娜, 申国栋, 王思成 2020 科学通报 65 8Google Scholar

    Yang J C, Zeng G, Xiao G Q, Peng L Q, Xia J W, Zhao H W, Xu H S, Zhou X H, Yuan Y J, Ma L Z, Gao D Q, Xu Z, Sun L T, Mao L J, He Y, Zhang J H, Hu Z G, Ma X W, Su Y W, Zhang W, Mao R S, Sheng L N, Shen G D, Wang S C 2020 Chin. Sci. Bull. 65 8Google Scholar

    [79]

    赵红卫, 徐瑚珊, 肖国青, 夏佳文, 杨建成, 周小红, 许怒, 何源, 马新文, 杨磊, 陈旭荣, 唐晓东, 赵永涛, 孙志宇, 王志光, 胡正国, 张军辉, 马力祯, 原有进, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 77Google Scholar

    Zhao H W, Xu H S, Xiao G Q, Xia J W, Yang J C, Zhou X H, Xu N, He Y, Ma X W, Yang L, Chen X R, Tang X D, Zhao Y T, Sun Z Y, Wang Z G, Hu Z G, Zhang J H, Ma L Z, Yuan Y J, Zhan W L 2020 Sci. China Phys. Mech. Astron. 50 77Google Scholar

    [80]

    Steinbrügge R, Bernitt S, Epp S W, Rudolph J K, Beilmann C, Bekker H, Eberle S, Müller A, Versolato O O, Wille H C, Yavaş H, Ullrich J, Crespo López-Urrutia J R 2015 Phys. Rev. A 91 032502Google Scholar

    [81]

    陈冬阳, 汪寒冰, 黄忠魁, 赵冬梅, 刘鑫, 周晓鹏, 刘建龙, 李长春, 杨金晶, 张大成, 汶伟强, 马新文 2022 原子核物理评论 39 224Google Scholar

    Chen D Y, Wang H B, Huang Z K, Zhao D M, Liu X, Zhou X P, Liu J L, Li C C, Yang J J, Zhang D C, Wen W Q, Ma X W 2022 Nucl. Phys. Rev. 39 224Google Scholar

    [82]

    Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018 Phys. Rev. A 97 031407Google Scholar

    [83]

    Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U, Chang Z 2010 Phys. Rev. Lett. 105 143002Google Scholar

    [84]

    Wang X W, Chini M, Cheng Y, Wu Y, Chang Z H 2013 Appl. Opt. 52 323Google Scholar

  • [1] Huang Hou-Ke, Wen Wei-Qiang, Huang Zhong-Kui, Wang Shu-Xing, Tang Mei-Tang, Li Jie, Mao Li-Jun, Yuan Yang, Wan Meng-Yu, Liu Chang, Wang Han-Bin, Zhou Xiao-Peng, Zhao Dong-Mei, Yan Kai-Min, Zhou Yun-Bin, Yuan You-Jin, Yang Jian-Cheng, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen. Precision spectroscopy of dielectronic recombination experiments for highly charged ions at large facility HIAF: a simulation study. Acta Physica Sinica, 2025, 74(4): . doi: 10.7498/aps.74.20241589
    [2] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [3] Chen Gao. Isolated attosecond pulse generation from helium atom irradiated by a three-color laser pulse. Acta Physica Sinica, 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [4] Zhang Di-Yu, Lan Wen-Di, Li Xue-Feng, Zhang Su-Su, Guo Fu-Ming, Yang Yu-Jun. Influence of driving-laser wavelength on emission of high-order harmonic wave generated by atoms irradiated by ultrashort laser pulse. Acta Physica Sinica, 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [5] Han Lin, Miao Shu-Li, Li Peng-Cheng. Theoretical study of high-order harmonics and single ultrashort attosecond pulse generated by optimized combination of laser field. Acta Physica Sinica, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [6] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [7] Wu Sheng-Yu, Zhang Yun, Bai Hong-Mei, Liang Jin-Ling. First-principle calculation of electronic structures and absorption spectra of lithium niobate crystals doped with Co and Zn ions. Acta Physica Sinica, 2018, 67(18): 184209. doi: 10.7498/aps.67.20180735
    [8] Tang Rong, Wang Guo-Li, Li Xiao-Yong, Zhou Xiao-Xin. Compression of extreme ultraviolet pulse for atom with resonant structure exposed to an infrared laser field. Acta Physica Sinica, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [9] Ding Ding, Zeng Si-Liang, Wang Jian-Guo, Qu Shi-Xian. Combined effect of plasma environment and external magnetic field on hydrogen. Acta Physica Sinica, 2013, 62(7): 073201. doi: 10.7498/aps.62.073201
    [10] Yu Xu-Ping, Chen Ji-Gen, He Long-Jun, Xu Yuan-Yuan, Yang Yu-Jun. Isolated intense 38 attosecond pulse generation from the combined laser pulse irradiating the coherent superposition state. Acta Physica Sinica, 2011, 60(5): 053206. doi: 10.7498/aps.60.053206
    [11] Pan Hui-Ling, Li Peng-Cheng, Zhou Xiao-Xin. Single attosecond pulse generated by atom exposed to two laser pulses with the same color and half cycle pulses. Acta Physica Sinica, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [12] Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Single attosecond pulse generated by model helium atom exposed to the combined field of an intense few-cycle chirped laser pulse and a half cycle pulse. Acta Physica Sinica, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [13] Cheng Chun-Zhi, Zhou Xiao-Xin, Li Peng-Cheng. The wavelength dependence of high-order harmonic generationand attosecond pulses from atom in infrared laser field. Acta Physica Sinica, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [14] Luo Mu-Hua, Zhang Qiu-Ju, Yan Chun-Yan. Optimization of attosecond pulses from the interaction of ultrarelativistic laser with overdense plasma. Acta Physica Sinica, 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [15] Ye Xiao-Liang, Zhou Xiao-Xin, Zhao Song-Feng, Li Peng-Cheng. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [16] Li Bo-Wen, Jiang Jun, Dong Chen-Zhong, Wang Jian-Guo, Ding Xiao-Bin. Influence of plasma effect on the energy levels and transition probabilities of hydrogen-like ions. Acta Physica Sinica, 2009, 58(8): 5274-5279. doi: 10.7498/aps.58.5274
    [17] Zhang Qing-Bin, Hong Wei-Yi, Lan Peng-Fei, Yang Zhen-Yu, Lu Pei-Xiang. Control of attosecond pulse generation with modulated polarization gating. Acta Physica Sinica, 2008, 57(12): 7848-7854. doi: 10.7498/aps.57.7848
    [18] Zheng Ying-Hui, Zeng Zhi-Nan, Li Ru-Xin, Xu Zhi-Zhan. Nondipole effects in high-order harmonic generation induced by extreme ultraviolet attosecond pulse. Acta Physica Sinica, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [19] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Proposal for single attosecond pulse production with a 43 fs super intense laser pulse. Acta Physica Sinica, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [20] Zeng Zhi-Nan, Li Ru-Xin, Xie Xin-Hua, Xu Zhi-Zhan. High-order harmonic attosecond pulses driven by a two-pulse laser. Acta Physica Sinica, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
Metrics
  • Abstract views:  5951
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2023
  • Accepted Date:  08 August 2023
  • Available Online:  09 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回