Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Born approximation of acoustic radiation force and torque for an arbitrary particle in a zero-order standing Bessel beam

Zang Yu-Chen Su Chang Wu Peng-Fei Lin Wei-Jun

Citation:

Born approximation of acoustic radiation force and torque for an arbitrary particle in a zero-order standing Bessel beam

Zang Yu-Chen, Su Chang, Wu Peng-Fei, Lin Wei-Jun
PDF
HTML
Get Citation
  • The calculation of acoustic radiation force and acoustic radiation torque is an important basis for the precise manipulation of particles. It is difficult to directly apply the partial-wave series expansion method based on the classical acoustic scattering theory to the study of complicated models, while pure numerical methods are not conducive to the parametric analyses of the system. Based on the basic principle of Born approximation, the expressions of acoustic radiation force and torque acting on an arbitrary particle located in the center of a zero-order Bessel standing wave field are derived at low frequencies. On this basis, the numerical simulations are systematically performed by taking spherical, spheroidal and cylindrical particles as examples. The effects of inhomogeneity on the acoustic radiation force and torque are also investigated. The simulation results show that the Born approximation method has a high accuracy in the low frequency range. As the frequency increases and the impedance matching between the particle and the fluid becomes worse, the accuracy of Born approximation will gradually decrease. An acoustic radiation torque caused by asymmetry will be exerted on spheroidal and cylindrical particles obliquely positioned in a zero-order Bessel standing wave field. When the particle size is much smaller than the wavelength, the acoustic radiation force is nearly independent of the particle shape, but this is not the case for acoustic radiation torque. Finally, viscous effect of the surrounding fluid is introduced and the expression of acoustic radiation force is corrected accordingly. The study is expected to provide a theoretical guide for the precise manipulation of small particles using standing wave acoustic tweezers in biomedicine and material sciences.
      Corresponding author: Su Chang, suchang@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 81527901), the National Key R&D Program of China (Grant No. 2018YFC0114900), the Goal-oriented Project Deployed by Institute of Acoustics, Chinese Academy of Sciences, China (Grant No. MBDX202113) and the Youth Innovation Promotion Association, Chinese Academy of Sciences, China (Grant No. 2019024).
    [1]

    Wu J R 1991 J. Acoust. Soc. Am. 89 2140Google Scholar

    [2]

    Lee J W, Ha K L, Shung K K 2005 J. Acoust. Soc. Am. 117 3273Google Scholar

    [3]

    Lee J W, Shung K K 2006 J. Acoust. Soc. Am. 120 1084Google Scholar

    [4]

    黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平 2017 物理学报 66 044301Google Scholar

    Huang X Y, Cai F Y, Li W C, Zheng H R, He Z J, Deng K, Zhao H P 2017 Acta Phys. Sin. 66 044301Google Scholar

    [5]

    Ozcelik A, Rufo J, Guo F, Guo Y Y, Li P, Lata J, Huang T J 2018 Nat. Methods. 15 1021Google Scholar

    [6]

    Baudoin M, Thomas J L 2020 Annu. Rev. Fluid Mech. 52 205Google Scholar

    [7]

    Lierke E G 1996 Acustica 82 220

    [8]

    Yarin A L, Pfaffenlehner M, Tropea C 1998 J. Fluid Mech. 356 65Google Scholar

    [9]

    King L V 1934 Proc. Roya. Soc. London, Ser. A 147 212Google Scholar

    [10]

    Awatani J 1953 J. Acous. Soc. Jpn. 9 140

    [11]

    Yosioka K, Kawasima Y 1955 Acta Acust. United Ac. 5 167

    [12]

    Hasegawa T, Yosioka K 1969 J. Acoust. Soc. Am. 46 1139Google Scholar

    [13]

    Hasegawa T, Watanabe Y 1978 J. Acoust. Soc. Am. 63 1733Google Scholar

    [14]

    Hasegawa T 1979 J. Acoust. Soc. Am. 65 32Google Scholar

    [15]

    Hasegawa T 1979 J. Acoust. Soc. Am. 65 41Google Scholar

    [16]

    Hasegawa T, Saka K, Inoue N, Matsuzawa K 1988 J. Acoust. Soc. Am. 83 1770Google Scholar

    [17]

    Silva G T, Lobo T P, Mitri F G 2012 EPL 97 54003Google Scholar

    [18]

