Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Feynman path-integral strong-field dynamics calculation method

Liu Xi-Wang Zhang Hong-Dan Ben Shuai Yang Shi-Dong Ren Xin Song Xiao-Hong Yang Wei-Feng

Citation:

Feynman path-integral strong-field dynamics calculation method

Liu Xi-Wang, Zhang Hong-Dan, Ben Shuai, Yang Shi-Dong, Ren Xin, Song Xiao-Hong, Yang Wei-Feng
PDF
HTML
Get Citation
  • The emergence and development of ultrafast intense lasers and attosecond measurement techniques have made it possible to observe and control the motions of electrons on a timescale of attoseconds and a spatial scale of atoms. With the improvement of experimental measurement accuracy, higher requirements are put forward for the accuracy of theoretical calculation methods. Extracting temporal and spatial information about ultrafast dynamics from experimental results through using theoretical models presents a significant challenge. Compared with the exact solutions of the time-dependent Schrödinger equation, the Feynman path-integral method for strong-field dynamics calculations offers a simpler model and higher computational efficiency. The electronic wave packet is regarded as a particle with different initial states, and by analyzing the motion of the particle, the causes of various nonlinear physical phenomena in strong fields can be clarified. This work introduces the saddle point approximation into strong field dynamics calculations based on the strong field approximation theory. Furthermore, the Coulomb-corrected strong field approximation method, trajectory-based Coulomb-corrected strong field approximation method, and Coulomb quantum trajectory strong field approximation method are presented in detail. This review aims to provide relevant methods and literature references for studying strong field dynamics theoretical calculations and also to present some ideas for developing new algorithms.
      Corresponding author: Song Xiao-Hong, song_xiaohong@hainanu.edu.cn ; Yang Wei-Feng, wfyang@hainanu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074240, 12374260, 12204135, 12264013, 12204136), the Natural Science Foundation of Hainan Province, China (Grant Nos. 122CXTD504, 123MS002, 123QN179, 123QN180, 122QN217), and the Sino-German Mobility Programme, China (Grant No. M-0031).
    [1]

    Schrödinger E 1926 Ann. Phys. 79 361

    [2]

    Born M, Jordan P 1925 Zeit. Phys. 34 858Google Scholar

    [3]

    Feynman R P 1948 Rev. Mod. Phys. 20 367Google Scholar

    [4]

    Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw Hill Press) p77

    [5]

    Maiman T H 1960 Nature 187 493Google Scholar

    [6]

    Voronov G S, Delone N B 1965 JETP Lett. 1 66

    [7]

    Agostini P, Barjot G, Bonnal J, Mainfray G, Manus C, Multiphoton J M 1968 IEEE J. Quantum Electron. 4 667Google Scholar

    [8]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [9]

    Keldysh L V 1965 Sov. Phys. JETP. 20 1307

    [10]

    Faisal F H M 1973 J. Phys. B: At. Mol. Opt. Phys. 6 L89

    [11]

    Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar

    [12]

    Perelomov A M, Popov V S, Terent’ev M V 1966 Sov. Phys. JETP. 23 924

    [13]

    Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP. 64 1191

    [14]

    Lewenstein M, Balcou P, Ivanov M Y, L’ Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [15]

    Mosert V, Bauer D 2016 Comput. Phys. Commun. 207 452Google Scholar

    [16]

    Tao L, Scrinzi A 2012 New J. Phys. 14 013021Google Scholar

    [17]

    Jain M, Tzoar N 1978 Phys. Rev. A 18 538Google Scholar

    [18]

    Duchateau G, Cormier E, Gayet R 2002 Phys. Rev. A 66 023412Google Scholar

    [19]

    Yu S G, Wang Y L, Lai X Y, Huang Y Y, Quan W, Liu X J 2016 Phys. Rev. A 94 033418Google Scholar

    [20]

    Yudin G L, Chelkowski S, Bandrauk A D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 L17Google Scholar

    [21]

    Popruzhenko S V, Paulus G G, Bauer D 2008 Phys. Rev. A 77 053409Google Scholar

    [22]

    Popruzhenko S V, Bauer D 2008 J. Mod. Optic. 55 2573Google Scholar

    [23]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010 Phys. Rev. Lett. 105 253002Google Scholar

    [24]

    Yan T M, Bauer D 2012 Phys. Rev. A 86 053403Google Scholar

    [25]