    Gong Z X, M. Baudoin 2020 J. Acoust. Soc. Am. 148 3131Google Scholar

    [19]

    Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N 1993 J. Acoust. Soc. Am. 93 154Google Scholar

    [20]

    Mitri F G 2005 Ultrasonics 43 681Google Scholar

    [21]

    Mitri F G 2006 Ultrasonics 44 244Google Scholar

    [22]

    Wang Y Y, Yao J, Wu X W, Wu D J, Liu X J 2017 J. Appl. Phys. 122 094902Google Scholar

    [23]

    Peng X J, He W, Xin F X, Genin G M, Lu T J 2020 Ultrasonics 108 106205Google Scholar

    [24]

    Peng X J, He W, Xin F X, Genin G M, Lu T J 2020 J. Mech. Phys. Solids 145 104134Google Scholar

    [25]

    Wu R R, Cheng K X, Liu X Z, Liu J H, Mao Y W, Gong X F, Li Y F 2014 J. Appl. Phys. 116 144903Google Scholar

    [26]

    Wang H B, Liu X Z, Gao S, Cui J, Liu J H, He A J, Zhang G T 2018 Chin. Phys. B 27 034302Google Scholar

    [27]

    Zang Y C, Lin W J 2020 Results Phys. 16 102847Google Scholar

    [28]

    Mitri F G 2020 Chin. Phys. B 29 114302Google Scholar

    [29]

    Mitri F G 2021 Chin. Phys. B 30 024302Google Scholar

    [30]

    Mitri F G 2006 New J. Phys. 8 138Google Scholar

    [31]

    Aglyamov S R, Karpiouk A B, Ilinskii Y A, Zabolotskaya E A, Emelianov S Y 2007 J. Acoust. Soc. Am. 122 1927Google Scholar

    [32]

    Nikolaeva A V, Kryzhanovsky M A, Tsysar S A, Kreider, W, Sapozhnikov O A 2015 AIP Conference Proceedings 1685 040009

    [33]

    Garbin A, Leibacher I, Hahn P, Le Ferrand H, Studart A R, Dual J 2015 J. Acoust. Soc. Am. 138 2759Google Scholar

    [34]

    Johnson K A, Vormohr H R, Doinikov A A, Bouakaz A, Shields C W, Lopez G P, Dayton P A 2016 Phys Rev. E 93 053109Google Scholar

    [35]

    Qiao Y P, Gong M Y, Wang H B, Lan J, Liu T, Liu J H, Mao Y W, He A J, Liu X Z 2021 Phys. Fluids 33 047107Google Scholar

    [36]

    Wijaya F B, Lim K M 2015 Acta Acust. 101 531Google Scholar

    [37]

    Glynne-Jones P, Mishra P P, Boltryk R J, Hill M 2013 J. Acoust. Soc. Am. 133 1885Google Scholar

    [38]

    Wei W, Thiessen D B, Marston P L 2004 J. Acoust. Soc. Am. 116 201Google Scholar

    [39]

    Hasheminejad S M, Sanaei R 2007 J. Comput. Acoust. 15 377Google Scholar

    [40]

    Marston P L, Wei W, Thiessen D B 2006 AIP Conf. Proc. 838 495Google Scholar

    [41]

    Mitri F G 2016 Ultrasonics 66 27Google Scholar

    [42]

    Mitri F G 2015 J. Appl. Phys. 118 214903Google Scholar

    [43]

    Mitri F G 2015 Wave Motion 57 231Google Scholar

    [44]

    Mitri F G 2015 EPL 112 34002Google Scholar

    [45]

    Mitri F G 2017 Ultrasonics 74 62Google Scholar

    [46]

    Silva G T, Drinkwater B W 2018 J. Acoust. Soc. Am. 144 EL453Google Scholar

    [47]

    Jerome T S, Ilinskii Yu A, Zabolotskaya E A, Hamilton M F 2020 J. Acoust. Soc. Am. 148 2403Google Scholar

    [48]

    Jerome T S, Ilinskii Yu A, Zabolotskaya E A, Hamilton M F 2021 J. Acoust. Soc. Am. 149 2081Google Scholar

    [49]

    Marston P L 2006 J. Acoust. Soc. Am. 120 3518Google Scholar

    [50]

    Marston P L 2009 J. Acoust. Soc. Am. 125 3539Google Scholar

    [51]

    Mitri F G 2008 Ann. Phys. 323 1604Google Scholar

    [52]

    Mitri F G 2009 Ultrasonics 49 794Google Scholar

    [53]

    Mitri F G 2009 IEEE UFFC 56 1059Google Scholar

    [54]

    Mitri F G 2009 J. Phys. A, Math. Theor. 42 245202Google Scholar

    [55]

    Mitri F G 2009 Eur. Phys. J. E 28 469Google Scholar

    [56]

    Zhang L K, Marston P L 2011 J. Acoust. Soc. Am. 129 1679Google Scholar

    [57]

    Zhang L K, Marston P L 2011 Phys. Rev. E 84 065601Google Scholar

    [58]

    Zhang L K, Marston P L 2011 J. Acoust. Soc. Am. 129 2381

    [59]

    Zhang L K 2018 Phys. Rev. Appl. 10 034039Google Scholar

    [60]

    Gong Z X, Marston P L 2019 Phys. Rev. Appl. 11 064022Google Scholar

    [61]

    Jerome T S, Ilinskii Yu A, Zabolotskaya E A, Hamilton M F 2019 J. Acoust. Soc. Am. 145 36Google Scholar

    [62]

    Jerome T S, Hamilton M F 2020 Proc. Meet. Acoust. 39 045007

    [63]

    Jerome T S, Hamilton M F 2021 J. Acoust. Soc. Am. 150 3417Google Scholar

    [64]

    Ilinskii Yu A, Zabolotskaya E A, Hamilton M F 2012 AIP Conf. Proc. 1474 255

    [65]

    Sapozhnikov O A, Bailey M R 2013 J. Acoust. Soc. Am. 133 661Google Scholar

    [66]

    Ilinskii Yu A, Zabolotskaya E A, Treweek B C, Hamilton M F 2018 J. Acoust. Soc. Am. 144 568Google Scholar

    [67]

    Durnin J 1987 J. Opt. Soc. Am. A 4 651Google Scholar

    [68]

    Rayleigh L 1884 Philos. Trans. R. Soc. London 175 1

    [69]

    Landau L D, Lifshitz E M 1993 Fluid Mechanics (2nd Ed.) (Vol. 6) Course of Theoretical Physics (Oxford: Pergamon)

    [70]

    Settnes M, Bruus H 2012 Phys. Rev. E 85 016327Google Scholar

  • 图 1  倾斜放置于零阶Bessel驻波场中心的任意轴对称粒子

    Figure 1.  An arbitrary object with axisymmetric geometry obliquely positioned in a zero-order standing Bessel beam.

    图 2  零阶Bessel驻波场中心均匀球形粒子受到的归一化声辐射力随kR的变化(β = π/6, kzh = π /4, ρm/ρ0 = 1) (a) cm/c0 = 1.01; (b) cm/c0 = 1.05; (c) cm/c0 = 1.1

    Figure 2.  The dimensionless acoustic radiation force plots for a homogeneous sphere versus kR in a zero-order standing Bessel beam (β = π/6, kzh = π/4, ρm/ρ0 = 1): (a) cm/c0 = 1.01; (b) cm/c0 = 1.05; (c) cm/c0 = 1.1.

    图 3  零阶Bessel驻波场中心均匀球形粒子受到的归一化声辐射力随β的变化(kR = 0.5, kzh = π/4, ρm/ρ0 = 1)

    Figure 3.  The dimensionless acoustic radiation force plots for a homogeneous sphere versus β in a zero-order standing Bessel beam (kR = 0.5, kzh = π/4, ρm/ρ0 = 1).

    图 4  零阶Bessel驻波场中心非均匀球形粒子受到的归一化声辐射力随kR的变化(fA = fC = 0, β = π/6, kzh = π/4)

    Figure 4.  The dimensionless acoustic radiation force plots for an inhomogeneous sphere versus kR in a zero-order standing Bessel beam (fA = fC = 0, β = π/6, kzh = π/4).

    图 5  零阶Bessel驻波场中心非均匀球形粒子受到的归一化声辐射力随β的变化(fA = fC = 0, kR = 0.5, kzh = π/4)

    Figure 5.  The dimensionless acoustic radiation force plots for an inhomogeneous sphere versus β in a zero-order standing Bessel beam (fA = fC = 0, kR = 0.5, kzh = π/4).