    Lai X Y, Poli C, Schomerus H, Figueira de Morisson Faria C 2015 Phys. Rev. A 92 043407Google Scholar

    [26]

    Lai X Y, Yu S G, Huang Y Y, Hua L Q, Gong C, Quan W, Figueira de Morisson Faria C, Liu X J 2017 Phys. Rev. A 96 013414Google Scholar

    [27]

    Corkum P B, Burnett N H, Brunel F 1989 Phys. Rev. Lett. 62 1259Google Scholar

    [28]

    Salières P, L’Huillier A, Lewenstein M 1995 Phys. Rev. Lett. 74 3776Google Scholar

    [29]

    Salières P, Carré B, Le Déroff L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milosÿevic D B 2001 Science 292 902Google Scholar

    [30]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logan P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G,  Redlich B, Van Der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M,  Ivanov M Y U, Smirnova O, Bauer D, Porruzhenko S V, Vrakking M J J 2011 Science 331 61Google Scholar

    [31]

    Li M, Geng J W, Liu H, Deng Y, Wu C Y, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002Google Scholar

    [32]

    Hu B, Liu J, Chen S 1997 Phys. Lett. A. 236 533Google Scholar

    [33]

    Shvetsov-Shilovski N I, Lein M, Madsen L B, Räsänen E, Lemell C, Burgdörfer J, Arbó D G, Tókési K 2016 Phys. Rev. A 94 013415Google Scholar

    [34]

    Song X, Lin C, Sheng Z H, Liu P, Chen Z J, Yang W F, Hu S L, Lin C D, Chen J 2016 Sci. Rep. 6 28392Google Scholar

    [35]

    Liu M M, Li M, Wu C Y, Gong Q H, André Staudte, Liu Y Q 2016 Phys. Rev. Lett. 116 163004Google Scholar

    [36]

    Liu M M, Liu Y Q 2017 J. Phys. B: At. Mol. Opt. Phys. 50 105602Google Scholar

    [37]

    Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar

    [38]

    Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J, Yang W F 2018 Phys. Rev. Lett. 121 103201Google Scholar

    [39]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar

    [40]

    Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L Ph H, Jahnke T, Dörner R, Kunitski M, Eckart S 2021 Nat. Commun. 12 1697Google Scholar

    [41]

    Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M Smirnova O 2015 Nat. Phys. 11 503Google Scholar

    [42]

    Tong J H, Liu X W, Dong W H, Jiang W Y, Zhu M, Xu Y D, Zuo Z T, Lu P F, Gong X C, Song X H, Yang W F, Wu J 2022 Phys. Rev. Lett. 129 173201Google Scholar

    [43]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp146–149

    [44]

    Bauer D, Milošević D B, Becker W 2005 Phys. Rev. A 72 023415Google Scholar

    [45]

    Bleistein N, Handelsman R A 1986 Asymptotic Expansions of Integrals (Dover: Dover Publications) p252

    [46]

    Booth A D 1949 J. Mech. Appl. Math. 2 460Google Scholar

    [47]

    Booth A D 1947 Nature 160 196Google Scholar

    [48]

    Huang L, Wu T 2018 Theor. Biol. Med. Modell. 15 22Google Scholar

    [49]

    Lai X Y, Figueira de Morisson Faria C 2013 Phys. Rev. A 88 013406Google Scholar

    [50]

    Maxwell A S 2019 Ph. D. Dissertation (London: University College London

    [51]

    Yang S D, Song X H, Liu X W, Zhang H D, Shi G L, Yu X H, Tang Y J, Chen J, Yang W F 2020 Laser Phys. Lett. 17 095301Google Scholar

    [52]

    Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35Google Scholar

    [53]

    Paul M, Gräfe S 2019 Phys. Rev. A 99 053414Google Scholar

    [54]

    Liu M M, Shao Y, Han M, Ge P P, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2018 Phys. Rev. Lett. 120 043201Google Scholar

    [55]

    Yan T M 2012 Ph. D. Dissertation (Germany: Universität Rostock

    [56]

    Arbó D G, Ishikawa K L, Persson E, Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 24Google Scholar

    [57]

    Milošević D B, Paulus G G, Bauer D, Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203Google Scholar

    [58]

    Becker A, Faisal F H M 2005 J. Phys. B: At. Mol. Opt. Phys. 38 R1Google Scholar

    [59]

    Popov V S 2004 Phys. Usp. 47 855Google Scholar

    [60]