    图 6  零阶Bessel驻波场中心均匀椭球形粒子受到的归一化声辐射力和力矩随kb的变化(β = π/6, θs = π/6, ρm/ρ0 = 1, cm/c0 = 1.05) (a)归一化声辐射力(kzh = π/4); (b)归一化声辐射力矩(kzh = 0)

    Figure 6.  The dimensionless acoustic radiation force and torque plots for a homogeneous spheroid versus kb in a zero-order standing Bessel beam (β = π/6, θs = π/6, ρm/ρ0 = 1, cm/c0 = 1.05): (a) Dimensionless acoustic radiation force (kzh = π/4); (b) dimensionless acoustic radiation torque (kzh = 0).

    图 7  零阶Bessel驻波场中心均匀椭球形粒子受到的归一化声辐射力和力矩随θs的变化(kb = 0.5, β = π/6, ρm/ρ0 = 1, cm/c0 = 1.05) (a)归一化声辐射力(kzh = π/4); (b)归一化声辐射力矩(kzh = 0)

    Figure 7.  The dimensionless acoustic radiation force and torque plots for a homogeneous spheroid versus θs in a zero-order standing Bessel beam (kb = 0.5, β = π/6, ρm/ρ0 = 1, cm/c0 = 1.05): (a) Dimensionless acoustic radiation force (kzh = π/4); (b) dimensionless acoustic radiation torque (kzh = 0).

    图 8  零阶Bessel驻波场中心非均匀椭球形粒子受到的归一化声辐射力随kb的变化(β = π/6, θs = π/6, kzh = π/4): (a) fA = 0.137, fB = 0.254, fC = 0.026, fD = 0.051; (b) fA = –0.160, fB = –0.349, fC = –0.027, fD = –0.056

    Figure 8.  The dimensionless acoustic radiation force plots for an inhomogeneous spheroid versus kb in a zero-order standing Bessel beam (β = π/6, θs = π/6, kzh = π/4): (a) fA = 0.137, fB = 0.254, fC=0.026, fD = 0.051; (b) fA = –0.160, fB = –0.349, fC = –0.027, fD = –0.056

    图 9  零阶Bessel驻波场中心非均匀椭球形粒子受到的归一化声辐射力矩随kb的变化(β = π/6, θs = π/6, kzh = 0) (a) fA = 0.137, fB = 0.254, fC = 0.026, fD = 0.051; (b) fA = –0.160, fB = –0.349, fC = –0.027, fD = –0.056

    Figure 9.  The dimensionless acoustic radiation torque plots for an inhomogeneous spheroid versus kb in a zero-order standing Bessel beam (β = π/6, θs = π/6, kzh = 0): (a) fA = 0.137, fB = 0.254, fC = 0.026, fD = 0.051; (b) fA = –0.160, fB = –0.349, fC = –0.027, fD = –0.056.

    图 10  零阶Bessel驻波场中心非均匀椭球形粒子受到的归一化声辐射力随θs的变化(kb = 0.5, β = π/6, kzh = π/4) (a) fA = 0.137, fB = 0.254, fC = 0.026, fD = 0.051; (b) fA = –0.160, fB = –0.349, fC = –0.027, fD = –0.056

    Figure 10.  The dimensionless acoustic radiation force plots for an inhomogeneous spheroid versus θs in a zero-order standing Bessel beam (kb = 0.5, β = π/6, kzh = π/4): (a) fA = 0.137, fB = 0.254, fC = 0.026, fD = 0.051; (b) fA = –0.160, fB = –0.349, fC = –0.027, fD = –0.056.

    图 11  零阶Bessel驻波场中心非均匀椭球形粒子受到的归一化声辐射力矩随θs的变化(kb = 0.5, β = π/6, kzh = 0) (a) fA = 0.137, fB = 0.254, fC = 0.026, fD = 0.051; (b) fA = –0.160, fB = –0.349, fC = –0.027, fD = –0.056

    Figure 11.  The dimensionless acoustic radiation torque plots for an inhomogeneous spheroid versus θs in a zero-order standing Bessel beam (kb = 0.5, β = π/6, kzh = 0): (a) fA = 0.137, fB=0.254, fC = 0.026, fD = 0.051; (b) fA = –0.160, fB = –0.349, fC = –0.027, fD = –0.056.

    图 12  零阶Bessel驻波场中心均匀柱形粒子受到的归一化声辐射力和力矩随kL的变化(β=π/6, θs = π/6, ρm/ρ0 = 1, cm/c0 = 1.05) (a)归一化声辐射力(kzh = π/4); (b)归一化声辐射力矩(kzh = 0)

    Figure 12.  The dimensionless acoustic radiation force and torque plots for a homogeneous cylinder versus kL in a zero-order standing Bessel beam (β = π/6, θs = π/6, ρm/ρ0 = 1, cm/c0 = 1.05): (a) Dimensionless acoustic radiation force (kzh = π/4); (b) dimensionless acoustic radiation torque (kzh = 0).

    图 13  零阶Bessel驻波场中心均匀柱形粒子受到的归一化声辐射力和力矩随θs的变化(β = π/6, kL = 0.5, ρm/ρ0 = 1, cm/c0 = 1.05) (a)归一化声辐射力(kzh = π/4); (b)归一化声辐射力矩(kzh = 0)

    Figure 13.  The dimensionless acoustic radiation force and torque plots for a homogeneous cylinder versus θs in a zero-order standing Bessel beam (β = π/6, kL = 0.5, ρm/ρ0=1, cm/c0=1.05): (a) Dimensionless acoustic radiation force (kzh = π/4); (b) dimensionless acoustic radiation torque (kzh = 0).

    图 14  均匀球形粒子的偶极散射系数f2$ \bar \delta $的变化 (a) ${\rm {Re}} ( {{f_2}})/{\rm {Re}} ( {{f_{20}}} )$; (b) $ {\rm {Im}} \left( {{f_2}} \right) $

    Figure 14.  The dipole scattering coefficient f2 plots for a homogeneous sphere versus $ \bar \delta $ (a) ${\rm {Re}} ( {{f_2}})/{\rm {Re}} ( {{f_{20}}} )$; (b) ${\rm {Im}} ({{f_2}})$

    图 15  零阶Bessel驻波场中心均匀球形粒子受到的归一化声辐射力随kR的变化(β = π/6, kzh = π/4, ρm/ρ0 = 1.2, cm/c0 = 1.1) (a) 归一化声辐射力; (b) 黏性流体与理想流体中归一化声辐射力的差值

    Figure 15.  The dimensionless acoustic radiation force plots for a homogeneous sphere versus kR in a zero-order standing Bessel beam (β = π/6, kzh = π/4, ρm/ρ0 = 1.1, cm/c0 = 1.1): (a) Dimensionless acoustic radiation force; (b) difference of dimensionless acoustic radiation force in a viscous fluid and in an ideal fluid

  • [1]

    Wu J R 1991 J. Acoust. Soc. Am. 89 2140Google Scholar

    [2]

    Lee J W, Ha K L, Shung K K 2005 J. Acoust. Soc. Am. 117 3273Google Scholar

    [3]

    Lee J W, Shung K K 2006 J. Acoust. Soc. Am. 120 1084Google Scholar

    [4]

    黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平 2017 物理学报 66 044301Google Scholar

    Huang X Y, Cai F Y, Li W C, Zheng H R, He Z J, Deng K, Zhao H P 2017 Acta Phys. Sin. 66 044301Google Scholar

    [5]

    Ozcelik A, Rufo J, Guo F, Guo Y Y, Li P, Lata J, Huang T J 2018 Nat. Methods. 15 1021Google Scholar

    [6]

    Baudoin M, Thomas J L 2020 Annu. Rev. Fluid Mech. 52 205Google Scholar

    [7]

    Lierke E G 1996 Acustica 82 220

    [8]

    Yarin A L, Pfaffenlehner M, Tropea C 1998 J. Fluid Mech. 356 65Google Scholar

    [9]

    King L V 1934 Proc. Roya. Soc. London, Ser. A 147 212Google Scholar

    [10]

    Awatani J 1953 J. Acous. Soc. Jpn. 9 140

    [11]

    Yosioka K, Kawasima Y 1955 Acta Acust. United Ac. 5 167

    [12]

    Hasegawa T, Yosioka K 1969 J. Acoust. Soc. Am. 46 1139Google Scholar

    [13]

    Hasegawa T, Watanabe Y 1978 J. Acoust. Soc. Am. 63 1733Google Scholar

    [14]

    Hasegawa T 1979 J. Acoust. Soc. Am. 65 32Google Scholar

    [15]