    Xiao X R, Wang M X, Xiong W H, Peng L Y 2016 Phys. Rev. E 94 053310Google Scholar

    [61]

    李庆扬, 王能超, 易大义 2008 数值分析(第五版) (北京: 清华大学出版社) 第286页

    Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (5th Ed.) (Beijing: Tsinghua University Press) p286

    [62]

    Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V, Becker W 2009 Laser Phys. 19 1550Google Scholar

    [63]

    Shvetsov-Shilovski N I, Dimitrovski D, Madsen L B 2012 Phys. Rev. A 85 023428Google Scholar

  • 图 1  遗传算法流程图

    Figure 1.  Flowchart of genetic algorithm.

    图 2  牛顿迭代法图示. 蓝色曲线为方程$ f\left(x\right) $的解, 红色直线为蓝色曲线在自变量$ x $处的切线, $ {x}_{*} $为方程$ f\left(x\right)=0 $时需寻找的解

    Figure 2.  Illustration of Newton’s method. Blue curve represents value of function $ f\left(x\right) $, and red lines represent tangent to blue curve at independent variable $ x $, which is solution $ {x}_{*} $ when $ f\left(x\right)=0 $.

    图 3  4个样本的$ \left|f\right| $随迭代次数的变化. 蓝线、橙线、黄线和紫线分别代表初始试探解为$ ({t}_{{\rm{r}}}=20.1, {t}_{{\rm{i}}}=80.1) $$ ({t}_{{\rm{r}}}= $$ 40.1, {t}_{{\rm{i}}}=80.1) $, $ ({t}_{{\rm{r}}}=60.1, {t}_{{\rm{i}}}=80.1) $$ ({t}_{{\rm{r}}}=120.1, {t}_{{\rm{i}}}= $$ 80.1) $时, 随迭代次数增加函数值$ \left|f\right| $的变化.

    Figure 3.  Variation of $ \left|f\right| $ with the number of iterations n for four samples. The blue, orange, yellow, and purple lines represent the changes in function values $ \left|f\right| $ with increasing iteration times when the initial trial solutions are $ ({t}_{{\rm{r}}}=20.1, {t}_{{\rm{i}}}=80.1) $, $ ({t}_{{\rm{r}}}=40.1, {t}_{{\rm{i}}}=80.1) $, $ ({t}_{{\rm{r}}}=60.1, $$ {t}_{{\rm{i}}}= 80.1) $ and $ ({t}_{{\rm{r}}}=120.1, {t}_{{\rm{i}}}=80.1) $, respectively.

    图 4  复平面的路径积分. $ {I}_{1} $ 描述了沿虚时间轴的积分, 步长为 $ {\rm{i}}\Delta \tau $. $ {I}_{2} $ 描述了沿实时间轴的积分, 步长为$ \Delta \tau $

    Figure 4.  Path integral on complex plane. $ {I}_{1} $ describes integration along imaginary time axis with a step size of $ {\rm{i}}\Delta \tau $, and $ {I}_{2} $ describes the integration along real time axis with a step size of $ \Delta \tau $.

    图 5  费曼路径积分思想示意图. AB分别为粒子的初始点与末点, 绿色虚线为粒子的可能路径 (a) 两个位置之间存在一个挡板双缝; (b) 两个位置间存在两个多缝挡板; (c) 两个位置存在无数个狭缝, 此时粒子可以从A点经历任意位置到达B

    Figure 5.  Schematic diagram of Feynman’s path integral concept. A and B represent initial and final points of a particle, and the green dashed line represents the possible paths of particle: (a) There is a double-slit barrier between two positions; (b) there are multiple slit barriers between two positions; (c) there are infinite slits between two positions, and particle can reach point B from point A through any intermediate position.

    图 6  $ {p}_{z} $-$ {p}_{x} $平面内光电子动量分布图[24] (a) TDSE, (b) SFA, (c) TCSFA不考虑势垒下作用量; (d) TCSFA 考虑势垒下作用量

    Figure 6.  Logarithmically scaled photoelectron momentum distribution in $ {p}_{z} $-$ {p}_{x} $ plane[24]: (a) TDSE, (b) SFA and (c) TCSFA without sub-CC; (d) TCSFA with sub-CC.