    Hasegawa T 1979 J. Acoust. Soc. Am. 65 41Google Scholar

    [16]

    Hasegawa T, Saka K, Inoue N, Matsuzawa K 1988 J. Acoust. Soc. Am. 83 1770Google Scholar

    [17]

    Silva G T, Lobo T P, Mitri F G 2012 EPL 97 54003Google Scholar

    [18]

    Gong Z X, M. Baudoin 2020 J. Acoust. Soc. Am. 148 3131Google Scholar

    [19]

    Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N 1993 J. Acoust. Soc. Am. 93 154Google Scholar

    [20]

    Mitri F G 2005 Ultrasonics 43 681Google Scholar

    [21]

    Mitri F G 2006 Ultrasonics 44 244Google Scholar

    [22]

    Wang Y Y, Yao J, Wu X W, Wu D J, Liu X J 2017 J. Appl. Phys. 122 094902Google Scholar

    [23]

    Peng X J, He W, Xin F X, Genin G M, Lu T J 2020 Ultrasonics 108 106205Google Scholar

    [24]

    Peng X J, He W, Xin F X, Genin G M, Lu T J 2020 J. Mech. Phys. Solids 145 104134Google Scholar

    [25]

    Wu R R, Cheng K X, Liu X Z, Liu J H, Mao Y W, Gong X F, Li Y F 2014 J. Appl. Phys. 116 144903Google Scholar

    [26]

    Wang H B, Liu X Z, Gao S, Cui J, Liu J H, He A J, Zhang G T 2018 Chin. Phys. B 27 034302Google Scholar

    [27]

    Zang Y C, Lin W J 2020 Results Phys. 16 102847Google Scholar

    [28]

    Mitri F G 2020 Chin. Phys. B 29 114302Google Scholar

    [29]

    Mitri F G 2021 Chin. Phys. B 30 024302Google Scholar

    [30]

    Mitri F G 2006 New J. Phys. 8 138Google Scholar

    [31]

    Aglyamov S R, Karpiouk A B, Ilinskii Y A, Zabolotskaya E A, Emelianov S Y 2007 J. Acoust. Soc. Am. 122 1927Google Scholar

    [32]

    Nikolaeva A V, Kryzhanovsky M A, Tsysar S A, Kreider, W, Sapozhnikov O A 2015 AIP Conference Proceedings 1685 040009

    [33]

    Garbin A, Leibacher I, Hahn P, Le Ferrand H, Studart A R, Dual J 2015 J. Acoust. Soc. Am. 138 2759Google Scholar

    [34]

    Johnson K A, Vormohr H R, Doinikov A A, Bouakaz A, Shields C W, Lopez G P, Dayton P A 2016 Phys Rev. E 93 053109Google Scholar

    [35]

    Qiao Y P, Gong M Y, Wang H B, Lan J, Liu T, Liu J H, Mao Y W, He A J, Liu X Z 2021 Phys. Fluids 33 047107Google Scholar

    [36]

    Wijaya F B, Lim K M 2015 Acta Acust. 101 531Google Scholar

    [37]

    Glynne-Jones P, Mishra P P, Boltryk R J, Hill M 2013 J. Acoust. Soc. Am. 133 1885Google Scholar

    [38]

    Wei W, Thiessen D B, Marston P L 2004 J. Acoust. Soc. Am. 116 201Google Scholar

    [39]

    Hasheminejad S M, Sanaei R 2007 J. Comput. Acoust. 15 377Google Scholar

    [40]

    Marston P L, Wei W, Thiessen D B 2006 AIP Conf. Proc. 838 495Google Scholar

    [41]

    Mitri F G 2016 Ultrasonics 66 27Google Scholar

    [42]

    Mitri F G 2015 J. Appl. Phys. 118 214903Google Scholar

    [43]

    Mitri F G 2015 Wave Motion 57 231Google Scholar

    [44]

    Mitri F G 2015 EPL 112 34002Google Scholar

    [45]

    Mitri F G 2017 Ultrasonics 74 62Google Scholar

    [46]

    Silva G T, Drinkwater B W 2018 J. Acoust. Soc. Am. 144 EL453Google Scholar

    [47]

    Jerome T S, Ilinskii Yu A, Zabolotskaya E A, Hamilton M F 2020 J. Acoust. Soc. Am. 148 2403Google Scholar

    [48]

    Jerome T S, Ilinskii Yu A, Zabolotskaya E A, Hamilton M F 2021 J. Acoust. Soc. Am. 149 2081Google Scholar

    [49]

    Marston P L 2006 J. Acoust. Soc. Am. 120 3518Google Scholar

    [50]

    Marston P L 2009 J. Acoust. Soc. Am. 125 3539Google Scholar

    [51]

    Mitri F G 2008 Ann. Phys. 323 1604Google Scholar

    [52]

    Mitri F G 2009 Ultrasonics 49 794Google Scholar

    [53]

    Mitri F G 2009 IEEE UFFC 56 1059Google Scholar

    [54]

    Mitri F G 2009 J. Phys. A, Math. Theor. 42 245202Google Scholar

    [55]

    Mitri F G 2009 Eur. Phys. J. E 28 469Google Scholar

    [56]

    Zhang L K, Marston P L 2011 J. Acoust. Soc. Am. 129 1679Google Scholar

    [57]

    Zhang L K, Marston P L 2011 Phys. Rev. E 84 065601Google Scholar

    [58]

    Zhang L K, Marston P L 2011 J. Acoust. Soc. Am. 129 2381

    [59]

    Zhang L K 2018 Phys. Rev. Appl. 10 034039Google Scholar

    [60]

    Gong Z X, Marston P L 2019 Phys. Rev. Appl. 11 064022Google Scholar

    [61]

    Jerome T S, Ilinskii Yu A, Zabolotskaya E A, Hamilton M F 2019 J. Acoust. Soc. Am. 145 36Google Scholar

    [62]

    Jerome T S, Hamilton M F 2020 Proc. Meet. Acoust. 39 045007

    [63]

    Jerome T S, Hamilton M F 2021 J. Acoust. Soc. Am. 150 3417Google Scholar

    [64]

    Ilinskii Yu A, Zabolotskaya E A, Hamilton M F 2012 AIP Conf. Proc. 1474 255

    [65]

    Sapozhnikov O A, Bailey M R 2013 J. Acoust. Soc. Am. 133 661Google Scholar

    [66]

    Ilinskii Yu A, Zabolotskaya E A, Treweek B C, Hamilton M F 2018 J. Acoust. Soc. Am. 144 568Google Scholar

    [67]

    Durnin J 1987 J. Opt. Soc. Am. A 4 651Google Scholar

    [68]

    Rayleigh L 1884 Philos. Trans. R. Soc. London 175 1

    [69]

    Landau L D, Lifshitz E M 1993 Fluid Mechanics (2nd Ed.) (Vol. 6) Course of Theoretical Physics (Oxford: Pergamon)

    [70]