    图 7  氢原子二维光电子角度分布[26] (a) CQSFA; (b) SFA; (c) TDSE

    Figure 7.  Two-dimensional photoelectron angular distributions of hydrogen atom[26]: (a) CQSFA; (b) SFA; (c) TDSE.

  • [1]

    Schrödinger E 1926 Ann. Phys. 79 361

    [2]

    Born M, Jordan P 1925 Zeit. Phys. 34 858Google Scholar

    [3]

    Feynman R P 1948 Rev. Mod. Phys. 20 367Google Scholar

    [4]

    Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw Hill Press) p77

    [5]

    Maiman T H 1960 Nature 187 493Google Scholar

    [6]

    Voronov G S, Delone N B 1965 JETP Lett. 1 66

    [7]

    Agostini P, Barjot G, Bonnal J, Mainfray G, Manus C, Multiphoton J M 1968 IEEE J. Quantum Electron. 4 667Google Scholar

    [8]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [9]

    Keldysh L V 1965 Sov. Phys. JETP. 20 1307

    [10]

    Faisal F H M 1973 J. Phys. B: At. Mol. Opt. Phys. 6 L89

    [11]

    Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar

    [12]

    Perelomov A M, Popov V S, Terent’ev M V 1966 Sov. Phys. JETP. 23 924

    [13]

    Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP. 64 1191

    [14]

    Lewenstein M, Balcou P, Ivanov M Y, L’ Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [15]

    Mosert V, Bauer D 2016 Comput. Phys. Commun. 207 452Google Scholar

    [16]

    Tao L, Scrinzi A 2012 New J. Phys. 14 013021Google Scholar

    [17]

    Jain M, Tzoar N 1978 Phys. Rev. A 18 538Google Scholar

    [18]

    Duchateau G, Cormier E, Gayet R 2002 Phys. Rev. A 66 023412Google Scholar

    [19]

    Yu S G, Wang Y L, Lai X Y, Huang Y Y, Quan W, Liu X J 2016 Phys. Rev. A 94 033418Google Scholar

    [20]

    Yudin G L, Chelkowski S, Bandrauk A D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 L17Google Scholar

    [21]

    Popruzhenko S V, Paulus G G, Bauer D 2008 Phys. Rev. A 77 053409Google Scholar

    [22]

    Popruzhenko S V, Bauer D 2008 J. Mod. Optic. 55 2573Google Scholar

    [23]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010 Phys. Rev. Lett. 105 253002Google Scholar

    [24]

    Yan T M, Bauer D 2012 Phys. Rev. A 86 053403Google Scholar

    [25]

    Lai X Y, Poli C, Schomerus H, Figueira de Morisson Faria C 2015 Phys. Rev. A 92 043407Google Scholar

    [26]

    Lai X Y, Yu S G, Huang Y Y, Hua L Q, Gong C, Quan W, Figueira de Morisson Faria C, Liu X J 2017 Phys. Rev. A 96 013414Google Scholar

    [27]

    Corkum P B, Burnett N H, Brunel F 1989 Phys. Rev. Lett. 62 1259Google Scholar

    [28]

    Salières P, L’Huillier A, Lewenstein M 1995 Phys. Rev. Lett. 74 3776Google Scholar

    [29]

    Salières P, Carré B, Le Déroff L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milosÿevic D B 2001 Science 292 902Google Scholar

    [30]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logan P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G,  Redlich B, Van Der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M,  Ivanov M Y U, Smirnova O, Bauer D, Porruzhenko S V, Vrakking M J J 2011 Science 331 61Google Scholar

    [31]

    Li M, Geng J W, Liu H, Deng Y, Wu C Y, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002Google Scholar

    [32]

    Hu B, Liu J, Chen S 1997 Phys. Lett. A. 236 533Google Scholar

    [33]

    Shvetsov-Shilovski N I, Lein M, Madsen L B, Räsänen E, Lemell C, Burgdörfer J, Arbó D G, Tókési K 2016 Phys. Rev. A 94 013415Google Scholar

    [34]

    Song X, Lin C, Sheng Z H, Liu P, Chen Z J, Yang W F, Hu S L, Lin C D, Chen J 2016 Sci. Rep. 6 28392Google Scholar

    [35]

    Liu M M, Li M, Wu C Y, Gong Q H, André Staudte, Liu Y Q 2016 Phys. Rev. Lett. 116 163004Google Scholar

    [36]

    Liu M M, Liu Y Q 2017 J. Phys. B: At. Mol. Opt. Phys. 50 105602Google Scholar

    [37]

    Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar

    [38]

    Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J, Yang W F 2018 Phys. Rev. Lett. 121 103201Google Scholar

    [39]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar

    [40]

    Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L Ph H, Jahnke T, Dörner R, Kunitski M, Eckart S 2021 Nat. Commun. 12 1697Google Scholar

    [41]

    Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M Smirnova O 2015 Nat. Phys. 11 503Google Scholar

    [42]

    Tong J H, Liu X W, Dong W H, Jiang W Y, Zhu M, Xu Y D, Zuo Z T, Lu P F, Gong X C, Song X H, Yang W F, Wu J 2022 Phys. Rev. Lett. 129 173201Google Scholar

    [43]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp146–149

    [44]

    Bauer D, Milošević D B, Becker W 2005 Phys. Rev. A 72 023415Google Scholar

    [45]

    Bleistein N, Handelsman R A 1986 Asymptotic Expansions of Integrals (Dover: Dover Publications) p252

    [46]

    Booth A D 1949 J. Mech. Appl. Math. 2 460Google Scholar

    [47]

    Booth A D 1947 Nature 160 196Google Scholar

    [48]

    Huang L, Wu T 2018 Theor. Biol. Med. Modell. 15 22Google Scholar

    [49]

    Lai X Y, Figueira de Morisson Faria C 2013 Phys. Rev. A 88 013406Google Scholar

    [50]

    Maxwell A S 2019 Ph. D. Dissertation (London: University College London

    [51]

    Yang S D, Song X H, Liu X W, Zhang H D, Shi G L, Yu X H, Tang Y J, Chen J, Yang W F 2020 Laser Phys. Lett. 17 095301Google Scholar

    [52]

    Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35Google Scholar

    [53]

    Paul M, Gräfe S 2019 Phys. Rev. A 99 053414Google Scholar

    [54]

    Liu M M, Shao Y, Han M, Ge P P, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2018 Phys. Rev. Lett. 120 043201Google Scholar

    [55]

    Yan T M 2012 Ph. D. Dissertation (Germany: Universität Rostock

    [56]

    Arbó D G, Ishikawa K L, Persson E, Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 24Google Scholar

    [57]

    Milošević D B, Paulus G G, Bauer D, Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203Google Scholar

    [58]

    Becker A, Faisal F H M 2005 J. Phys. B: At. Mol. Opt. Phys. 38 R1Google Scholar

    [59]

    Popov V S 2004 Phys. Usp. 47 855Google Scholar

    [60]

    Xiao X R, Wang M X, Xiong W H, Peng L Y 2016 Phys. Rev. E 94 053310Google Scholar

    [61]

    李庆扬, 王能超, 易大义 2008 数值分析(第五版) (北京: 清华大学出版社) 第286页

    Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (5th Ed.) (Beijing: Tsinghua University Press) p286

    [62]

    Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V, Becker W 2009 Laser Phys. 19 1550Google Scholar

    [63]

    Shvetsov-Shilovski N I, Dimitrovski D, Madsen L B 2012 Phys. Rev. A 85 023428Google Scholar