    Settnes M, Bruus H 2012 Phys. Rev. E 85 016327Google Scholar

  • [1] Wang Jun, Cai Fei-Yan, Zhang Ru-Jun, Li Yong-Chuan, Zhou Wei, Li Fei, Deng Ke, Zheng Hai-Rong. Acoustic manipulation of microparticles using a piezoelectric phononic crystal plate. Acta Physica Sinica, 2024, 73(7): 074302. doi: 10.7498/aps.73.20231886
    [2] Chen Cong, Zhang Ruo-Qin, Li Feng, Li Zhi-Yuan. Experimental study on levitation control of particles and liquid droplets by vortex acoustic field enhanced by subwavelength pipe. Acta Physica Sinica, 2023, 72(12): 124302. doi: 10.7498/aps.72.20230383
    [3] Wang Yan-Ping, Cai Fei-Yan, Li Fei, Zhang Ru-Jun, Li Yong-Chuan, Wang Jin-Ping, Zhang Xin, Zheng Hai-Rong. Acoustic manipulation of microparticles using a two-dimensional phononic crystal plate. Acta Physica Sinica, 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [4] Qi Shao-Fu, Cai Fei-Yan, Tian Zhen, Huang Xian-Yu, Zhou Juan, Wang Jin-Ping, Li Wen-Cheng, Zheng Hai-Rong, Deng Ke. Experimental investigation of multiple-particle pattern based on one-dimensional grating resonance field. Acta Physica Sinica, 2023, 72(2): 024301. doi: 10.7498/aps.72.20221793
    [5] Pan Rui-Qi, Li Fan, Du Zhi-Wei, Hu Jing, Mo Run-Yang, Wang Cheng-Hui. Acoustic radiation force of elastic spherical shell with eccentric droplet in plane wave acoustic field. Acta Physica Sinica, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [6] Zhu Ji-Lin, Gao Dong-Bao, Zeng Xin-Wu. In-plane manipulation of single particle based on phase-modulating acoustic tweezer. Acta Physica Sinica, 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [7] Zang Yu-Chen, Lin Wei-Jun, Su Chang, Wu Peng-Fei. Acoustic radiation torque on an off-axis elliptical cylinder in Gauss beams. Acta Physica Sinica, 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [8] Huang Xian-Yu, Cai Fei-Yan, Li Wen-Cheng, Zheng Hai-Rong, He Zhao-Jian, Deng Ke, Zhao He-Ping. Acoustic manipulation of particles by a resonant one-dimensional grating in air. Acta Physica Sinica, 2017, 66(4): 044301. doi: 10.7498/aps.66.044301
    [9] Shen Zhuang-Zhi. Dynamical behaviors of cavitation bubble under acoustic standing wave field. Acta Physica Sinica, 2015, 64(12): 124702. doi: 10.7498/aps.64.124702
    [10] Bi Xin, Huang Lin, Du Jing-Song, Qi Wei-Zhi, Gao Yang, Rong Jian, Jiang Hua-Bei. Pulsed microwave energy spatial distribution imaging by means of thermoacoustic tomography. Acta Physica Sinica, 2015, 64(1): 014301. doi: 10.7498/aps.64.014301
    [11] Wang Tuo, Wu Feng, Li Duan-Yong, Chen Hao, Lin Jie. Self-excited oscillation mechanism of a standing-wave thermoacoustic system. Acta Physica Sinica, 2015, 64(4): 044301. doi: 10.7498/aps.64.044301
    [12] Wang Lei, Fan Yi-Ren, Huang Rui, Han Yu-Jiao, Wu Zhen-Guan, Xing Dong-Hui, Li Wei. Three dimensional Born geometrical factor of multi-component induction logging in anisotropic media. Acta Physica Sinica, 2015, 64(23): 239301. doi: 10.7498/aps.64.239301
    [13] Nie Yong-Fa, Zhu Hai-Chao. Acoustic field reconstruction using source strength density acoustic radiation modes. Acta Physica Sinica, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [14] Zhang Li-Min, Jia Chang-Chun, Wang Qi, Chen Zhang-Jin. First-order distorted wave Born approximation for single ionization of Ar by electron impact in a coplanar doubly symmetric geometry. Acta Physica Sinica, 2014, 63(15): 153401. doi: 10.7498/aps.63.153401
    [15] Liu Hao-Di. Berry phase and Hannay's angle of an electromagnetic mode system driven by harmonic field with Born-Oppenheimer approximation. Acta Physica Sinica, 2013, 62(10): 100302. doi: 10.7498/aps.62.100302
    [16] Jiang Yun-Feng, Lu Xuan-Hui, Zhao Cheng-Liang. Radiation force of highly focused cosine-Gaussian beam on a particle in the Rayleigh scattering regime. Acta Physica Sinica, 2010, 59(6): 3959-3964. doi: 10.7498/aps.59.3959
    [17] Zhang Bi-Xing, Wang Cheng-Hao, Bostr?m Anders. Study of SH acoustic radiation field excited by a piezoelectric strip. Acta Physica Sinica, 2005, 54(5): 2111-2117. doi: 10.7498/aps.54.2111
    [18] Lu Xin-Pei, Pan Huan, Zhang Han-Hong. . Acta Physica Sinica, 2002, 51(7): 1549-1553. doi: 10.7498/aps.51.1549
    [19] HU NING, ZHANG DE-HAI, DING HAO-GANG. THE RADIATION DAMPING ON BIBARY STARS DUE TO EMISSION OF GRAVITATIONAL WAVES. Acta Physica Sinica, 1981, 30(8): 1003-1010. doi: 10.7498/aps.30.1003
    [20] QIAN ZU-WEN. A NEW METHOD FOR CALCULATING RADIATION FROM PARAMETRIC LINE ARRAY. Acta Physica Sinica, 1981, 30(11): 1479-1487. doi: 10.7498/aps.30.1479
Metrics
  • Abstract views:  4141
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2021
  • Accepted Date:  09 February 2022
  • Available Online:  16 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回