  • [1] Feng Bo, Xu Wen-Jun, Cai Jie-Xiong, Wu Ru-Shan, Wang Hua-Zhong. Phase-preserving theory and its linearization approximation for forward scattering field of scalar acoustic wave equation. Acta Physica Sinica, 2023, 72(15): 159101. doi: 10.7498/aps.72.20230194
    [2] Zang Yu-Chen, Su Chang, Wu Peng-Fei, Lin Wei-Jun. Born approximation of acoustic radiation force and torque for an arbitrary particle in a zero-order standing Bessel beam. Acta Physica Sinica, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [3] Ma Chuang, Yang Xiao-Long, Chen Han-Shuang, Zhang Hai-Feng. A mean-field approximation based BP algorithm for solving the stochastic block model. Acta Physica Sinica, 2021, 70(22): 228901. doi: 10.7498/aps.70.20210511
    [4] Zhu Yan-Ju, Jiang Yue-Song, Hua Hou-Qiang, Zhang Chong-Hui, Xin Can-Wei. Modified equivalent current approximation and graphical electromagnetic computing method of analyzing radar cross section of missile target scatterer covered with thermal protection layer. Acta Physica Sinica, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [5] Liu Hao-Di. Berry phase and Hannay's angle of an electromagnetic mode system driven by harmonic field with Born-Oppenheimer approximation. Acta Physica Sinica, 2013, 62(10): 100302. doi: 10.7498/aps.62.100302
    [6] Jiao Xiao-Yu. The approximate homotopy symmetry reduction for far-field model equation. Acta Physica Sinica, 2011, 60(12): 120201. doi: 10.7498/aps.60.120201
    [7] Cheng Chun-Zhi, Zhou Xiao-Xin, Li Peng-Cheng. The wavelength dependence of high-order harmonic generationand attosecond pulses from atom in infrared laser field. Acta Physica Sinica, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [8] Liao Xu, Cong Hong-Lu, Jiang Dao-Lai, Ren Xue-Zao. Influence of the field with varying frequency modulation on atomic population inversion in non-ratating-wave approximation. Acta Physica Sinica, 2010, 59(8): 5508-5513. doi: 10.7498/aps.59.5508
    [9] Yang Pei, Chen Yong, Li Zhi-Bin. Analytic approximation for the soliton solution of the discrete modified KdV equation. Acta Physica Sinica, 2010, 59(6): 3668-3673. doi: 10.7498/aps.59.3668
    [10] Guo Zhong-Hua, Zhou Xiao-Xin. The influence of molecular ground state wave function on high-order harmonic generation from N2 molecules in intense laser fields. Acta Physica Sinica, 2008, 57(3): 1616-1621. doi: 10.7498/aps.57.1616
    [11] Mo Jia-Qi, Zhang Wei-Jiang, He Ming. The solitary wave approximate solution of strongly nonlinear evolution equations. Acta Physica Sinica, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [12] Wu Ye, Xiao Jing-Hua, Zhan Meng. Approximate synchronization of strongly coupled chaotic systems. Acta Physica Sinica, 2007, 56(9): 5119-5123. doi: 10.7498/aps.56.5119
    [13] Jia Fei, Xie Shuang-Yuan, Yang Ya-Ping. Interaction of an atom with a field with varying frequency without rotating-wave approximation. Acta Physica Sinica, 2006, 55(11): 5835-5841. doi: 10.7498/aps.55.5835
    [14] Liu Chun-Xiang, Cheng Chuan-Fu, Ren Xiao-Rong, Liu Man, Teng Shu-Yun, Xu Zhi-Zhan. Green's function method of light scattering from random surfaces compares with Kirchhoff's approximation. Acta Physica Sinica, 2004, 53(2): 427-435. doi: 10.7498/aps.53.427
    [15] Zhang Cheng-Hua, Qian Wen-Jia, Leng Wen-Xiu, Li Jun-Xia, Long Qi-Wei, Tian En-Ke. . Acta Physica Sinica, 2002, 51(10): 2225-2228. doi: 10.7498/aps.51.2225
    [16] FANG MAO-FA. EVOLUTION OF THE FIELD ENTROPY IN JAYNES-CUMMINGS MODEL WITHOUT ROTATING-WAVE APPROXIMATION. Acta Physica Sinica, 1994, 43(11): 1776-1786. doi: 10.7498/aps.43.1776
    [17] LI GAO-XIANG, PENG JIN-SHENG. PHASE FLUCTUATIONS IN JAYNES-CUMMINGS MODEL WITH AND WITHOUT ROTATION WAVE APPROXIMATION. Acta Physica Sinica, 1992, 41(5): 766-773. doi: 10.7498/aps.41.766
    [18] WEI GUO-ZHU, NIE HUI-QUAN, ZHANG KAI-YI. LOCAL APPROACH IN THE HUBBARD MODEL. Acta Physica Sinica, 1988, 37(1): 87-94. doi: 10.7498/aps.37.87
    [19] SU ZHAO-BING, YU LU, ZHOU GUANG-ZHAO. THE GENERALIZED MEAN FIELD EXPANSIONS FOR MANY FERMION SYSTEMS. Acta Physica Sinica, 1984, 33(7): 999-1007. doi: 10.7498/aps.33.999
    [20] . Acta Physica Sinica, 1966, 22(4): 510-514. doi: 10.7498/aps.22.510
Metrics
  • Abstract views:  3928
  • PDF Downloads:  176
  • Cited By: 0
Publishing process
  • Received Date:  25 March 2023
  • Accepted Date:  19 June 2023
  • Available Online:  20 June 2023
  • Published Online:  05 October 2023

/

返回文章
返回